CRroOP-YIELD DISTRIBUTIONS REVISITED

Ocravio A. RAMIREZ, SUKANT MISRA, AND JAMES FIELD

This article revisits the issue of crop-yield distributions using improved model specificarions, estima-
tion, and testing procedures that address the concerns raised in recent literature, which could have
invalidated previous findings of yield nonnormality. It concludes that some aggregate and farm-level
yield distributions are nonnormal. kurtotic, and right or left skewed, depending on the circumstances.
The advantages of utilizing nonnormal versus normal probability distribution function models. and
the consequences of incorrectly assuming crop-yield normality are explored.
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The issue of crop-yield distributions has been
explored in the agricultural economics litera-
ture since the early 1970s, using two main types
of procedures: parametric and nonparametric,
Nonparametric methods are distribution free
(Hogg and Craig), and have the advantage
of being free from functional form and dis-
tributional assumptions. As such, they are
impervious to specification error and might
result in more accurate and robust models
(Featherstone and Kastens). However, the
nonparametric approach can be problematic
when analyzing multiple variables with small
samples. In agricultural economics, nonpara-
metric procedures have been applied by
Featherstone, Moghniech, and Goodwin;
Goodwin and Ker; and Ker and Goodwin
among others.

Parametric methods require functional form
and distributional assumptions and are, there-
fore, susceptible to specification errors and
their statistical consequences. However, they
work well under small sample conditions.
Gallagher advances a univariate parametric
procedure to model and simulate skewed yield
distributions using the Gamma density.

Taylor approaches the problem of multivari-
ate nonnormal modeling and simulation using
a cubic polynomial approximation of a cumu-
lative distribution function instead of assum-
ing a particular density for empirical analysis.
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Ramirez, Moss, and Boggess explore the use
of a multivariate nonnormal parametric mod—

eling procedure, which is modified by Ram,u'ez
to analyze aggregate Corn Belt yields. He con-:
cludes that annual average Corn Belt corn and,
soybean yields (1950-89) are nonnormally chs~
tributed and left skewed. A consensus about:
the nonnormality of some crop-yield distribu-
tions, however, has not been reached in t.h_él
agricultural economics literature, and recenti
research (Just and Weninger) points to model’
specification and statistical testing problems
that shed doubt on the validity of all prevlous
findings of yield nonnormality.

The following potential problems have been
identified: (a) m155pec1ﬁcat:on of the nonran:
dom components of the yield d!stl‘lblltIODS,.
specifically, the assumption of linearity in the;
time trend for the mean of the distribution;
and the ad hoc modeling of heteroskedasticity,
through arbitrarily specified dummy variables;.
(b) disregarding of the correlation between the:
yield variables involved in the normality tests;
(¢) conducting the normality tests under re-
stricted model specifications; (d) misreporting
of statistical significance, specifically using the.
results of separate (nonjoint) tests for skew-:
ness and kurtosis to conclude nonnormality;:
and (e) the use of aggregate time-series data:
to represent farm-level yield distributions and"
to estimate their variances. il

There are also concerns about the incons:s-l__
tency of the yield nonnormality findings, such.
as Day’sreporting right skewness whereas oth--
ers (Gallager, Swinton and King, Ramirﬂz)_
conclude left skewness; and about the us€
of competing alternative distributional as-
sumptions (Just and Weninger). The issue of
whether a researcher conducting economic
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risk analyses should assume yield normality or
allow for the possibility of yield nonnormal-
ity is critical. Distributional misspecification
could seriously impact, for example, the results
of crop insurance analyses, and nonnormality
could invalidate mean-variance (E-V) approx-
imations of expected utility maximization.

In this article we revisit the issue of yield
nonnormality addressing all of the procedural
problems discussed above. An expanded, re-
fined parameterization of Johnson Sy family of
densities (Johnson, Kotz, and Balakrishnan) is

utilized, arguing that it is filexible enough to al-

leviate the concerns of using competing distri-
butional assumptions in applied research. This
expanded Sy family is used to revisit the issue
of whether aggregate Comn Belt com, soybean,
and wheat yield distributions are nonnormal,
relaxing the assumption of time-trend linear-
ity, using joint tests for nonnormality under
vnorestricted model specifications to avoid the
“double-jeopardy of normality™ problem and
ensure that the conclusions are not affected by
the ordering of the statistical tests, or by igno-
rance of yield correlations. The tests are con-
ducted under the most common heteroskedas-
tic specification where the standard deviation
is a function of time.

West Texas dryland cotton yields are also
analyzed, illustrating the use of the expanded
Sy family to jointly estimate county- and farm-
level yield distributions. County- (TASS, 1970~
99) and farm-level (TAES Farm Assist Pro-
gram, 1988-97) data from five Texas Plains
counties (Childress, Cochran, Crosby, Hale,
and Wichita) and nine different farm units
from two of these counties (five from Chil-
dress and four from Wichita county) are used
to estimate the corresponding yield distribu-
tions, This article also provides explanations
for the apparently contradictory findings of
positively and negatively skewed crop-yield
distributions.

Methods and Procedures

The Sy family of parametric distributions is
built from a Gaussian density (Johnson, Kotz,
and Balakrishnan). The Sy family can be mod-
ified and expanded by one parameter to ob-
tain a flexible probability distribution function
(pdf) model

(1) Y, =X,B+[{c?/G(8, n)]'"(sink(8V))
—F(8,1)]}/0. Vi ~ N(i. 1),
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= E[sinh(6V;)]
= exp(8%/2)sinh(Bp.),

F(©,u)

and
G(©, p) = [exp(6?) — 1}{exp(6?)
x cosh(—20p) +1) /262

where ¥, is the random variable of interest
(crop-yields); X, is a (1 x k) vector of exoge-
nous variable values shifting the mean of the
Y, distribution through time (¢); Bisa (k x 1)
vector of parameters; o7 > 0,—00 < 8 < 0o, and
—00 < | < oo, are other distributional parame-
ters; and sinh, cosh, and exp denote the hyper-
bolicsine and cosine, and the exponential func-
tion, respectively. An independent normally
distributed random variable, V,, is the basis of
the stochastic process defining the expanded
Sy family of densities. From the results of John-
son, Kotz, and Balakrishnan (pp. 34-8) it fol-
lows that in this prohablhry distribution func-
tion model

(2) E[Y]=XB, val¥]=¢,

skew[V,] = 5(8, p), kurt[¥,] = K(8, p)

where S(6,u) and K(8,p) involve combi-
nations of exponential and hyperbolic sine
and cosine functions. The former imply that
E[Y,)=X,B, regardless of the values of ¢, 8,
and p, and that the variance of Y, is solely de-
termined by o;. The skewness and kurtosis of
the Y, distribution are determined by the pa-
rameters § and p. If 8 20 and p approaches
zero, the ¥, distribution becomes symmetric,
but it remains kurtotic. Higher absolute val-
ues of 8 cause increased kurtosis. If 8 =0 and
L >0, ¥, has a kurtotic and right-skewed dis-
tribution, whereas p < 0 results in a kurtotic
and left-skewed distnibution. Higher absolute
valnes of . produce increased skewness.

In practice, under normality, 8 would ap-
proach zero and the proposed pdi mode] would
collapse into a normal distribution with mean
X,B and varance o?. Therefore, the null hy-
pothesis of normahty versus the alternative
of asymmetric nonnormality is Hy: 8 = p =
0 versus H,: 820, p=0. Note that because
this is set up as a joint test for skewness and
kurtosis, it does not suffer from the “double-
jeopardy of normality” problem discussed in
the recent literature (Just and Weninger).
The null hypothesis of symmetric nonnormal-
ity versus the alternative of asymmetric non-
normality is Hy: 6 20, p=0 versus Hy: 8 &
0, p#0.



110 February 2003

Johnson, Kotz, and Balakrishnan (pp. 34—
8) indicate that both the normal and the log-
normal density are limiting cases of the Sy
family, which also provides for a close ap-
proximation for the Pearson family of distri-
butions. They demonstrate that the Sy, and,
therefore, the expanded Sy family proposed in
this study, allow for any combination of right or
left skewness-leptokurtosis values below the
log-normal line. This means that as long as the
rare negative (platy) kurtosis can be ruled out,
the expanded Sy family is flexible enough to
alleviate the concerns of imposing incorrect
distributional assumptions when using it to ap-
proximate a true, unknown crop-yield distribu-
tion. The concentrated log-likelihood function
for the nonnormal pdf model defined in equa-
tion (1) is obtained using the transformation
technique (Mood, Graybill, and Boes)

T T
() LL=) In(G)-05x) HE

=1 1=l

where
G: = [02/G(8, W)(1 + D))
H, = [sinh™*(R,)/8] — s,
R = [8(Y,~X,B)/{0?/G(8, 1)}'"*]

+ F(8, p)

where t = 1,...,T refers to the observations,
sinh~!(x) = In{x-+(1+x%)'/?} is the inverse hy-
perbolic sine function, and o, F(8, ), and
G (8, ) are as defined in equation (1).

A multivariate equivalent is obtained by as-
suming that each of the M random variables
of interest follows the flexible nonnormal pdf
model defined in equation (1). All theoret-
ically possible degrees of correlation among
these variables are achieved by letting a mul-
tivariate normal vector V, ~N(u, T) under-
lie this model, where p is an (M x 1) vector
of parameters and X is an (M x M) correla-
tion matrix with unit diagonal elements and
nondiagonal elements p;;. The log-likelihood
function is obtained using the multivariate
form of the transformation technique (Mood,
Graybill, and Boes)

#
4)

M
LLy=)_ ) (In(Gy)

=1 j=1
- 0.5[(H,z™)."H,])
—0.5T In(|=))

where Gy, is as defined in equation (3) for each
of the j=1,..., M random variables of inter-
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est;H:isalx M row vector with elements
also as defined in equation (3).

The Empirical Models

The multivariate Corn Belt vyield pdf
model includes six parameters (8¢, 8s, By,
e, ps, and pw) to account for potential
com (C), soybean (S), and wheat (W) non-
normality. Because of data limitations (thirty
time-series observations per county times
five counties, and ten observations per farm
times nine farms), one set of nonnormality
parameters is estimated for all county-level
distributions and another for all farm-leve]
distributions, that is, potential skewness and
kurtosis in the Texas Plains county- and
farm-level dryland cotton yield distributions
are modeled by 6¢p and e, and 87 and pgp,
respectively.

Both the full (nonnormal) and the re-
stricted (normal) Corn Belt yield models are
multivariate. They account for any contempo-
raneous yield correlations through the para-
meters pcs, pcw, and psw, eliminating a
potential cause of inaccuracy in the statistical
significance of the nonnormality tests dis-
cussed in recent literature. The Texas Plains
cotton yield models are also multivariate. In
the county-level model, py accounts for any
contemporaneous correlation between the
yields in county i and county j. In the farm-
level model, p;and ps account for the contem-
poraneous correlations between the yields in
county 1 (Childress) and county 2 (Wichita)
farms, respectively, whereas p;a accounts for
possible correlation between farm-level yields
across these two counties.

For the Corn Belt and Texas Plains county-
level models, there are fifty and thirty annual
observations available per crop/county. Thus,
the means of the yield distributions are spec-
ified as fourth- and third-degres polynomial
functions of time, respectively

(5) X;B; = Bjo+ Bt + Bpt® + Bt
+ Bt
and _
X;B; = Bjo+ But+ Bjat* + Bjt°

where j=C (corn), S (soybean), and W
(wheat) in the Corn Belt model and j = 1
(Childress), 2 (Wichita), 3 (Crosby), 4 (Hale),
5 (Cochran) in the Texas Plains model; and ¢
is a time-trend variable starting at ¢ = 1. In
both cases the standard deviations are initially
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wcified as second-degree polynomial func-
tions of time (o j; = o jo+0 11 +0 j212).

Since for the Texas Plains cotton farm-level
models there are only ten years of yield data
per farm unit, the means are specified as
second-degree Eoiynomial time trends only
(Bjo+Bj1+Bjat*, j = 1,...,9), and the vari-
ances of the yield distributions are assumed
constant through time (o = o7, j=1,....9).

The parameters determining the first four
moments of and the correlations between the
yield distributions are jointly estimated by
maximum likelihood. This addresses another
concern raised in recent literature that ig-
noring a critical distributional characteristic,
that is, mean-trend nonlinearity, heteroskedas-
ticity, or multivariate correlation, when
testing for another, that is, nonnormality. in-
validates the result of the test. This joint esti-
mation and testing approach is preferable to
the alternative used in previous studies of first
modeling the mean, variance, and the correla-
tion among distributions, and then using the
detrended, heteroskedastic-corrected residu-
als to test for nonnormality, because the testing
for time-trend nonlinearity and heteroskedas-
ticity without accounting for potential nonnor-
mality could affect the results of those tests.

Jso, full information procedures are more ef-
ficient than step-wise, limited-information pro-
cedures, which enhance the power of statistical
tests on the models’ parameters.

Results

Corn Belr Corn, Sovbean,
and Wheat Yield Distributions

The maximum likelihood parameter estimates
for the multivariate nonnormal and normal
Corn Belt yield pdf models are presented in
table 1. The joint null hypothesis of normality
(Hy :8c=0s= Bw=pc=ps=pw =0} is
rejected in favor of the alternative hypothesis
of nonnarmality in at least one of the marginal
pdfs at an exact « = 0.029 level (xﬁ;= =
-2{-279.22 — (—272.20)] = 14.04). Note that
this is a joint (skewness-kurtosis) multivariate
(corn-soybean-wheat yield) test comparing a
normal model that is nested to a nonnormal
model. both of which include fourth-degree
polynomial time trends on the means and
second-degree polynomial time trends on the
standard deviations of each of these three
crop-yield distributions and account for the
contemporaneous correlations between crop-
yields. In other words, the null hypothesis
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of multivariate normality is rejected while
addressing all of the concerns outlined in
recent literature (Just and Weninger).

Analogous likelihood ratio tests (LRTs)
forHy:Bc=pc=0 (xg,_';s?js) and Hy: B =
ws = 0(x3) = 10.38) (restricted models pre-
sented in tal’::le 1) separately reject normality in
the Corn Belt corn and soybean yield distribu-
tions at o < 0.025 and o < 0.010 levels, respec-
tively. The parameter estimates for 8w and pw
in the nonnormal model are equal to zero, indi-
cating normality in the marginal disiribution of
wheat yields. Single-parameter LRTs (table 1)
suggest that e and s are individually differ-
ent from zero at the o < 0.05 level, indicating
that the cormn and soybean yield distributions
are skewed. The negative estimates for pc and
s imply left skewness, likely because of tech-
nological constraints imposing a ceiling to the
maximum yields combined with the possibility
of wide-spread drought or pest attack causing
unusually low yields in any given year.

The final nonnormal and normal models are
also presented in table 1. All of the parameters
included in the final models are individually
different from zero at an a<(.15 level of
statistical significance, according to single-
parameter LRTs, and the set of parameter
restrictions leading from the full to the final
models are not rejected at an o <0.25 level
(x%3) = 950 in the nonnormal, and X(II.I}=
7.96 in the normal models). Thus, the final
nonnormal and normal models are used in the
following analyses.

The final models include second-, first-, and
third-degree polynomial trends for the means
and linear trends for the standard deviations
of the com, soybean, and wheat yield distribu-
tions, respectively, and a high-positive corre-
lation between corn and soybean yields. The
estimates for the parameters controlling the
means and variances of the distributions, and
their correlations, are similar under the normal
and nonnormal models. As illustrated below,
the main difference results from the nonnor-
mality parameters.

The 1950-99 Corn Belt corn and soybean
yield distributions are simulated numerically
(s=>500,000 draws) using the parameter es-
timates from the final normal and nonnor-
mal pdf models, a standard normal generator,
and, in the case of the nonnormal model, the
transformation to nonnormality specified in
equation (1). Figures 1 and 2 illustrate the
substantial left skewness of both distributions
under the nonnormal pdf model. In compar-
ison to the normal, both nonnormal yield
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Table 1. Parameter Estimates for the Full and Restricted pdf Model Specifications for Com .

Belt Corn, Soybean, and Wheat Yields

—
Full Nonnormal Full Normal Rest Rest Final Nonnormal Final Norma] -
Model Model Model 1 Model 2 Madel Mode|

MLLV =272.20 -279.22 —275.96 =277.32 —276.93 —283.20
fc 0.4682" 0.0000 0.0000 0.3442 0.3681 (.0000
TR -12.413° 0.0000 0.0000 ~17.9483 ~17.9410 0.0000
Beg 49,4938 47.3578 47.4567 48.4872 42.3748 43.1334
Bg —0.2658 0.6343 0.6325 0.1242 2.6611 2.5621
Bo 243354 17.6544 17.3337 21.0604 —1.7099 —1.3079
B ~7.8128 —6.3886 ~56.3099 ~6.9274 0.0000 0.0600
By 0.7433 0.6722 0.6391 0.6736 0.0000 0.0000
s ) 3.9091° 1.5202 1.3728 3.2610 3.4180 2.3872
o 0.0864 0.4026 0.4105 0.1517 0.2717 0.3103
e o 0.5529 _ 02251 —0.2260 0.3343 0.0000 0.0000
fis 0.73417 0.0000 0.5031 0.0000 0.5663 0.0000
s -0.9217° 0.0000 —1.4803 0.0000 —1.4423 0.0000
Bsy 22.4102° 21.6757 21.7802 22.2452 21.0292 20.9897
Bg ~0.0823 0.1592 0.1325 —0.0451 0.4198 0.4213
Bs; 4.1268 2.4569 2.2538 40965 0.0000 0.0000
Bg; —1.1893 —0.8228 ~0.6794 =1.2711 (1.0000 0.0000
Bsy 0.1117 0.0889 0.0672 0.1280 0.0000 0.0000
Tso 1.2595° 1.4321 1.3532 1.3199 1.4148 1.4108
as) 0.0753" 0.0440 0.0387 0.0541 0.0431 0.0420
os2 —0.0646 —0.0118 0.0096 —0.0281 0.0000 0.0000
Bwa 15.2701° 18.6720 18.7397 18.9870 19.3A01 19.3601
By 1.5860° 1.7589 1.7450 1.6546 1.4246 1.4246
Byp —3.46328 —6.9693 —6.8876 —6.1677 ~3.4947 -3.4947
Bw; 1.2078 1.6165 1.6011 1.4049 0.4236 0.4236
Bwa —0.0024 -0.1279 -0.1272 -0.1101 0.0000 0.0000
owo 3.5251° 3.3087 3.5199 3.4062 2.3855 2.3835
owi —0.0616 ~0.0498 —0.0609 —0.0507 0.0670 0.0670
ow2 0.2707 0.2501 0.2687 0.2521 0.0000 0.0000
Pcs 0.6713° 0.7099 0.6783 0.6769 0.6843 0.7156
pow 0.2242 0.1731 0.1743 0.2128 0.0000 0.0000
psw 0.1497 0.1080 0.1473 0.1051 0.0000 0.0000
Motes: MLLY indicaies the maximum value reached by the concentrated log-likelihood funciion. The g estimales corresp e, 0, and ¢ are

muitiplied by 100. 1000, and 10000, respectively.

3 Indicates that the parameter is statistically different from zero at the 5% level of statistical significance according to a likelihood ratio test.
b Indicases that the parametsc is statistically different from zero at the 10% level of statistical significance according to a tkelihood rmtio test.

distributions allow for higher probabilities of
relatively low yields and lower probabilities of
relatively high yields, and their mass is heav-
ily concentrated toward the upper side. The
1950-99 corn yield data are plotted in
figure 3 versus the estimated second-degree
polynomial trend and the 80% and 98% confi-
dence bands for the yield realizations implied
by the fifty corresponding yield distributions
simulated under the normal model. These are
obtained by identifying and joining the 10th
and 90th and the 1st and 99th percentiles of
the simulated distributions.

Note that, although none of the observed
yields near the upper bound of the 98%
confidence band, two yield realizations fall
far below its lower bound. The confidence

bands generated from the nonnormal model
(figure 4) reflect the marked left skewness
of the corn yield distributions depicted in
figure 1.The 98% band contains all fifty yield
realizations. as expected for this sample size.
The number of observations found below the
lower bound (Below) and above the upper
bound (Above) of the 76% to 98% confidence
bands versus the theoretically required num-
bers (TR) under the normal and nonnormal
models are presented in table 2.

The normal mode! produces bounds that are
clearly incompatible with the observed corn
and soybean yield data. In the case of com
yields, for example, it leaves no observations
above the upper boundary of its 88% band,
while allowing for three yield realizations to
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Figure 1. Simulated year 2000 Corn Belt corn yields under the normal and nonnormal models
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Figure 2. Simulated year 2000 Corn Belt soybean yields under the normal and nonnormal

models

fall below the lower bound of its 92%, 94%,
and 96% confidence bands and two under the
98% boundary. In the case of soybean vields,
the normal model only leaves one observation
above the upper boundary of its 78% band,
while allowing for five yield realizations to fall

below the lower bound of its 86% through 92%

confidence bands, four under the 94%, and
two under the 98% boundary. This overesti-
mation of the lower bounds of the yield dis-
tributions by the normal model would be of
particular concern for whether the simulated
distributions were to be used for economic nisk
analysis.
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Figure 3. 80% and 98% confidence intervals for the corn yield realizations under the normal

pdf model
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Figure 4. 80% and 98% confidence intervals for the corn yield realizations under the nonnormal

pdf model

Although not perfect. the nonnormal model
adheres better to the theoretically required
numbers (table 2). It manages to better accom-
modate the data, particularly at confidence
bands above 85%, by asymmetrically expand-

ing the boundaries of the confidence bands
as illustrated in figure 4, The normal model
(figure 3), in contrast, implies unrealistically
high upper bounds, whereas its lower bounds
are still not low enough to account for the
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,lee 2. Select Statistics abont the 76% to 98% Confidence Bands for the Corn Belt Corn and
Soybean Yield Realizations under the Final Normal and Nonnormal pdf Models

e

o, ClI TR Below Abaove AW Below Above AW
Normal Corn Model Nonnormal Corn Model
76% 6.0 5 6 2421 4 6 22.65
78% s 3 3 2527 4 6 23.71
B0% 5.0 5 5 26.40 4 3 24,84
82% 4.5 5 3 27.62 4 5 26.09
84% 4.0 5 2 28.95 3 5 27.44
86% 3.5 3 1 30.40 3 5 28.96
88% 3.0 3 0 32.03 3 3 30.67
90% 2.5 3 0 33.88 3 5 32.65
02% 2.0 3 0 36.07 3 3 35.03
04% 15 3 0 38.76 2 1 38.02
96% 1.0 3 0 4231 2 0 4214
098% 0.5 2 0 47.93 0 0 49.01
Normal Soybean Model Nonnormal Soybean Model

78% A5 ] 1 6.09 7 6 5.44
80% 5.0 3 1 6.56 6 5 5.73
82% 4.5 3 1 6.63 5 ] 6.04
B4% 4.0 5 1 6.97 5 3 £.39
:86% 33 5 1 7.32 5 3 6.78
. 58% 3.0 5 1 7.7 5 1 7.23
- 00% 235 5 1 8.16 4 1 7.76
. 92% 2.0 5 =5 8.69 3 1 8.41
5.94% 1.5 4 0 9.33 2 1 0.26
- 96% 1.0 2 0 10.19 1 1 10.43
. 98% 03 2 0 1155 0 1 12.35

«otes: TR refers 1o the number of ohservations that would be theorstically required to be below and above the boundaries of the confidence band: Below
znd Abave are the actual numbers found below and above the lower and upper bounds, respeciively: and AW stands for the average of the widths of the fifty

: ._ confidence intervals comprising each of the bands

lowest yield realizations. Also, as a result of the
former, the confidence bands from the nonnor-
mal model are narrower up to 95%, and on the
average (table 2). The statistical significance
of the nonnormal model is reflected on an im-
proved representation of the observed 1950-
99 Corn Belt corn and soybean yield data.

Texas Plains Dryland Corton
Yield Distributions

The parameter estimates for the Texas Plains
county-level dryland cotion yield pdf mod-
€ls are presented in table 3. An LRT statis-
ticcomparing the full nonnormal with the noz-
mal model (xf.,‘ = —2[—688.92 — (—680.84)] =
16.16) rejects the null hypothesis of normality
(Ho: 8L =0, ey =0) in favor of the alterna-
tive hypothesis of nonnormality (H: 8¢ =0,
lcr #0) at a high level of statistical signifi-
cance (o < (.01). A single-parameter LRT in-
dicates that wey is different from zero (¢ =
0.01), suggesting that the county-level yield
distributions are skewed. The positive pcp pa-
Tameter estimate implies right skewness.

All of the parameters in the final models
(table 3) are statistically different from zero
at an o<(0.15 level, according to single-
parameter LRTs, and the set of parameter
restrictions leading from the full to the final
models are not rejected at an « < 0.25 level
(xé*:_n = 27.98 in the nonnormal and }{32'3) =
26.47 in the normal models). Thus, the final
models are used in the analyses. They imply
that county-level dryland cotton yields have
remained constant in the Texas Plains during
the last thirty years, a hypothesis maintained
by many farmers, cotton experts, and industry
groups. Surprisingly, yield variability appears
to have increased in two of the five counties
analyzed.

Cotton production in the Texas Plains is lo-
cated mostly on the Southern Plains of West
Texas, on an approximaiely 200 x 200 mile
square comprising about thirty counties. The
five counties in the analyses are spread across
this area. The contemporaneous yield corre-
lations between these counties range from
0.4 to 0.85 and are statistically significant
at an w<0.01 level, with the exception of
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Table 3. Parameter Estimates for Full and Restricted pdf Model Specifications for Drylang
Cotton Yields in Five Texas Southern Plains Counties

al 3

Full Nonnormal Fuil Normal Nonnormal  Final Normal

MLLV —680.84 -688.92 —694.82 ~702.16
B 04298* g 105.987" B¢ 0.0000 on 79.8589 8¢ 02912 B¢y 0.0000
oL 19.0872° op 347798 per 00000 op  53.0573 per 205340 per  0.0000
By 312,153 oy 89.3634° By 311319 o 151151 By 304.8830 By 307.0184
Bm 178871 om 533243 By 179431 on 67.7838 Bp. 168.5700 Bnp 172.6908
Bm 361.003° @os 0.0000 By 373.126 ops 0.0000 Bg; 239.9345 Bpy 261.5790
By 219.606° o)y 128549 By 253337 oq 14.5045 By 2229672 By 227.1613
Bys 197.943% o2 173445 Bys 190212 a2 14.8010 Bgs 228.6126 Bps 230.0757
By —-12.6773 o 53478 By —10.4489 oy ~3.7842 oy 128.1141 oy 125.1818
Bpa —6.3333 oy 33381 By 3.3094 oy 55027 op 123.1535 op 130.4016
Bu —30.3387 05 19.7696: Bu —25.3250 o5 18.3013 On3 100.7046 On3 95.?795
By, 1.6368 oy —5.3610 By -10.0087 oy —3.3928 oy 69.7763 oy 83.1788
Bys 04673 om 52674 By 6.9081 om —4.8539 ops  73.6322 ops  76.3918
By 18333 on -2.0949 B, 1.5088 o= 0.4602 o5 20086 a5 1.8723
B 10542 oy 0.8445* Bx»  —0.0325 g ~1.3130 o 1.4111 oy 0.2460
By 24133 o0 -62376 Bn 1.6277 o35 —5.6941 py 05176 pn 0.5533
By —0.1970 pay 035450* By 0.8283 pay 0.6138 pxy 0.6173 px 0.6121 -
Bas 09501 px 0.5994" Bas 01143 pxy 06557 pm  0.6980 p:n  0.7059
By ~5.3610 pn 0.7760° By  —4.4518 ps 0.7656 py 04009 py, 04356
By —3.3254 py 0.4512* Bn —0.6736 pu 0.5681 pua 0.6465 pn 0.6540
B4 —-5.2814 pae 0.7438° Bz -3.2014 pg2 0.7143 pus 0.5982 pys 0.5990
By 0.8146 pus 0.6608° By  —1.7598 py 06627 ps; 08461 ps;  0.8540
Bss -3.6913 ps 0.8628° B3  ~1.3490 ps 0.8800 psz  0.6203 ps  0.6400
ps: 0.6377° pa 0.6833 ps; 04909 ps;  0.4960

pss  0.3005° ps3 05579 psy 02202 ps 02731

Pss 0.3335°

Pzt 0.4530

Notex: MLLY indicates the maximum value reached by the concentrated log-ikelibood function. All parametess in the final models are statistically significant
at the 10% level, with the exception of psy, which is significant at the 15% level. The parameter estimates corresponding to £, and * are multiplied by 100,

1000, and 10001}, resp=ctively,
Fndi that the is

ically diiferent from zero at the 3% level of statistical significance according ta a likelihood ratio st

Bindicates that the parameter ks statistically differant from zero o the 10% lavel of siatistical significance according to a likelihoad ratio test,

Hale-Cochran's which is 0.22 and only signif-
icant at an o = 0.15 level. An LRT indicates
that not all correlation coefficients are statist-
cally equal. However, in contrast to what has
been hypothesized in previous studies (Just
and Weninger), within the area under analysis.
increased distance between counties does not
appear to decrease the degree of correlation
between their yields.

As in the case of Corn Belt yields, the mean
and standard deviation parameters estimated
under the final normal and nonnormal mod-
els are quife similar. The residuals and the
standard deviation parameters from the nor-
mal model are used to obtain n = 3x29 =
145 standardized residuals that would be theo-
retically drawn from a distribution with mean
zero and variance one. These residuals are
multiplied by the estimated standard devia-
tion and added to the estimated mean for
Wichita county to abtain 145 adjusted yield ob-
servations. The relative frequency distribution

of this adjusted yield data is compared to the
yield distributions for Wichita county implied
by the normal and nonnormal models, simu-
lated using the same procedures described for
Corn Belt yields.

The normal model clearly overestimates
the probability of very low yields (below
110 Ibsfacre) underestimates the probability
of moderately low-to-average yields (110 to
230 lbs/acre), overestimates the probability
of average-to-moderately-high yields (230 to
310 Ibs/acre), and underestimates the proba-
bility of very high vields (above 390 lbs/acre)
(figure 3). The nonnormal model is more ac-
curate than the normal on predicting the ob-
served yield frequencies in twelve of the thir-
teen intervals depicted in figure 5, and does not
show substantial under- or overestimation pat-
terns, The average of the absolute differences
between the observed relative frequencies and
those predicted using the simulated distribu-
tions is 0.076 under the nonnmormal model,
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Figure 5. Simulated west Texas county-level dryland yields under the normal and nonnormal

‘models versus adjusted data

versus 0.244 under the normal model. Be-

- cause the nonnormal model assumes the same
kewness and kurtosis parameters for all five
counties, similar results would be expected if
adjusting the standardized residuals by the es-
timated mean and standard deviation of any
other county and comparing them with the
yield distributions simulated for that particular
county.

The maximum likelihood parameter esti-
mates for the Texas Plains farm-level dry-
land cotton yield pdf models for Childress and
Wichita counties are presented in table 4. An
LRT statistic comparing the full nonnormal
with the normal model x3; [—466.54 —
(—461.61)] =9.83) rejects the null hypothesis
of normality (Hg: 8g = 0, ppr = 0) in favor
of the alternative hypothesis of nonnormality
(Ha: 8rL 0, pr #0) at a high level of statisti-
cal significance (e < 0.01). A single-parameter
LRT test indicates that pm is individually
different from zero at the ¢ = 0.01 level, sug-
gesting thai the farm-level cotton yield dis-
tributions are skewed. As in the case of the
county-level distributions, the positive value
of the py parameter estimate implies right-
skewness.

The yield right skewness is compatible
with Texas Southern Plains farmers' and re-
searchers’ intuition: Given normal rainfall
conditions of 8-12 inches during the criti-

= =2

cal (May to August) period of the grow-
ing season, dryland cotton production systems
have evolved to produce between 130 and
350 Ibs/acre, (200-250 Ibs/acre, on average,
depending on the county). Under minimum
rainfall (4-6 inches) that occurs about once a
decade, many farms report low (30-150 lbs/
acre) yields per harvested acre. Extremely
favorable rainfall amounts of 15-20 inches
occur in certain areas every 10-15 years,
resulting in yields of between 400 and
600 Ibs/acre.

In other words, the right skewness of the dry-
land cotton yield distribution is likely derived
from the right skewness of the rainfall distri-
bution. Including rainfall as a factor shifting
the mean of the yield distribution from year to
year could result in a conditional yield distri-
bution that is normal. This, however, would be
conditional on prior knowledge of the amount
of rainfall that would occur in any given
year, which is not compatible with the usual
risk analyses applications of simulated yield
distributions.

The final nonnormal and normal mod-
els (table 4) are formulated considering the
results of the single-parameter LRTs on the
remaining coefficients. All of the parameters
included in these models are individually dif-
ferent from zero at an « < 0.15 level of statisti-
cal significance, according to single-coefficient
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Table 4. Parameter Estimates for Full and Restricted pdf Model Specifications for D‘”—]’land

Cotton Yields from Nine Farms in Childress and Wichita Counties

Final T
na :
Full Nonnormal Full Normal Nonnormal Final Normal
MLLV —461.61 —466.34 —465.91 —471.03
B 0.5252" oy 154395 68 0.0000 oq 156.171 Bp 0.4765 Bg 0.0000
oy 151717 om 933051 pe 0.0000 op 94445 e 28194 pr 0.0000
By 577.2013% og; 147.8967° By 635125 og; 150.079 By 345574 By 6221803
Bn 2814454 gy 2958785 By 255642 o 275.191 By 250912 By 237.8000
Bps 760.9779" ops 191.613° By 684236 o 164901 By 728.003 By 671.8015
By 756.4156* oy B802997" Bn 666572 ogs  75.630 By 374261 By 380.3999
Bys 347309° oy 1005253 By 281321 oy 92.697 By 337.405 By 342.7999
By 334.8997" ogy 2262606 Bgs 293.612 oy 171140 Bgg 293235 By 277.4821
By 354.6907° og 93.1713* By 352201 og 73762 By 322331 By 3332046
Bug 4862828 py;  03185" Bw 335497 pu 0231 By 304717 By 295.8000
B 298.4769" pax 07163 Bpg 237.282 pn 0702 By 340191 By 341.1000
By, —146.260° pp 01702 By -14757 pp 0135 By -132.19 B -155.861
By ~—3.6809 Bz 11.2827 By —13642 Byz  —55.4052
B3 —143.949° By; —87.449 By —-13441 By -10.1967
By ~151.060 By, —82322 By -14.871 By -16.5281
Bs 34.1359 Bys 69.2175 By 12.5497 B 13.2299
Bys —~37.8884 By —12.604 B 8.8710 B=x 4.8007
Bz —36.7196 By —18.092 o 1531973 oy 139.0956
Big ~79.1746 Big 8.2339 opp 100880 op 96.5063
By 14.5752 By 51.9613 om 148420 og 132.6977
Bay 12.7250° By 11.709 oggy 306671 og 296.5955
Bx —0.3429 B —1.356 ogs 215981 oy 1842491
Bx 9.0406° B 3.341 Tos 78.9314 ogg 75.8593
By 11.5491 By 4.332 onr 96.4512 oy 93.0169
Bss —3.2206 Bas —-8.291 gos  226.610 oy 1763552
B 23337 B —0.075 apg 97.9251 o 82.1173
Bx 22049 By —0218 Pt 03750 py 0.2668
Bag 63834 By  —2207 pa 0.6643 pn  0.6708
B ~1.0969 By  —4.726 P12 01597 pp  0.1602
Notes: MLLV indi the value reached by the c | log-likelibood function, All parameters in the final medels are statisticaily significant
at the 10% level, with the exception of pyz,
ndi that the p is statistically different from zeco at the 3% level of swtistical significancs according to o likelihood ratio test.

B fndicates that the parameter is statistically different from zero at the 10% level of staristical significance according to a likelihood ratio test.

LRTs, and the set of parameter restrictions
leading from the full to the final models are not
reiectes:l at an o < 0. ..5 level (y3 =y = 8.61 in
the nonnormal, and x72 13y = 8.99 in the normal
models). Thus, the final nonnormal and normal
models are used in the following analyses.
Unlike the county-level models, four of the
nine final farm-level models show statistically
significant time-trend parameters suggesting
that the yields have declined during the 1988-
97 period. This is likely not indicative of a
real downward trend, but rather because of
two very dry growing seasons occurring near
the end of that period. As expected, the vari-
ances of the county-level distributions gen-
erally are lower than the variances of the
farm-level distributions. The skewness and
leurtosis parameters are quite different, as well.
Startistically significant contemporaneous cor-

relations of 0.38 and 0.66 are detected between
the yields in Childress and in Wichita county
farms, respectively.

Adjusted farm-level vields and the simu-
lated yield distributions under the normal and
nonnormal models are obtained for one of
the farms in Childress county, following the
same procedures used at the county level
(figure 6). As in the case of county-level yields,
the normal model overestimates the proba-
bility of very low yields (below 70 lbs/acre),
underestimates the probability of moderately
low-to-average vields (140 to 280 lbs/acre),
overestimates the probability of average-
to-moderately-high yields (280 to 420 lbs/
acre), and underestimates the probability of
very high yields (above 420 lbs/acre). The
nonnormal model is more accurate than the
normal model in predicting the observed
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figure 6. Simnlated west Texas farm-level dryland yields under the normal and nonnormal

models versus adjusted data

ive yield frequencizs in eight of the ten
.. .svals depicted in figure 6.
«-The average of the absolute differences
between the observed relative frequencies and
those predicted from the simulated distribu-
tions is 0.135 under the nonnormal model, ver-
sus 0.284 under the normal model. As in the
county level, because the nonnormal model as-
sumes the same skewness and kurtosis param-
eters for all nine farms, similar results would be
‘expected if adjusting the standardized residu-
als by the estimated mean and standard devi-
ation of any other farm and comparing them
with the yield distributions simulated for that
particular farm.

' Conclusions and Recommendations

‘This article reaffirms Ramirez's (1997) find-
Ings that Corn Belt corn and soybean yields
are nonnormally distributed and left skewed.
uUsing an expanded data set and addressing
-fhl’- procedural issues that have been raised
Mrecent literature. The procedures used here
are preferable to previous methods because
they allow for the testing of all potential dis-
ributional characteristics (nonlinear trends in
[ means, heteroskedasticity, kurtosis, right
e ft 5k_ewnn§SS, and cross-distribution cor-
‘elation) in 2 joint, full-information context,

which is the most efficient. The tests for nonlin-
ear trends and heteroskedasticy are conducted
while allowing for any potential nonnormality,
and vice versa, using the additional informa-
tion transmittad through the cross-distribution
correlation matrix.

As recognized by the authors of previous
studies, nonrejection does not prove yield nor-
mality, because the magnitudes of the type-two
errors in their normality tests are unknown.
In contrast, here Corn Belt corn and soybean
yields are found to be nonnormally distributed.
with a small 3.0% probability of making an er-
ror in this conclusion. The consistency of the
results after adding a substantial amount of re-
cent data, and under an alternative, more com-
mon heteroskedastic specification, is further
evidence of the soundness of the nonnormality
concussions.

In the case of the Texas Plains dryland cot-
ton yields, the normality hypothesis is rejected
at the 1% significance level at both the farm
and county levels, providing further support
for the thesis that some crop-yield distributions
are nonnormal. There is no contradiction in the
findings of Corn Belt corn and soybean yield
distribution left skewness and Texas Plains dry-
land cotton yield distribution right skewness.
As argued above in detail. diverse nonnormal-
ity patterns could result from different criti-
cal factors affecting aggregate and farm-level
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yields, depending on the crop, cropping system,
and geographical region.

The main recommendation of this study
is that researchers estimating and simulating
farm. county, state, regional, or U.S.-level yield
distributions for policy, market, industry, farm,
or any other type of risk analysis. should rec-
ogmnize that they could be nonnormal, and use
the methods available for testing, and for es-
timating and simulating nonnormal distribu-
tions when necessary.

[Received February 2002; final revision
received May 2002.]
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