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This article revisits the issue of crop-yield distributions using improved model specificntions. estima­

tion, and testing procedures that address the concerns raised in recent literature. which could have 

invalidated previous findings of yield nonnonnality. It concludes that some aggregate and fann-Ievel 

yield distributions are nonnormal. l.."1lrtotic, and right or left skewed. dept:nding on the circumstances. 

The advantages of utilizing nonnonnal versus normal probability distribution function models. and 

the consequences of incorrectly assuming crop-yield normality are explored. 
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The issue of crop-yield distributions has been 
explored in the agricultural economics litera­
ture since the early 1970s, using two main types 
of procedures: parametric and nonparametric. 
Nonparametric methods are distribution free 
CHogg and Craig), and have the advantage 
of being free from functional form and dis­
tributional assumptions. As such, they are 
impervious to specification error and might 
result in more accurate and robust models 
(Featherstone and Kastens). However, the 
nonparametric approach can be problematic 
when analyzing multiple variables with small 
samples. In agricultural economics, nonpara­
metric procedures have been applied by 
Featherstone, Moghnieh, and Good\\w; 
Goodwin imd Ker; and Ker and Goodwin 
among others. 

Parametric methods require functional form 
and distributional assumptions and are, there­
fore, susceptible to specification errors and 
their statistical consequences. However, they 
work well under small sample conditions. 
Gallagber advances a univariate parametric 
procedure to model and simulate skewed yield 
distributions using the Gamma density. 

Taylor approaches the problem ofmultivari­
ate nonnormal modeling and simulation using 
a cubic polynomial app;oximation of a cumu: 
lative distribution function instead of assum­
ing a particular density for empirical analysis. 
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Ramirez, Moss, and Boggess explore tbe use: 
of a multivariate nonnormal parametric mod~ 
eling procedure, which is modified by Ramirez; 
to analyze aggregate Corn Belt yields. He con~ j 

eludes that annual average Corn Belt corn arid; 
soybean yields (1950-89) are nODDormally disi 
tributed and left skewed. A consensus abo uti 
the nonnormalityof some crop-yield distn'bu~ ~ 
tions, however, has not been reached in th~l 
agricultural economics literature, and recen4 
research (Jusr and Weninger) points to model' 
specification and sratistical testing problem~ ; 

that shed doubr on the · validity of all previouS 
findings of yield nonnonnality. 

The following potential problems have beep; 
identified: (a) misspecification of the nonran~ 
dam components of the yield distributicin~: 

specifically, the assumption of linearity in · 4I~ 
time trend for the mean of the distributiori;~ 
and the ad hoc modeling of heteroskedasticity) 
through arbitrarily specified dummy variables;: 
(b) disregarding of the correlation between tb( 
yield variables involved in the normality tests; ~ 

(e) conducting the normality tests under n:c: 
stricted model specifications; (d) misreporting 
of statistical significance, specifically using the., 
results of separate (nonjoint) tests for skew:; 
ness and kurtosis to conclude nonnormality; .. 
and (e) the use of aggregate time-series data ~ : 
to represent farm-level yield distributions and ' 
to estimate their variances. =,,\i' 

There are also concerns about the inconsis j
; 

tency of the yield nonnormality findings, sucI1 ~ 
as Day's reporting right skewness whereas oth- : 
ers (GaUager, Swinton and King, Ramirez) 
conclude left skewness; and about the use ' 
of competing alternative distributional as~ 
sumptions (Just and Weninger). The issue of 
whether a researcher conducting economic 
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risk analyses should assume yield normality or 
allow for the possibility of yield nonnorrnal­
ity is critical. Distributional misspecification 
could seriously impact, for example, the results 
of crop insurance analyses, and nonnormality 
could invalidate mean-variance (E-V) approx­
imations of expected utility maximization. 

In this article we revisit the issue of yield 
nonnormality addressing all of the procedural 
problems discussed above. An expanded, re­
fined parameterization of Johnson S u family of 
densities (Johnson, Kotz, and Balakrishnan) is 
utilized, arguing that it is flexible enough to al­
leviate the concerns of using competing distri­
butiorial assumptions in applied research. This 
expanded Su family is used to revisit the issue 
of whether aggregate Corn Belt com, soybean, 
and wheat yield distributions arenonnormal, 
relaxing the assumption of time-trend linear­
ity, using joint tests for nonnormality under 
unrestricted model specifications to avoid the 
"double-jeopardy of normality" problem and 
ensure that the conclusions are not affected by 
the ordering of the statistical tests, or by igno­
rance of yield correlations. The tests are con­
ducted under the most common heteroskedas­
tic specification\vhere the standard deviation 

is a function of time. 
West Texas dryland cotton yields are also 

analyzed, illustrating the use of the expanded 
Su family to jointly estimate county- and farm­
level yield distributions. County- (TASS, 1970-
99) and farm-level (TAES Farm Assist Pro­
gram, 1988-97) data from five Texas Plains 
counties (Childress, Cochran, Crosby, Hale, 
and Wichita) and nine different farm units 
from two of these counties (five from Chil­
dress and four from Wichita county) are used 
to estimate the corresponding yield distribu­
tions. This article also provides explanations 
for the apparently contradictory findings of 
positively and negatively skewed crop-yield 
dist.-ibutions. 

Methods and Procedures 

The Su family of parametric distributions is 
built from a Gaussian density (Johnson, Katz, 
and Balakrishnan). The Su family can be mod­
ified and expanded by one parameter to ob­
tain a flexjble probability distribution function 

(pdf) model 

(1) Y, = XrB + [{ 0/ / G(e, fL)} 1/2 lsinh(B V,) 

-F(e , f.L)}]/e , V, ~ N(f.L . 1) . 
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F(e, f.L) = E[sinh(8V,)] 

= exp(e2/2)sinh(8p..), 

and 

G(e, p..) = (exp(62
) -1}{exp(a2) 

X cosh( -26 p..) + 1]/282 

where Y, is the random variable of interest 
(crop-yields); X t is a (1 x k) vector of exoge­
nous variable values shifting the mean of the 
Y, distribution through time (t); B is a (k xl) 
vector ofparamerers; a} > 0,-00 < 8 < oo,and 
-00 < f.L < 00, are other distributionalparame­
ters; and sinh, cosh, and exp denote the hyper­
bolic sine and cosine, and the exponentialfunc­
tion, respectively. An independent normally 
distributed random variable, V" is the basis of 
the stochastic process defining the ell.l'anded 
S u family of densities. From the results ofJohn­
son, Kotz, and Balakrishnan (pp. 3~8) it fol­
lows that in this probability distribution func­
tion model 

(2) E[Y,] = X/B, var[Y,] = cr
t

2
, 

skew[Ytl = Sea, f.L),kurt[Yt] = K(e, f.L) 

where S(8, p..) and Ke6,).1) involve combi­
nations of exponential and hyperbolic sine 
and cosine functions. The former imply that 
E[Y,] =X,B, regardless of the values of cr,2, 6, 
and fl, and that the variance ofY, is solely de­
termined by cr?". The skewness and kurtosis of 
the Y, distribution are determined by the pa­
rameters 8 and fL. If e i= a and fl approacbes 
zero, the Y, distribution becomes symmetric, 
but it remains kurtotic. Hig:her absolute val­
ues of a cause increased kurtosis. If 8 i= 0 and 
fl > 0, Yr haS a kurtotic and right-skewed dis­
tribution, whereas f.L < 0 results in a kurtotic 
and left-skewed distribution. Higher absolute 
values of f.L produce increased skewness. 

In practice, ' under normality, a would ap­
proach zero and the proposed pdfmodel would 
collapse into a normal distribution with mean 
X,B and variance u?: Therefore, the null hy­
pothesis of normality versus the alternative 

of asymmetric nonnormality is Ho: 8 = fl = 
o versus Ha: 6:j:. 0, f1. i= O. Note that because 
this is set up as a jomt test for 'skewriess and 
kurtosis, it does not suffer from the "dauble­
jeopardy of normality" problem discussed in 
the recent literature (Just and Weninger). 
The null hypothesis of symmetric nonnormal­
ity versus the alternative of asymmetric non­

normality is Ho: 8 i= 0, f1. = 0 versus Hn: e i= 
0, fli=O. 
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Jobnson, Kotz, and Balakrishnan (pp. 34-
8) indicate that both the normal and the log­
normal density are limiting cases of the Su 
family, which also provides for a close ap­
proximation for the Pearson family of distri­
butions. They demonstrate that the S u, and, 
therefore, the expanded S u family proposed in 
tills study, allow for any combination of right or 
left skewness-Ieptokurtosis values below the 
log-normal line. This means that as long as the 
rare negative (platy) kurtosis can be ruled out, 
the expanded S u family is flexible enough to 
alleviate the concerns of imposing incorrect 
distributional assumptions when using it to ap­
proximate a true, unknown crop-yield distribu­
tion. The concentrated log-likelihood function 
for the nonnormal pdf model defined in equa­
tion (1) is obtained using the transformation 
technique (Mood, Graybill, and Boes) 

T T 

(3) LL = L In(G t ) ~ 0.5 x L H?; 
1=1 1=1 

where 

GI = {a} /G(6, J.L)(1 + R;) r lf2 

HI = {sinh-1(RI)/e} - J.L, 

R, = [a(Yr-X rB)/{6-NG(8, f.L)J l /2] 

+ F(e, f.L) 

where t = 1, . . . ,T refers to the observations, 
sinh-1 (x) = In{x+(l +X2-)l/2} is the inverse hy­
perbolic sine function, and cr?, F(e, f.L), and 
G(e, J.L) are as defined in equation (1). 

A multivariate equivalent is obtained by as­
suming that each of the 1'111 random variables 
of interest follows the flexible nonnormal pdf 
model defined in equation (I). All theoret­
ically possible degrees of correlation among 
these variables are achieved by letting a mul­
tivariate normal vector VI ....... N(fl., 'E) under­
lie tills model, where f.L is an (lvl x 1) vector 
of parameters and}:; is an (lvJ x llyl) correla­
tion matrix with unit diagonal elements and 
nondiagonal elements P ij . The log-likelihood 
function is obtained using the multivariate 
form of the transformation technique (Mood, 
Graybill, and Boes) 

. T M 

(4) LL.I1 = L :2)ln(Gjl ) 

r=1 j =l 

- 0.5[(HI 'E-1
) . ·H/]} 

-O.5T InCl}:;!) 

where Gj l is as defined in equation (3) for each 
of the j = 1, . . . , M random variables of inter-
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est; HI is a 1 x M row vector \vitb elements H · 
I fin

· /1 
a so as de ed ill equation (3). 

The Empirical l"1odels 

The multivariate Corn Belt yield pdf 
model includes six parameters (Be, as, ew, 
!-Le, f.LS, and J.Lw) to account for potential 
corn (C), soybean (S) , and wheat (W) non­
normality. Because of data limitations (thirty 
time-series observations per county times 
five counties, and ten observations per farm 
times nine farms), one set of nonnormality 
parameters is estimated for all county-level 
distributions and another for aU f~-level 
distributions, that is, potential skewness and 
kurtosis in the .Texas Plains county- and 
farm-level dryland cotton yield distributions 
are modeled by eeL and /-LCL, and BFL and J.LFL, 
respectively. 

Botb the full (nonnarmal) and the re­
stricted (normal) Com Belt yield models are 
multivariate. They account for any contempo­
raneous yield correlations through the para­

meters Pes, Pew, and Psw, eliminating a 
potential cause of inaccuracy in the statistical 
significance of the nonnormality tests dis­
cussed in recent literature. The Texas Plains 
cotton yield models are also multivariate. In 
the county-level model, P ij accounts for any 
contemporaneous correlation between the 
yields in county i and county j. In the farni­
level model, Pland P2 account for the contem­
poraneous correlations between the yields in 
county 1 (Childress) and county 2 (Wichita) 
farms, respectively, whereas P12 accounts for 
possible correlation between farm-level yields 
across these two counties. 

For the Corn Belt and Texas Plains county­
level models, there are fifty and thirty annual 
observations available per crop/county. Thus, 
the means of the yield distributions are spec­
ified as fourtb- and third-degree polynomial 
functions of time, respectively 

(5) XjrBj = BjD + Bjlt + B jz t
1 + Bj3c3 

·B 4 + j4 t , 

and 

where j=C (com), S (soybean) , and W 
(wheat) in the Corn Belt model and j = 1 
(Childress), 2 (Wichita), 3 (Crosby), 4 (Hale) , 
5 (Cochran) in the Texas Plains model; and t 

is a time-trend variable starting at t = 1. In 
both cases the standard deviations are initially 
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~cified as second-degree polynomial func­

nons oftime (Ujl = UjO+Ujlt +Uj2tZ). 

Since for the Texas Plains cotton farm-level 
models there are only ten years of yield data 
per farm unit, the means are specified as 

second-degree ~olf'"D0mial time trends only 
(Bjo+Bjlr+Bjzt-, ] = 1, ... ,9), and the van­
ances of the yield distributions are assumed 
constant through time (o} = Uj7' j = 1, .. . ,9). 

The parameters determining the first four 
moments of and the correlations between the 
yield distributions are jointly estimated by 
maximum likelihood. This addresses another 
concern raised in recent literature that ig­
noring a critical distributional characteristic, 
that is, mean-trend nonlinearity, heteroskedas­
tieity, or multivariate correlation, when 
testing for another, that is, nonnormality, in­
validates the result of the test. This joint esti­
mation and testing approach is preferable to 
the alternative used in previous studies of first 
modeling the mean, variance, and the correla­
tion among distributions, and then using the 
detrended, heteroskedastic-corrected residu­
als to test for nonnormality, because the testing 
for time-trend nonlinearity and heteroskedas­
ticity without accounting for potential nonnOf­
rnality could affect the results of those tests. 
Jso, full information procedures are more ef­

ficient than step-wise, limited-information pro­
cedures, which enhance the power of statistical 
tests on the models' parameters. 

Results 

Com Belt Com, Soybean, 
and Wheat Yield Distributions 

The maximum likelihood parameter estimates 
for the multivariate nonnormal and normal 
Com Belt yield pdf models are presented in 
table 1. The joint null hypothesis of normality 

(Ho :6c=6s= 6w=!-Lc=!-Ls=!-Lw =0) is 
rejected in favor of the alternative hypothesis 
of nonnormality in at least one of the marginal 
pdfs at an exact · a = 0.029 level (Xf6) = 
-2[-279.22 - (-272.20)] = 14.04). Note that 
this is a joint (skewness-kurtosis) multivariate 
(com-soybean-wheat yield) test comparing a 
normal model that is nested to a nonnorrnal 
model. both of which include fourth-degree 
polynomial time trends on the means and 
second-degree polynomial time trends on the 
standard deviations of each of these three 
crop-yield distributions and account for the 
contemporaneous correlations between crop­
yields. In other words, the null hypothesis 
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of multivariate normality is rejected while 
addressing all of the concerns outlined in 
recent literature (Just and Weninger). 

Analogous likelihood ratio tests (LRTs) 

forHo:6c = f.Lc=O (X[2) =7.53) andRo: 65= 

f.Ls = 0 (X&· = 10.38) (restricted models pre­
sentedin table 1) separately reject normality in 
the Corn Belt corn and soybean yield distribu­
tions at a < 0.025 and Q'. < 0.010 levels, respec­
tively. The parameter estimates for Bw and !-Lw 
in the nonnormal model are equal to zero, indi­
cating normality in the marginal distribution of 
wheat yields. Single-parameter LRTs (table 1) 
suggest that f.Lc and !-L5 are individually differ­
ent from zero at the Q'. < 0.05 level, indicating 
that the corn and soybean yield distributions 
are skewed. The negative estimates for !-Lc and 
J.Ls imply left skewness, likely because of tech­
nological constraints imposing a ceiling to the 
maximum yields combined with the possibilit) 
of wide-spread drought or pest attack causin£ 
unusually low yields in any given year. 

The final nonnormal and normal models are 
also presented in table 1. All of the parameters 
included in the final models are individually 
different from zero at an Q'. < 0.15 level of 
statistical. significance, according to single­
parameter LRTs, and the set of parameter 
restrictions leading from the · full to the final 
models are not rejected at an a <0.25 level 

(Xftl) = 9.50 in the nonnormal' and Xfli):::: 
7.96 in the normal models). Thus, the final 
nonnormal and normal models are used in the 
following analyses. 

The final models include second-, first-, and 
third-degree polynomial trends for the means 
and linear trends for the standard deviations 
of the corn, soybean, and wheat yield distribu­
tions, respectively, and a high-positive corre­
lation between com and soybean yields. The 
estimates for the parameters controlling the 
means and variances of the distributions, and 
tlleir correlations, are similar under the normal 
and nonnormal models. As illustrated below, 
the main difference results from the nonnor­
mality parameters. 

The 1950-99 Corn Belt corn and soybean 
yield distributions are simulated numerically 
(s = 500,000 draws) using the parameter es­
timates from the final normal and nonnor­
mal pdf models, a standard normal generator, 
and, in the case of the nonnormal model, the 
transformation to nonnormality specified in 
equation (1). Figures 1 and 2 illustrate the 
substantial left skewness of both distributions 
under the nonnormal pdf model. In compar­
ison to the normal, both nonnormal yield 
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Table 1. Parameter Estimates for the Full and Restricted pdf Model Specifications for CorD. , 
Belt Corn, Soybean, and Wheat Yields 

Full Nonnormal Full Nonnal Rest Rest Fmal Nonnormal Final N annal ·· 
Model Model Modell Model 2 Model Model 

MLLV -272.20 -279.22 -275.96 -277.39 -276.95 -283.20 

Bc 0,4682" 0.0000 0.0000 0.3442 0.3681 0.0000 
f.lC -12.413" 0.0000 0.0000 -17.9483 -17.9410 0.0000 

Bco 4904938' 47.3578 47.4567 4804872 42.3748 43 .1334 

BCl -0.2658 0.6345 0.6325 0.1242 2.6611 2.5621 
Be 24.3354n 17.6344 17.5337 21.0604 -1.7099 -1.5079 

Bo -7.8128 -6.3886 -6.3099 -6.9274 0.0000 0.0000 

Bc~ 0.7453 0.6729 0.6591 0.6736 0.0000 0.0000 

eTeo 3.9091b 1.5202 1.3728 3.2610 3.4180 2.3872 

lTCl 0.0864 004026 0,4105 0.1517 0.2717 0.3103 

eTC! 0.5529 -0.2251 -0.2260 0.3343 0.0000 0.0000 
Bs 0.7341" 0.0000 0.5051 0.0000 0.5663 0.0000 

f.ls -0.9217a 0.0000 -1,4803 0.0000 -1.4423 0.0000 

Bso 22.4102u 21.6757 21.7802 22.2452 21.0292 20.9897 

BSl -0.0823 0.1592 0.1525 -0.0451 004198 0.4213 

BS1 4.1268 2.4569 2.2538 4.0965 0.0000 0.0000 

BS3 -1.1893 -0.8228 -0.6794 -1.2711 0.0000 0.0000 

BS4 0.1117 0.0889 0.0672 0.1280 0.0000 0.0000 

eTso 1.2595" 1,4321 1.3532 1.3199 1.4148 1.4108 

(TSI O.0753b 0.0440 0.0387 0.0541 0.0431 0.0420 

eTS! -0.0646 -0.0118 0.0096 -0.0281 0.0000 0.0000 

Bwo 19.2701a 18.6720 18.7397 18.9870 19.3h01 19.3601 

BWl 1.5660' 1.7589 1.7450 1.6546 1.4246 1.4246 

BWl -:-5.4632b -6.9693 -6.8876 -6.1677 -3.4947 -3.4947 

BW3 1.2078 1.6165 1.6011 1.4049 0.4236 0.4236 

BWJ :-0.0924 -0.1279 -0.1272 -0.1101 0.0000 0.0000 

(TWO 3.5251" 3.3987 3.5199 3.4062 2.5855 2.5855 · 

lTWI -0.0616 -0.0498 -0.0609 -0.0507 0.0670 0.0670 

eTW2 0.2707 0.2501 0.2687 0.2521 0.0000 0.0000 

Pes 0.6713n 0.7099 0.6783 0.6769 0.6843 0.7156 

pcw 0.2242 0.1731 0.1743 0.2128 0.0000 0.0000 

PSW 0.1497 0.1080 0.1473 0.1051 0.0000 0.0000 

Not"': MLLV indi""t'" the maximum voluo ,,,,,.hed by the concontrated log·likelihood function. Tho parameter "'timates corresponding to r. rl. and r un: 

multiplied by 100. HlOO. and 10000. rcspottively . 
• Indica .. ,. that the purametc< i, slati5ti""Uy different (rom zero "t th. 5% level of 5tali5li .. l 5ignifiC:tnce n<tording to. likelihood "'liD Ie.oL 
b lndiClllo.s Ihalth. pu",meler is 51"li'liClllly dineronl from zero .llhe 10% level of sloti'tiell ,ignifiCllnc:: accoming 10 ullkelihood ""io le51. 

distributions allow for higher probabilities of 
relatively low yields and lower probabilities of 
relatively high yields, and their mass is heav­
ily concentrated toward the upper side. The 
1950-99 com yield data are plotted in 
figure 3 versus the estimated second-degree 
polynomial trend and the 80% and 98% confi­
dence bands for the yield realizations implied 
by the fifty corresponding yield distributions 
simulated under the normal model. These are 
obtained by identifying and joining the 10th 
and 90th and the 1st and 99th percentiles of 
the simulated distributions. 

Note that, although none of the observed 
yields near the upper bound of the 98% 
confidence band, two yield realizations fall 
far below its lower bound. The confidence 

bands generated from the nonnormal model 
(figure 4) reflect the marked left skewness 
of the com yield distributions depicted in 
figure l.The 98% band contains all fifty yield 
realizations, as expected for this sample size. 
The number of observations found below the 
lower bound (Below) and above the upper 
bound (Above) of the 76% to 98% confidence 
bands versus the theoretically required num­
bers (TR) under the normal and nonnormal 
models are presented in table 2. 

The normal model produces bounds that are 
clearly incompatible with the observed com 
and soybean yield data. In the case of com 
yields, for example, it leaves no observations 
above the upper boundary of its 88% band, 
while allowing for three yield realizations to 
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Figure 1. Simulated year 2000 Corn Belt corn yields under the normal and nonnormal models 
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Figure 2. Simulated year 2000 Corn Belt soybean yields under the normal and nonnormal 
models 

fall below the lower bound of its 92%, 94%, 
and 96% confidence bands and two under the 
98% boundary. In the case of soybean yields, 
the norma] model oniv leaves one observation 
above the upper boundary of its 78% band, 
while allowing for five yield realizations to fall 
below the] ower bound of its 86 % through 92 % 

confidence bands, four under the 94%, and 
two under the 98% boundary. This overesti­
mation of the lower bounds of the Yield dis­
tributions by the normal model would be of 
particular concern for whether the simulated 
distributions were to be used for economic risk 
analysis. 
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Figure 3. 80% and 98% confidence intervals for the corn yield realizations under the normal 
pdf model 
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Figure 4. 8{)% and 98% confidence intervals for the corn yield realizations under the nonnormal 
prlfmodel 

Although not perfect. the nonnormal model 
adheres better to the theoretically required 
numbers (table 2) . It manages to better accom­
modate the data, particularly at confidence 
bands above 85%, by asymmetrically expand-

ing the boundaries of the confidence bands 
as illustrated in fiQ:ure 4. The nonnal model 
(figure 3), in cont;ast, implies unrealistically 
high upper bounds, whereas its lower bounds 
are still not low enough to account for the 
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... able 2. Select Statistics about the 76% to 98% Confidence Bands for the Com Belt Com and 
Soybean Yield Realizations under the Final Normal and Nonnormal pdf Models 

%CI TR Below Above AW Below Above AW 

Normal Com Model Nonnormal Corn Model 

76% 6.0 5 6 24.:n 4 6 22.65 

78% 5.5 5 5 25.27 4 6 23.71 

80% 5.0 5 5 26.40 4 5 24.84 

82% 4.5 5 3 27.62 4 5 26.09 

84% 4.0 5 2 28.95 3 5 27.44 

86% 3.5 3 1 30.40 3 5 28.96 

88% 3.0 3 0 32.03 3 5 30.67 

90% ? -_.::l 3 0 33.88 3 5 32.65 

92% 2.0 3 0 36.07 3 3 35.03 

94% 1.5 3 0 38.76 .2 1 38.02 

96% 1.0 3 0 42.31 2 0 42.14 

98% 0.5 .2 0 47.93 0 0 49.01 

Normal Soybean Model Nonnormal Soybean Model 

78% 5.5 6 1 6.09 "T 6 5.44 , 
80% 5.0 5 1 6.36 6 5 5.73 

82% 4.5 5 1 6.65 5 5 6.04 

.• 84% 4.0 5 1 6.97 5 3 6.39 

' 86% 3.5 5 1 7.32 5 3 6.78 

,: 88% 3.0 5 1 7.71 5 1 7.23 
:' 90% ? --..) 5 1 8.16 4 1 7.76 

': 92% 2.0 5 1 8.69 3 1 8041 
:,, 94% 1.5 4 0 9.33 2 1 9.26 
:· 96% 1.0 2 0 10.19 1 1 10.45 

98% 0.5 2 0 11.55 0 1 12.55 

.illes: TR rer.rs 10 lhe number of observ,lion, lh.[ would he Ihcor:lically required 10 be below and ,bove the houndaries of lb. ""nfiden"" b:md: Below 

""d Above are lhe ,ctual numbers found bela", ,nd ,bove lhe lo"'.r and upper bounds, resp<Clivcly: and AW stands lor the »e"'ge o[ the widths of the fihy 

confident:: intervals comprising eDch of tile bnnds. 

lowest vield realizations. Also, as a result of the 
. fanner: the confidence bands from the nonnor­

mal model are narrower up to 95%, and on the 
average (table 2). The statistical significance 
of the nonnormal model is reflected on an im­
proved representation of the observed 1950-
99 Corn Belt corn and soybean yield data. 

Texas Plains Drvlalld CottOIl 

YieLd Distributions 

The parameter estimates for the Texas Plains 
county-level dryland cotton yield pdf mod­
els are presented in table 3. An LRT statis­
tic comparing the full nonnormal with the nor­

mal model (X{:t = -2[-688.92 - (-680.84)] = 
16.16) rejects t~e null hypothesis of normality 
(Ra: eCL = 0, J.LCL = 0) in favor of the alterna­
tive hypothesis of nonnormality (Ra: BCL:f: 0, 
JiCL # 0) at a high level of statistical signifi­
cance (Ci < 0.01). A single-parameter LRT in­
dicates that !J.CL is different from zero (a = 
0:01), suggesting that the county-level yield 
dIStributions are skewed. The positive !J.CL pa­
rameter estimate implies right skewness. 

All of the parameters in the final models 
(table 3) are statistically different from zero 
at an Ci < 0.15 level, according to single­
parameter LRTs, and the set of parameter 
restrictions leading from the full to the final 
models are not rejected at an Ci < 0.25 level 

(Xfn) = 27.98 in the nonnormal and xl;) = 
26.47 in the normal models). Thus, the final 
models are used in the analyses. They imply 
that county-level dryland cotton yields have 
remained constant in the Texas Plains during 
the last thirty years, a hypothesis maintained 
by many farmers, cotton experts. and industry 
groups. Surprisingly, yield variability appears 
to have increased in two of the five counties 
analyzed. 

Cotton production in the Texas Plains is lo­
cated mostly on the Southern Plains of West 
Texas, on an approximately 200 x 200 mile 
square comprising about thirty counties. The 
five counties in the analyses are spread across 
this area. The contemporaneous yield corre­
lations behveen these counties ran!!e from 
0.4 to 0.85 and are statistically simmcant 
at an a < 0.01 level, with the exception of 
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Table 3. Parameter Estimates for Full and Restricted pdf Model Specifications for Dryland 
Cotion Yields in Five Texas Southern Plains Counties 

Fmal 
Full Nonnormal Full Normal Nonnormal Final Normal 

NlLLV -680.84 -688.92 -694.82 -702.16 

en 0.4298' Unl 105.987" eCL 0.0000 UOI 79.8599 8CL 0.2912 eCL 0.0000 

ILCL 19.0872" U02 34.7798' ILCL 0.0000 U02 53.0573 ILCL 20.5540 ILCL 0.0000 
BOI 312.153' U03 89.36343 BUI 311.519 Um 131.131 B/II 304.8850 BOl 307.0186 
B01 178.871 3 

UI)oI 523243' B02 179.431 U().I 67.7838 Bo~ 168.5700 B02 172.6908 
Bm 361.0030 

U05 0.0000 Bm 373.126 UOS 0.0000 B03 259.9345 B03 261.5790 
Bf}j 219.606" UII 12.8549 B04 255.357 CTlI 14.5045 BI)4 2?').9672 Bf}j 227.1613 

Bas 197.943' CTIZ 17.3445 Bos 190.211 CTll 14.8010 Boo 228.6126 B05 230.0757 

BII -12.6773 CTI3 5.3478 BII -10,4489 CTI; -3.7842 CTOt 128.1141 CTot 125.1818 

BI2 -6.3333 CTI4 3.5381 B\2 3.3094 CTI4 5.5027 CT02 123.1535 CT02 130.4016 

BI3 -30.8387 CTI5 19.7696' BIJ -253250 CTI5 18.3018 CTm 100.7046 CT03 95.7795 

BIoi 1.6568 CT21 -5.3610 BI4 -10.0087 CT21 -5.5928 CTQ4 69.7763 CTiJ4 83.1788 

B I5 -0.4673 0":12 -5.2674 BI5 6.9081 CJ"n -4.8539 CTOS 75.6322 CTOS 76.5918 

B21 1.8333 CT!3 -2.0949 B21 1.5088 CT23 0,4602 CTIS 2.0086 CTIS 1.8723 

B'r! 1.0542 CT~4 0.84450 
B'r! -0.0325 a::!.J -1.3130 CT24 1.4111 CT14 0.9460 

B!3 2.4133 CT:!5 -6.2376 Bn 1.6277 CT:!5 -5.6941 PZl 0.5176 PZl 0.5533 

B:4 -0.1970 P21 0.5450" B:4 0.8283 P21 0.6138 PJI 0.6173 P31 0.6121 

B25 0.9501 P31 0.5994" B25 0.1143 P31 0.6557 P~' 0.6980 po, 
~-

0.7059 

B31 -5.3610 P32 0.7760' BJI -4,4518 P31 0.7656 Poll 004009 P 41 0.4356 

B32 -3.3254 P ol l 0,4512" B-, J _ -0.6756 P41 0.5681 P 41 0.6463 Poll 0.6540 

B33 -5.2814 Poll 0.7438" B]] -3.2014 P42 0.7143 Pol] 0.5982 P 43 0.5990 

B~4 0.8146 Pol] 0.6608· BJoI -1.7598 Pol) 0.6627 PSI 0.8461 PSI 0.8540 

B35 -3.6913 PSI 0.8628' B35 -1.5490 PSI 0.8800 P52 0.6203 P5Z 0.6400 

PSI 0.6377" P S! 0.6833 PS3 0.4909 PS3 0.4960 

PS] 0.5005' P S3 0.5579 P54 0.2202 PS4 0.2731 

PS4 O.333Sb 
P =' .- 0.4556 

Note", MLLV indl""tcs the milXimum value r.ached by Ih. concenl""ed log-likelihood function. Ail p, ramelet1i in Ihe final models ,re 5I,tisticaliy signific::ulI 

01 the 10% level. wilh lb. e:tecplion of PS4' which i. significant OIlhelS% level. Th. parumeler eslimol" corresponding to rz, -r;, and r arc multiplied by 100, 

1000. and 10000, Iespectively. 

, IndiClIC!5 th"1 Ihe porumeler is 5131isliCilly different from -zero "Ilh. 5 % level of stali5lic::11 significance . c:ording 10 ,lIkelibood ",lio re5L 

b lndiClt .. thO! the parumeter is 51"ti.tic::1l1y different from zero ot the 10% level of 51'li5[iClI.ignificnnce oa:ording 10' likelihood ralio '''''I. 

Hale-Cochran's which is 0.22 and only signif­
icant at an D.'. = 0.15 level. An LRT indicates 
that not all correlation coefficients are statisti­
cally equal. However, in contrast to what has 
been hypothesized in previous studies (Just 
and Weninger), within the area under analysis, 
increased distance between counties does not 
appear to decrease the degree of correlation 
between their yields. 

As in the case of Com Belt yields, the mean 
and standard deviation parameters estimated 
under the final normal and nonnormal mod­
els are quite similar. The residuals and the 
scandard deviation parameters from the nor­
mal model are used to obtain n = 5 x 29 = 
145 standardized residuals that would be theo­
reticallv drawn from a distribution with mean 
zero a:iJd variance one. These residuals are 
multiplied by the estimated standard devia­
tion and added to the estimated mean for 
Wichita county to obtain 145 adjusted yield ob­
servations. The relative frequency distribution 

of this adjusted yield data is compared to the 
yield distributions for Wichita county implied 
by the normal and nonnormal models, simu­
lated using the same procedures described for 
Corn Belt yields. 

The normal model c1earlv overestimates 
the probability of very low yields (below 
l10 Ibs/acre) underestimates the probability 
of moderately low-to-average yields (110 to 
230 Ibs/acre), overestimates the probability 
of average-to-moderately-high yields (230 to 
310 lbs/acre), and underestimates the proba­
bility of very high yields (above 390 lbs/acre) 
(figure 5). The nonnormal model is more ac­
curate than the normal on predicting the ob­
served yield frequencies in twelve of the thir­
teen intervals depicted in figure 5, and does not 
show substantial under- or overestimation pat­
terns. The average of the absolute differences 
between the observed relative frequencies and 
those predicted using the simulated disrribu­
tions is 0.076 under the nonnormal model, 
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Figure 5. Simulated west Texas county-level dryland yields under the normal and nonnorma} 
. models versus adjusteddata 

versus 0.244 under the normal model. Be­
cause the nonnormalmodel assumes the same 
kewness and kurtosis parameters for all five 

counties, similar results would be expected if 
adjusting the standardized residuals by the es­
timated mean and standard deviation of any 
other county and comparing them with the 
yield distributions simulated for that particular 
county. 

.. The maximum likelihood parameter esti­
mates for the Texas Plains farm-level drv­
land cotton yield pdf models for Childress arid 
Wichita counties are presented in table 4. An 
LRT statistic comparing the full nonnormal 
with the normal model X&'\ = -2[-466.54 -
(-461.61)] = 9.85) rejects the null hypothesis 
of normality (Ho: eFL = 0, /-LFL = 0) in favor 
of the alternative hypothesis of nonnormality 
(H~: 8 FL # 0, !-LFL # 0) at a high level of statisti­
cal significance (cy < 0.01). A single-parameter 
LRT test indicates that /-LFL is individually 
different from zero at the a = 0.01 level, sug­
gesting that the fann-Ievel cotton yield dis­
tributi~ns are skewed. As in the case of the 
county-level distributions, the positive value 
of the Jl.FL parameter estimate implies right­
skewness. 

The yield right skewness is compatible 
with Texas Southern Plains farmers' and re­
searchers' intuition: Given normal rainfall 
conditions of 8-12 inches during the criti-

cal (May to August) period of the grow­
ing season, dryland cotton production systems 
have evohied to produce between 150 and 
350 Ibs/acre, (200-:250 lbs/acre, on average, 
depending on the county). Under ffiinimum 
rainfall (4-6 inches) that occurs about once a 
decade, many farms report low (50-150 Ibsl 
acre) yields per harvested acre. Extremely 
favorable rainfall amounts of 15-20 inches 
occur in certain areas every 10-15 years, 
resulting in yields of between 400 and 
600 Ibs/acre. 

In other words, the right skewness of the dry­
land cotton yield distribution is likely derived 
from the ri!!ht skewness of the rainfall distri­
bution. Including rainfall as a factor shifting 
the mean of the yield distribution from year to 
year could result in a conditional yield distri­
bution that is normal. This, however, would be 
conditional on prior knowledge of the amount 
of rainfall that would occur in any given 
year, which is not compatible with the usual 
risk analyses applications of simulated yield 
distributions. 

The final nonnorrnal and normal mod­
els (table 4) are formulated considering the 
results of the single-parameter LRTs on the 
remaining coefficients . .All of the parameters 
included in these models are individually dif­
ferent from zero at an a < 0.15 level of statisti­
cal significance, according to single-coefficient 
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Table 4. Parameter Estimates for Full and Restricted pdf Model Specifications for Dryl:ui~ ' 
Cotion Yields from Nine Farms in Childress and Wichita Counties ' 

Final 
Full Nonnonnal Full Normal Nonnormal Final Normal 

MLLV -461.61 -466.54 -465.91 -471.03 

BFL 0.5252" CTot 154.395' BFL 0.0000 CTm 156.171 BFL 0.4765 6FL 0.0000 
tJ.FL 2.5171" CTIll 93.5051" J.LFL 0.0000 CTIl2 94.445 J.LFL 2.8194 fl.FL 0.0000 
BOi 577.2013" CTO) 147.8967' BOI 635.125 CT03 150.079 Bm 545.574 Bot 622.1803 
B02 281.44543 

CT().l 295.8783" B01 255.642 CTfJ.I 275.191 BOl 250.912 B02 257.8000 
BO) 760.97793 

CTOS 191.613' B o) 684.236 CTos 164.901 BO) 728.003 Boo 671.8015 
BfJ.I 756.4156" ITtJ6 80.2997' BIJ4 666.572 IT06 75.630 H().l 374.261 H/}.! 380.5999 
B lls 347309' IT07 100.5253n 

BIlS 281321 CT07 92.697 Bos 337.405 Bos 342.7999 
BIl6 334.89973 

ITOB 226.2606" B06 293.612 IT08 171.140 Bon 293.235 B06 277.4821 
B07 354.6907· IT09 93.1713" B07 352.201 CT09 73.762 B07 322331 B07 335.2046 

B08 486.2828" Pn 0.31S5b 
Bos 335.497 PlI 0.231 Boa 304.717 B08 295.8000 

B09 298.4769· Pl2 0.7163' Boo . 237.282 Pn 0.702 B09 340.191 B09 341.1000 

BII -146.260b 
Pl1 0.1702 . BII -147.57 PI2 0.133 BII -139.19 Bn -155.861 

BI1 -3.6809 BI2 11.2827 B IJ -136.42 BI3 -95.4052 

Bn -143.949" BI3 -87.449 Bt6 -13.441 BI6 -10.1967 

Bt4 -151.060 BI4 -82.3?? Bl7 -14.871 Bl7 -16.5281 
B ls 34.1359 B 15 69.2175 B21 12.5497 B21 13.2299 

Bt6 -37.8884 BI6 -12.604 B2J 8.8710 B23 4.8007 

B17 -36.7196 B17 -18.092 ITOI 151.973 CT01 159.0956 

Bt8 -79.1746 B ts 8.2339 IT02 100.880 IT02 96.5063 

BI9 14.5752 B tg 51.9613 IT03 148.420 0"03 152.6977 

B21 12.7250b 
B21 11.709 O"().l 306.671 IT/}.! 296.5955 

Bl2 -0.3429 Bl2 -1.556 ITo; 215.981 IT05 1842491 

B2J 9.0406b 
B2J 3.341 0"05 78.9314 IT06 75.8993 

B24 11.5491 . B14 4.332 0"07 96.4512 IT07 93.0169 

BJ3 -5.2206 B25 -8.291 O"os 226.610 IT08 176.3552 

B.5 23337 B~5 -0.075 IT09 97.9251 IT09 82.1173 

B17 2.2049 B'17 -0.218 Pu 0.3750 PII 0.2668 

B2ll 6.3834 B2ll -2.207 Pl2 0.6643 P22 0.6708 

B 19 -1.0969 B 19 -4.726 PI2 0.1597 Pn 0.1602 

NOles: MLLV indicales Ihe maximum v.lue reached by Ih. concenl .. lled log·likelihood [unction. All p.mmelors in Ihe fin.l model •• re SI.I;'lic.fly significanl 

.lIhe 10% level. wilh Ih •• '''''plion or P 12. 

iJ IndiCllCl thll[ the pnrnmeter is SrQtistlcnUy diCierenl Crom zero ill the: 5% h:vel oi sUitistic:lI sjg:nifiC\ln~ Dccording to n Iikc:Hhood r.uio t~t. 

b lndical"" 11 •• 1 Ih. p"",meler is SI.liSlicaUy differenl from zero ~I Ihe 10% level oj slOliSlicalsignifionce .<cording 10 • likelihood rnlio I"~ 

LRTs, and the set of parameter restrictions 
leading from the full to the final models are not 
rejecte-d at an ct < O.~ level (XliZ) = 8.61 in 
the nonnonnal, and Xiii) = 8.99 ill the normal 
models). TIlUs, the final nonnormal and nonnal 
models are used in the following analyses. 

Unlike the county-level models, four of the 
nine final farm-level models show statistically 
significant time-trend parameters suggesting 
that the yields have declined during the 1988-
97 period. This is likely not indicative of a 
real downward trend, but rather because of 
two very dry growing seasons occurring near 
the end of that period. As expected, the vari­
ances of the county-level distributions gen­
erally are lower tban the variances of the 
fann-level distributions. The skewness and 
kurtosis parameters are quite different, as welL 
Statistically significant contemporaneous cor-

relations of 0.38 and 0.66 are detected between 
the yields in Childress aod in Wichita county 
farms, respectively. 

Adjusted farm-level yields and the simu­
lated vield distributions under the normal and 
nonnonnal models are obtained for one of 
the farms in Childress county, following the 
same procedures used at the county level 
(figure 6). As in the case of county-level yields, 
the nonnal model overestimates the proba­
bility of very low yields (below 70 lbs/acre), 
underestimates the probability of moderately 
low-to-average yields (140 to 280 Ibs/acre), 
overestimates the probability of average­
to-moderately-high yields (280 to 420 lbsl 
acre), and underestimates the probability of 
very lUgh yields (above 420 lbs/acre). The 
nonnonnal model is more accurate than the 
normal model in predicting the observed 
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FigUre 6. Simulated west Texas farm-level dryl:md yields under the normal and nonnormal 
models versus adjusted data 

lve yield frequencies in eight of the ten 
, I ~ .ivals depicted in figure 6. 
j}The average of the absolute differences 
,petween the observed relative frequencies and 
. those predicted from the simulated distribu­
' tions is 0.135 under thenonnormal model, ver­
sus 0.284 under the nonnal model. As in the 

' county level, because the nonnonnal model as­
"sumes the same skewness and kurtosis param­
eters for all nine fanns, similar results would be 
expected if adjusting the standardized residu­
als by the estimated mean and standard devi­
at!on of any other farm and comparing them 
WIth the yield distributions simulated for that 
particular fann. 

~ Conclusions and Recommendations 

;!his article reaffinns Ramirez's (1997) find­
mgs that Com Belt corn and sovbean vields 
ar: nonnonnally distributed and -left skewed, 
.Uslng an expanded data set and addressing 
: ~he procedural issues that have been raised 
,m recent literature. The procedures used here 
are preferable to previous methods because 
th.ey allow for the testing of all potential dis­
;!1butional characteristics (nonlinear trends in 
r means, heteroskedasticity, kurtosis, right 
;:. .eft skewness. and cross-distribution cor­
IJelation) in a joint, full-infonnation context, 

which is the most efficient. The tests for nonlin­
ear trends and heteroskedasticy are conducted 
while allO\ving for any potential nonnormality, 
and vice versa, using the additional informa­
tion transmitted thrOugh the cross-distribution 
correlation matrix. 

As recognized by the authors of previous 
studies, nonrejection does not prove yield nor­
mality, because the magnitudes of the type-two 
errors in their normality tests are unknown. 
In contrast, here Com Belt corn and soybean 
yields are found to be nonnormally distributed, 
with a sma1l3 .0% probability of making an er­
ror in this conclusion. The consistency of the 
results after adding a substantial amount of re­
cent data, and und-er an alternative, more com­
mon heteroskedastic specification. is further 
evidence of the soundness of the normonnalit), 
concussions. 

In the case of the Texas Plains dryland cot­
ton yields. the normality hypothesis is rejected 
at the 1 % significance level at both the farm 
and county levels, providing further support 
for the thesis that some crop-yield distributions 
are nonnonnal. There is no contradiction in the 
findings of Corn Belt corn and soybean yield 
distribution left skewness and Texas Plains dry­
land cotton yield distribution right skewness. 
As argued above in detail. diverse nonnormal­
ity patterns could result from different criti­
cal factors affecting aggregate and farm-level 
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yields, depending on the crop, cropping system, 
and geographical region. . 

The main recommendation of this study 
is that researchers estimating and simulating 
farm. county, state, regionaL or U.S.-level yield 
distributions for policy, market, industry, farm, 
or any other type of risk analysis, should rec­
ognize that they could be nonnormal, and use 
the methods available for tesring, and for es­
timating and simularing nonoormal distribu­
tions when necessary. 

[Received Febmary 2002;jinai revision 
received lvlay 2002.] 
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