
Received March 17, 2020, accepted April 15, 2020, date of publication May 6, 2020, date of current version May 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992480

Crop Yield Prediction Using Deep Reinforcement
Learning Model for Sustainable
Agrarian Applications

DHIVYA ELAVARASAN AND P. M. DURAIRAJ VINCENT , (Member, IEEE)
School of Information Technology and Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India

Corresponding author: P. M. Durairaj Vincent (pmvincent@vit.ac.in)

ABSTRACT Predicting crop yield based on the environmental, soil, water and crop parameters has been a

potential research topic. Deep-learning-based models are broadly used to extract significant crop features

for prediction. Though these methods could resolve the yield prediction problem there exist the following

inadequacies: Unable to create a direct non-linear or linear mapping between the raw data and crop yield

values; and the performance of those models highly relies on the quality of the extracted features. Deep

reinforcement learning provides direction and motivation for the aforementioned shortcomings. Combining

the intelligence of reinforcement learning and deep learning, deep reinforcement learning builds a complete

crop yield prediction framework that can map the raw data to the crop prediction values. The proposed work

constructs a Deep Recurrent Q-Networkmodel which is a Recurrent Neural Network deep learning algorithm

over the Q-Learning reinforcement learning algorithm to forecast the crop yield. The sequentially stacked

layers of Recurrent Neural network is fed by the data parameters. The Q- learning network constructs a

crop yield prediction environment based on the input parameters. A linear layer maps the Recurrent Neural

Network output values to the Q-values. The reinforcement learning agent incorporates a combination of

parametric features with the threshold that assist in predicting crop yield. Finally, the agent receives an

aggregate score for the actions performed by minimizing the error and maximizing the forecast accuracy.

The proposed model efficiently predicts the crop yield outperforming existing models by preserving the

original data distribution with an accuracy of 93.7%.

INDEX TERMS Crop yield prediction, deep recurrent Q-network, deep reinforcement learning, intelligent

agrarian application.

I. INTRODUCTION

Agriculture is the one amongst the substantial area of interest

to society since a large portion of food is produced by them.

Currently, many countries still experience hunger because

of the shortfall or absence of food with a growing popu-

lation. Expanding food production is a compelling process

to annihilate famine. Developing food security and declin-

ing hunger by 2030 are beneficial critical objectives for the

United Nations. Hence crop protection; land assessment and

crop yield prediction are of more considerable significance to

global food production [1]. A country’s policymaker depends

on precise forecast, to make appropriate export and import

assessments to reinforce national food security. Cultivators
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and farmers further benefit from yield forecast to make finan-

cial and management decisions. Agricultural supervision,

especially the observation of crop yield, is indispensable to

determine food security in a region [2]. On the other hand,

crop yield forecasting is exceedingly challenging because of

various complex aspects. Crop yield mainly depends upon

climatic conditions, soil quality, landscapes, pest infestations,

water quality and availability, genotype, planning of harvest

activity and so on [3]–[5].

The crop yield processes and strategies vary with time and

they are profoundly non-linear in nature [6], and intricate due

to the integration of a wide extent of correlated factors [7], [8]

characterized and impacted by non-arbitrate runs and exter-

nal aspects. Usually, a considerable part of the agricultural

framework cannot be delineated in a fundamental stepwise

calculation, especially with complex, incomplete, ambiguous
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and strident datasets. Currently, many studies demonstrate

that machine learning algorithms have comparatively more

improved potential than conventional statistics [9]–[12].

Machine learning belongs to the field of artificial intelligence

by dint of which computers can be instructed without definite

programming. These processes resolve non-linear or linear

based agricultural frameworks with remarkable forecasting

ability [13]. In Machine learning agricultural frameworks,

the techniques are obtained from the learning process. These

processes demand over train to perform a specific task. After

the completion of the training process, the model makes

presumptions to test the information.

Further, machine learning resembles an umbrella that holds

various significant strategies and methodologies. On observ-

ing the most prominent models in agriculture, we can see

the utilization of artificial and deep neural networks [14].

Deep learning is a subgroup of machine learning that can

determine outcomes from varying arrangements of raw data.

Deep learning algorithms, for example, can develop a prob-

ability model by taking a decade of field data and providing

insights about crop performance under various climatic con-

ditions [15]. Data scientists utilize various machine learning

algorithms to derive actionable insights from the available

information. Another intriguing area of artificial intelligence

is reinforcement learning [16]. These can be examined as an

essential class of algorithms that can be utilized for streamlin-

ing logic for dynamic programming. Reinforcement learning

is the preparation of machine learning models to make deci-

sion sequences [17]. The agent learns to accomplish an

objective in an ambiguous, potentially complex environment.

Based on the agent’s action, the environment rewards it. This

scenario depicts themachine as the agent and its surroundings

as the environment.

In recent times advanced and progressive artificial intelli-

gence technique named, deep reinforcement learning (DRL)

is profound for intelligent decision making in various

domains like energy management [18], robotics [19], health

care [20], smart grid, game theory [21], [22], finance, com-

puter vision [23], Natural Language Processing [24], Sen-

timent analysis [25] and so on with an extensive combina-

tion of reinforcement learning methods with deep learning

models [26], [27]. This model has been efficient to resolve

a wide extent of complicated decision-making tasks that

were formerly beyond the bounds for the machine. As a

result, it is a convincing model endorsed for developing

intelligent agricultural frameworks. The characteristic mod-

els of deep reinforcement learning include deep successor

network, multi-agent deep reinforcement learning and deep

Q-network.

In this paper, we propose a supervised smart agriculture

framework based on the deep reinforcement learning algo-

rithm. A deep Q-Learning based DRL algorithm is used to

strengthen the crop yield forecasting efficiency with the best

rewarding iterations. There exist several other deep learning

algorithms that may not be bounded by the biases or require

huge manual effort in label creation deriving the insights

directly from the data like, Autoencoders [28], deep belief

networks [29], Gaussian Bernoulli RBM’s [30], Bayesian

Neural Nets [31], Deep Generative models [32]. These mod-

els can sometimes fail to account for uncertainty while inter-

preting ambiguous inputs. Most of these approaches follow

greedy procedures that are sub-optimal, learning a single

layer of features at a time without updating its lower-level

parameters resulting in slow and inefficient computations.

The proposed work overcomes the above-mentioned short-

comings promoting the advancement of smart agriculture and

thereby leading to increased food production. The rest of the

paper is organized as follows. Section 2 presents the literature

review of the existing works. Section 3 briefs about the

Deep Q-learning algorithm and the proposed Deep Recurrent

Q-Network (DRQN) model for forecasting the crop yield..

Section 4 explains the agriculture dataset and study area

description. Section 5 presents the experimental results and

frameworks, and the performance of the DRL model over the

other machine learning algorithms. Section 6 wraps up with

the conclusion and future works.

II. RELATED WORK

The potential growths in Artificial Intelligence have undoubt-

edly endless potential results [33], [34]. For creating new

opportunities, deep learning has surged together with enor-

mous data advancement [35]. This result in need of improved

measures to envision, determine and assess data exhaustive

strategies in agricultural frameworks [36], [37]. Crop yield

prediction can be considered as a pattern recognition problem

where AI has shown notable efficiency for agricultural appli-

cations [38]. Abrougui et al. have proposed yield prediction

of potato crop the soil properties and tillage system by the

ANN. The ANN model showed great potential to estimate

yield [39]. Haghverdi et al. have defined the prediction of

cotton lint from the phenology of crop indices using ANN.

The ANN approach is used to generate 61200models relating

to individual crop indices to field estimates of cotton yield to

be predicted [40]. Byakatonda et al. explained an ANN-based

yield forecast for the maize crop based on the climatic indices

and the precipitation length. In order to facilitate agricultural

planning, yield predictions are made using ANNmodels [41].

In the approaches as mentioned earlier, the ANN’s were

used for the processing, which relied on feature extraction

by time-domain and frequency-domain processing methods.

This results in the drawback of manual feature extraction

mainly depending on the prior knowledge of the data for pre-

dicting yield, and the ANN’s shallow architecture in learning

the complex non-linear relationships in the yield prediction

system. With the advent of deep learning, such problems are

handled to a certain extent.

Yang et al. have proposed a deep convolution neural net-

work model to predict the crop yield estimation of the rice

crop at the ripening stage. The CNN network learns the

significant spatial features concerning the crop yield from

the high spatial resolution RGB image [42]. Deep learning

enabled the cropmapping strategy to identify the crop yield in

VOLUME 8, 2020 86887



D. Elavarasan, P. M. Durairaj Vincent: Crop Yield Prediction Using DRL Model for Sustainable Agrarian Applications

a respective region. Winter wheat mapping using the ground

data statistical references employing the artificial neural net-

works and the deep CNN are modeled by Zhong et al. This

enables automatic identification of wheat seasonality without

using samples [43]. Ramesh et al., proposed an optimized

deep neural network algorithm recognize and classify crop

yield based on the diseased leave images obtained by the

image processing method [44]. Babak et al. computed a

numerical deep learning model of crop growth by incorpo-

rating the DSSAT model’s rainfall and irrigation inputs to

predict maize yield [45]. An efficient automatic rice crop

yield heading date estimation method through deep learning

CNN network using time series RGB images of the crop [46]

has been proposed by Desai et al. Koirala et al., proposed a

two-staged deep learning method using CNN for mango fruit

yield estimation [47]. From the literature, the ANN-based

process can be efficiently identified as a primary predictor,

whereas deep learning approaches can recognize adaptive

crop feature extraction by the hierarchical representation of

DNN architecture. DNN architecture, however, needs a great

deal of experience and prior knowledge which limits its

generalization capability. Therefore it is essential to organize

deep reinforcement learning (DRL) based smart architecture

to examine crop yield prediction. In the DRL framework,

deep learning provides the agent with the ability to sense

the environment and reinforcement learning provides the

ability to learn the best strategy for real-time problems [48].

DRL enables creating an agent that can generalize to an

environment that is examined as meta-learning [49]. As a

generic way of solving optimization problems through trial

and error, DRL finds its application in several fields like

agriculture [50], health care [51], energy management [52],

robotic system [53] and game theory [54]. The following

section provides a brief introduction to the Deep Q-Network

DRL algorithm and the proposed methodology.

III. DEEP Q-NETWORK ALGORITHM BACKGROUND

Deep reinforcement learning has advanced together with

enormous data growth and improved measure persistence to

make new opportunities to determine, evaluate and acknowl-

edge extensive data procedures for agricultural frameworks.

Some of the essential factors that need to be analyzed in

structuring the deep reinforcement learning models are:

• Understanding the patterns and basic structures from the

restricted sample space.

• We are reviewing the objective functions with constant

representations of events.

• The performance of the framework must be adequately

viable to embrace consistently dynamic actions.

This section explains in detail the reinforcement learning,

Q-learning and the deep Q-Network algorithm.

A. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a framework in artificial

intelligence with a dynamic programming concept that devel-

ops and trains algorithms utilizing a strategy of reward and

penalty. RL differs from other machine learning algorithms

by the way that, it is not explicitly advised in performing a

task, but it solves through the problem on its own [55]. For the

RL study process, a Markov choice Procedure (MDP) is char-

acterized that endorses the formalism where the reinforce-

ment learning problems are embraced. The RL algorithm,

which is an agent learns by collaborating and interacting

with the environment. The agent will get rewards on the

correct actions performed and penalties for the wrong actions.

The agent learns by itself without human intervention by

increasing its rewards and limiting its penalties. The process

of reinforcement learning is presented in Fig.1.

FIGURE 1. Reinforcement learning process.

An agent that is present in a state ‘s’ performs an action ‘a’.

On Performing an action the agent attains a reward R(s,a)

and moves into a new state s’. The policy is a function that

maps the states and the actions. In each state, a policy π

is determined to specify the action to be carried out by an

agent. In an agent’s lifetime, its key objective is to identify

an optimal policy π∗ which magnifies the total discounted

reward. The optimal policy π∗ is defined in equation (1).

π∗ (s) =
argmax

aǫA
γ

∑

s
′
∈S
Psa

(

s
′

, a
)

V ∗(s
′

, a) (1)

A value function Vπ (s,a) [56] is defined for each state-action

pair is an estimate of the expected reward following a pol-

icy π . The most optimal value function is attained from the

best optimal policy, which is identified by the highest reward

obtained by an agent from all the other states. This optimal

value function is represented in equation (2).

V ∗ (s, a) = R (s, a) +
max

aǫA
γ
∑

s
′
∈S
Psa

(

s
′

, a
)

V ∗(s
′

, a) (2)

Thus reinforcement learning agent learns from the envi-

ronment through interactions. They maximize their rewards

by determining the best bellman optimal policy and value

function using dynamic programming functions.

B. Q-LEARNING

Q-Learning is a method that assesses which action to take by

an agent, depending on an action-value function. It decides

the value of being in a specific state and making a specific
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action at that state. It is one of the most significant progress

in reinforcement learning by the development of an off-policy

temporal difference control algorithm. Q-Learning evaluates

a state-action value function for a target policy that ascertains

in choosing the action of maximum value. The function Q

takes the input as the current state ‘s’ and an action ‘a’ and

returns an expected reward of that action in that state. In the

initial steps before analyzing the environment, Q functions

give the arbitrary fixed values. Later with better analysis,

Q function provides a better approximation of the value

function for the action ’a’ in the state ’s’. The Q function

goes on updating providing the optimal value. The agent will

perform a series of actions that will ultimately generate the

total maximum reward.

C. DEEP Q-NETWORK

Deep Q-networks is an advanced reinforcement learning

agent that uses a Deep Neural Networks (DNN) to map the

connections among the states and the actions analogous to a

Q-Table in Q-Learning. DNNs like Convolution Neural Net-

works (CNN), Recurrent Neural Networks (RNN) and sparse

auto-encoder can directly learn the abstract representations of

the raw data from the sensors. A DQN agent communicates

with the environment through a series of observations, actions

and rewards which is identical to the task of Q-Learning

agent. Fig. 2 depicts the generic structure of deep Q-Network.

FIGURE 2. Structure of deep Q-Network.

The network takes a state as an input and for each action

in the action space, the Q-Values are generated. The objective

of the neural network is to learn and train the parameters.

During the prediction process, this trained network is used to

predict the next best action to occur in the environment. Basi-

cally, Q-Learning determines the state-action value function

for a specific target policy that ultimately chooses an action

of best value. It works fine for a restricted state and action

space. However, for a huge set of action space may require

millions of records to be stored in program memory. This

results in the inflation of memory volume leading to curse of

dimensionality or an unstable representation of a Q-Function.

The instability in Q-Learning arises due to the correlations

existing in the series of observations. The relative small

updates in the Q-value can result in the drastic change in

the policy of the agent and also the correlation between the

target andQ-Value. These inadequacies are overcome inDeep

Q-Network using two strategies, namely, experience replay

and iterative updates. Iterative updates minimize the corre-

lation between the target and he Q-values through consis-

tently revising the Q-values towards the target values. While

experience replay tends to solve the correlation problem by

smoothing over the data distribution changes through data

randomization. In the proposed work during the enhancement

of the DQN agent, the experience replay randomly selects the

experience from the memory and the Deep Q-network uti-

lized is the RNN, which acts as a function approximation with

weights θ . Hence the Q-Network can be prepared by revising

the parameters θi in the ‘i’th iteration by diminishing themean

squared error in the Bellman equation. The loss function,

which is the squared difference between the Target Q and the

Predicted Q is defined in equation (3) as follows:

Loss = (r + γ
max

a
′ Q

(

s
′

, a
′

;θ
′
)

− Q(s, a; θ ))

2

(3)

Gradient descent for the actual parameters can be performed

in order to reduce this loss.

D. PROPOSED DEEP REINFORCEMENT LEARNING

MODEL FOR CROP YIELD PREDICTION

Reinforcement learning is broadly designed in areas such

as operations research, game theory, multi-agent systems,

and control theory. In the proposed work, forecasting crop

yield is studied as a regression problem that is resolved

by supervised learning. This supervised learning-based crop

yield prediction process needs to consider the crop yield data

and its corresponding parameters as the inputs to determine

the crop yield in the concerned region. In the RL based

methods, the learning efficiency of the yield predicting agents

is determined by the overall rewards. It results in unsteady

feedback for the agents to adapt their performance along with

the supervised learning methods. In other words, the agents

will not be able to recognize from the inputs which samples

are not efficiently learned during the learning process. Such a

component enforces the agent to be more efficient by uncov-

ering the deep characteristic contrasts among the crop yield.

In order to understand the yield forecast method based on

DRL, a yield forecasting environment is designed based on

the input parameters that converts the supervised learning

process to the reinforcement learning process. The environ-

ment can be determined as a ’yield prediction game’. Every

game incorporates certain parametric feature combinations

and thresholds that aids in crop yield and each combination

has a set of samples and its corresponding labels. When the

agent starts playing, it determines the crop yield parameter

values by performing the actions to attain the rewards. For

every nearby predicted value of the target, the agent gets a

positive reward, otherwise a negative reward. After complet-

ing the entire process, the agent will receive an aggregate

score for its actions performed. This flow of yield prediction

is presented in Fig. 3.
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FIGURE 3. The flow diagram of the proposed deep recurrent Q-Network
model for crop yield prediction.

For the actual reinforcement learning methods like the

Q-learning, it is challenging to discriminate and analyze the

crop yield prediction due to the restricted ability of those

methods to describe the states. Inspired by the DQN concept

of processing huge information, a Recurrent Neural network

BasedDNN is used in the proposedmethod to predict the crop

yield using the various environmental, soil and groundwater

parameters. It is termed as the Deep Recurrent Q-Learning

model which is basically an RNN on top of the DQN. RNN

can assist in mining temporal and semantic data and has

advanced in time series analysis, language modeling and

speech recognition. RNN is a variant of the ANN, where the

current state input is connected to the output of the previ-

ous state. The definite explanation is that the network will

recollect the previous information and apply it to the present

network calculation.

In our proposed method the DQN agent is framed by

stacking the RNN layers sequentially, initializing the param-

eters utilizing the weights saved in the RNN Pre-training

process and adding a linear layer mapping the RNN output to

Q-Values. Fig. 4 shows the structure of the RNN used in the

DQN. x t denotes the training data input at time t, H t defines

the hidden state at time t. Current input x t and the previous

hidden layer state H t−1 determines H t . Here, Ot represents

the output of the current layer at time t. The training data

original output Y t and the current output Ot determines the

error L at time t. The weights shared across the RNN’s are

represented as u, v, and w.

F depicts the activation function of the hidden layers. The

thresholds shared across the RNN’s are defined as b1 and b2.

FIGURE 4. Propagation process of recurrent neural network.

The value of the hidden state at time ‘t’ is given in equation (4)

as follows:

H t = f (u× x t + w×H t−1 + b1) (4)

The predicted output Ot of the RNN at time ‘t’ is given as

follows in equation (5):

Ot = f (v×H t + b2) (5)

The error L of the RNN at time‘t’ is given as follows in

equation (6):

L = Ot − yt (6)

The crucial aspects of the RNN, which can efficiently deter-

mine the crop yield, are the representation of the actual fea-

tures self-learning layer after layer and the sparse constraint

that limits the parameter space preventing over-fitting. The

RNN in the proposed work consists of three hidden layers

between the input layer and the output Q-value layer. For each

RNN layer, a ReLU [57] activation function and L1 regular-

ization [58], [59] is used. It results in penalizing the absolute

values of the data parameters in the neural network when

they are huge. Before the training process of the DRL, a pre-

training process is applied to all the training data samples.

Then the agent’s yield prediction perception is built by stack-

ing the input layers and the fully connected layer to output

the final Q-values.

During the training process of the DRL framework, a huge

set of state and action space is processed which can result in

instability due to data correlations. Hence in the training pro-

cess of the DQN, two alterations of the Q-Learning are made

to ensure non-divergence of DRL’s training process. The first

is terms of experience replay, where the agent’s experience

is saved in the replay memory (D) by means of state, action

and reward of the present time stamp and the state of the next

timestamp. Say initially at each time step t, the experience

replay saves the agent’s experience resulting in a collection

of specific sets of experiences. An individual experience et
at a time t is described as et = (st , at , rt , st+1) and the

memory at time t is defined as Dt , where Dt = {e1 . . . .et .

Experience replay is an effective technique in eliminating the

divergence in the parameters enabling the agents to recognize

its experience in the learning process. The second alteration
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of Q-Learning is to utilize an independent network for gener-

ating the targets during the Q-Learning update process. These

alterations can substantially improve the DRL stability. Also,

it is observed that usually RL algorithms iteratively update

the action-value function using a Bellman equation. As this

approach is tedious in practice the action-value function is

estimated using an RNN function approximator with weight

θ . Hence the Q-Network can be prepared by revising the

parameters θi in the ‘i’th iteration by diminishing the mean

squared error in the Bellman equation.

The training process comprises two steps. The first step

involves the pre-training of the RNN and the second step is

the training of the DQN agent. The agent selects and executes

an action based on a ε-greedy policy. Here the action is

selected randomly with a probability ε, while the probability

1-ε chooses the action representing the maximum q value.

The optimization algorithm utilized in the proposed study is

the stochastic gradient descent algorithm. The optimization

algorithm updates the network weights iteratively based on

the training data. The algorithm for training the RRN based

Deep Recurrent Q-Network is defined in follows:

Algorithm Training of RNN Based DQN

Step 1: Pre-training of the RNN.

(a) Initialize the replay memory capacity as N;

(b) Initialize the RNN network with random

weights θi.

For i = 1, I do

(c) Train the ith hidden layer.

(d) Save the parameters of the ith hidden

layer.

End For

(d) Initialize action-value network Q with the

parameters of the hidden layer, other than the input

and the output layer.

(e) Initialize the target action-value function Q’

with the same parameters as Q.

Step 2: Training of the DQN agent

For event = 1, M do

(a) Initialize the observation sequence s1 by out-

putting the predicted yield randomly.

For t = 1, T do

(b) Select a random action at , with probability ε.

(c) Perform the action at and obtain the reward rt .

(d) Randomly generate the next state s(t+1).

(e) Save the memory D as (st , at , rt , s(t+1)).

(f) With respect to the network parameters θ ,

perform gradient descent on (rt − Q(st , at ;θ )
2

(g) Reset Q’ = Q.

End For

End For

The following section explains a brief definition of the

various agrarian factors that influence the crop yield, and

evaluation of various crop parameters to be considered for

the construction of the learning models.

IV. DATASET AND STUDY AREA DESCRIPTION

Deep learning models demand huge data volume for effi-

cient processing. Information with adaptable characteristics

streamlines the effort of finding regularities by removing the

irrelevant features for the learning objective. Fabricating a

deep reinforcement learningmodel for the agricultural frame-

work is highly tedious since they are extremely unsteady and

possess a dynamic non-linear behavior. This section explains

in detail the dataset used for the study for predicting the crop

yield.

The proposed study investigates the yield prediction of

paddy crop for the Vellore district in the southern part of

India. Here, the block of district considered for the study

include Ponnai, Arcot, Sholinghur, Ammur, Thimiri, and

Kalavai. Paddy is one of the prevailing monetary crops

cultivated in this region and hence this area is considered

for investigation. In varying to the typical climatic and soil

parameters, the dataset incorporates specific climate, soil and

groundwater properties along with the volume of fertilizers

consumed by the crops of the study area. Some of the param-

eters analyzed in the current study include evapotranspira-

tion, ground frost frequency, groundwater nutrients, wet day

frequency, aquifer characteristics which are not recognized

together in the existing literature. Table 1 represents concise

information about the various crop parameters utilized in

the study. The data is taken for 35 years. The paddy crop

yield is estimated in terms of area cultivated (in hectares),

paddy production (in tons) and yield acquired (in kg/hectare).

The knowledge pertinent to regular climatic factors like

temperature, precipitation, reference crop evapotranspiration,

potential evapotranspiration, humidity and distinctive cli-

matic parameters like ground frost frequency, diurnal temper-

ature range, and wind speed has been utilized. The climatic

data are provided by the Indian Meteorological department

from its portal metdata tool. The soil parameters comprise

topsoil density, soil PH and the amount of the soil macronu-

trients (Nitrogen, Phosphorus and Potassium) present.

Distinctive hydro-chemical properties of groundwater like

transmissivity, aquifer type, permeability, electrical con-

ductivity, pre-monsoon and post-monsoon micro-nutrients

(calcium, potassium, sodium, magnesium, and chloride) con-

tent in groundwater are considered for the study.

The following section presents the experimental results

obtained for predicting the crop yield using the DRQNmodel

and comparison of the results with the existing models.

V. RESULTS AND DISCUSSION

The efficiency of a learning model is determined by evalu-

ating the model various execution measures or by monitor-

ing the performance by various evaluation metrics. For the

proposed work the model is validated in terms of:

• Performance estimation

• Comparison of various other algorithms in terms of:

◦ Evaluation metrics

◦ Data distribution properties

◦ Model accuracy measures
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TABLE 1. List of dataset parameters for the proposed DRL framework. TABLE 1. (Continued.) List of dataset parameters for the proposed DRL
framework.
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A. PERFORMANCE ESTIMATION

During the construction of machine learning models,

the dataset is arbitrarily split into training and test set, where

the highest amount of data is taken as the training set. Even

though the test dataset is small, there exist chances of leaving

out some important information that may have enhanced the

model. Also, there is a concern of high variance in the dataset.

To handle this issue, K-fold cross-validation is utilized. It is

a strategy that is utilized to assess the deep learning models

by re-sampling the training information for enhancing the

performance. Modeling and forecasting time series data are

intricate and challenging. Randomly splitting a time series

data for cross-validation does not hold well. It may lead to a

temporal dependency problem as there is an implicit reliance

on past observation and simultaneously, a leakage from the

response variable to lag variables is bound to happen. This

results in non-stationarity, which is the frequent changes in

mean and variance in the information space. In such cases,

cross-validation is performed in a forward-chaining manner.

For the proposed approach, five-fold forward chaining

cross-validation is performed, which more precisely models

the data prediction where the model is built on past data and

predicts the forward-looking data. The results are tabulated

in Table 2.

TABLE 2. Results of 5- fold forward chaining cross-validation for the
deep reinforcement model M.

It is like starting with a small subset of data initially for

training, predict for the following data and determining the

exactness of the predicted data. The same forecasted data

points are enclosed as a part of the next training data subset

and the following data points are forecasted. Fig. 5 repre-

sents the deep reinforcement model plot before and after

performing the cross-validation.

The cross-validation is performed using the python

Scikit-Learn machine learning library. The dataset is

preprocessed using the min-max scaling which normal-

ized the dataset. From the Sklearn using the sub-library

model_selection, the train_test_split function is imported to

split the training and test sets. The hyperparameter tuning for

the cross-validation in determining the best ‘K’ is obtained

using the cross_val_score function of the Sklearn library. The

data is split into ’K’ subsets, in this case, it is five by setting

the parameter n_splits as 5. The training and validation data

set size is determined by the parameter test_size which is

taken as 0.3 for the proposed work, indicating that 70% of the

FIGURE 5. Data predictions of the deep reinforcement forecasting model
against true values (a) Before cross-validation, (b) After cross-validation.

data is subjected to training and 30% of the data for testing.

The model is trained throughout the K-fold forward chaining

cross-validation process and the error metric is determined.

The error metric is the r2 score, which is appended in every

iteration and obtain the best value defining the overall model

accuracy.

B. COMPARISION WITH OTHER MODELS

The proposed deep reinforcement model DRQN is explored

and tested with other significant algorithms, namely Deep

LSTM network, Artificial Neural networks (ANN), gradient

boosting (GB), random forest (RF) and other deep learning

based algorithms like Bernoulli Deep Belief Network (BDN),

Bayesian Artificial Neural Networks (BAN), Rough Auto

Encoders (RAE) and Interval DeepGenerativeArtificial Neu-

ral Networks (IDANN). An inducing aspect for the evaluation

metric is their ability to discriminate between the results of

different learning models.

1) EVALUATION METRICS

The proposed model’s reasonability is determined by evaluat-

ing themodel against different executionmeasures or specific

evaluationmetrics. The various evaluationmetrics considered

for the proposedwork are theDeterminationCoefficient (R2),

Mean Absolute Error (MAE), Mean Squared Error (MSE),

Root Mean Squared Error (RMSE), Median Absolute Error

(MedAE), Mean Squared Logarithmic Error (MSLE), Mean
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Absolute Percentage Error (MAPE) and Explained Variance

Score (Exp. Var.). To assure a fair examination of the model

error metrics, two sets of these four models for training and

validation were constructed to forecast yield. The hyperpa-

rameter optimization for the proposed approach and the other

models are observed through a manual selection approach

for the respective models. The key objective of the manual

hyperparameter selection is to tune the model’s capacity to

match the target task complexity. The hyperparameters like

the learning rate, the number of hidden units, optimizer,

activation function and the dropout values are determined

on the degree on which the training process and cost func-

tion reduce the test error. The DQRN based DRL model is

constructed using an RNN network of one input layer, three

hidden layers with each layer consisting of 8 neurons, a fully

connected layer and an output layer presenting the crop yield

value. The input layer consists of 30 neurons representing the

crop dataset parameters. The RNN uses a ReLU activation

function for the processing in the hidden layers. To attain

the best performance accuracy without over-fitting, the agent

learns by performing an action through 1000 epochs.

In the construction of the interval deep generative artifi-

cial neural networks [60] and the rough auto encoders [61],

a rough set theory is introduced to the deep learning algo-

rithm to deal with data ambiguity. The rough set theory is a

mathematical function brought in by Pawlak [62] to handle

uncertainty in learning. It is a proper theory obtained from

the intrinsic research on logical characteristics of information

systems. An information system S is identified as 4 tuple

S =< U ,V ,A, f >. Here U is the universe of primitive

objects, A is the set of attributes, V is the domain set such that

V =
⋃

a∈A Va. The mapping f is termed as the information

or total function f : U × A → V . In concerning any attribute

set At ⊆ A and concept set such as X ⊆ U rough set defines

two approximations:

• AtX represents the set of attributes in U which can

possibly be members of X with respect to the attributes

of At .

• AtX represents set of all attributes in U that can be

exactly identified as members of X with respect to the

attributes of At .

The boundary region, B = AtX − AtX defines the set

of attributes that can’t certainly be identified to X only by

considering set of attributes of At . If B (X) = ∅ then X is the

crisp set with respect to At else it is defined as the rough set.

For the experimented rough autoencoder model a rough

neuron based on the rough set theory is incorporated into the

two layered stacked autoencoder model. The rough neurons

are applied in the output and the hidden layers of the RAE

model. The rough neuron used in this approach consists

of an upper bound neuron U = (w1, b1, α) and a lower

bound neuron L = (w2, b2, β). w1, b1,w2, b2 are the weights

and biases of the upper bound and lower bound neurons.

The output coefficients α, β defines the contribution of the

upper bound and lower bound outputs O1,O2 to the neuron’s

output O. Beginning from the first layer of RAE, the rough

TABLE 3. Performance evaluation metrics of the proposed deep
reinforcement model and other machine learning models.

TABLE 4. Performance evaluation metrics of the proposed deep
reinforcement model and other machine learning models.

auto encoders are trained progressively using back propaga-

tion with stochastic gradient descent to determine the rough

features for crop yield.

For the experimented IDANN, variational autoencoders

with the rough set theory is incorporated to extract the data

features. The variational autoencoder is a framework con-

sisting of both encoder and decoder that is trained to reduce

the reconstructed error between the generated and the actual

data. The features are learned by means of stochastic gener-

ation of mean and standard deviation of the input samples.

The initialization process is a regularization task; the ran-

domly initialized parameters are moved to better latent space.

The features are learned by maximizing the probabilities

of the generative model-variational autoencoder to initialize

the biases and weights of the multi-layered neural network.

Naturally the mean vector oversees where the input encoding
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TABLE 5. Performance evaluation metrics of other unsupervised deep
machine learning models.

TABLE 6. Accuracy and MAPE measure of the proposed deep
reinforcement model and other machine learning models.

FIGURE 6. Model performance evaluation results using MAE, MSE, RMSE
and R2 for the experimented models.

should be centered, and the standard deviation controls how

much from themean the encodings can vary. As the encodings

are generated at random, the decoder understands that the

sample refers to not a single point in latent space, but rather

all nearby points.

FIGURE 7. Model performance evaluation results using MSLE, Exp. Var.
Score and MedAE for the experimented models.

FIGURE 8. Comparison of actual data distribution with Predicted data
distribution using experimented algorithms (a): Deep reinforcement
learning, Random forest, Gradient boosting, artificial neural networks,
Deep learning. (b): Bayesian artificial neural networks, interval deep
generative artificial neural network, Bernoulli deep belief network, Rough
autoencoders.

Tables 3 to 6 compare the performance of the machine

learning models on both training and validation datasets to

the metrics as mentioned earlier of evaluation.
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FIGURE 9. Probability density functions of the: (a) Original data and Predicted data using: (b) Deep reinforcement learning, (c) deep
learning (d) Artificial neural network, (e) Gradient boosting, (f) Random forest, (g) Bernoulli DBN, (h) Bayesian ANN, (i) Interval deep
generative ANN, (j) Rough autoencoder.
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FIGURE 9. (Continued.) Probability density functions of the: (a) Original data and Predicted data using: (b) Deep reinforcement learning,
(c) deep learning (d) Artificial neural network, (e) Gradient boosting, (f) Random forest, (g) Bernoulli DBN, (h) Bayesian ANN, (i) Interval
deep generative ANN, (j) Rough autoencoder.

These models were enforced and implemented in python

in the most effective aspect and tested under similar software

and hardware conditions to assure reasonable comparisons.

The error metric is used to define the performance degree

during the execution of a model. The residuals obtained

during the experiments, which are the difference between the

actual and the predicted values are used to estimate the error

measure. In other words, by observing the magnitude of the

residual spread, the precision, as well as the efficiency of the

model, is determined.

In terms of precision and efficiency, the proposed deep

reinforcement model is observed to outperform the other

machine learning models with an accuracy of 93.7% and

improved error measures.

However, the performance of other deep learning models

BDN, BAN, IDANN, RAE and Deep LSTN is reasonably

close to the DRL approach. Fig. 6 and Fig. 7 explain the

evaluated performance measures of the experimented models

for the crop yield prediction.

2) DATA DISTRIBUTION PROPERTIES

In order to determine if the proposed DRQNmodel preserved

the original distributional properties of the data, the proba-

bility density function of the actual crop yield data and the

experimented models are observed. The Probability Density

function (PDF) is an analytical expression that characterizes

probability distribution for a continuous random variable

against a discrete random variable. In graphically defining

the PDF, the region under the curve will represent the inter-

val where the predicted variable falls. The absolute area in

the graph interval equates the probability of the continuous

random variable occurrence. It enables us to calculate the

probabilities of the range of outcomes.

The probability density functions of the actual crop yield

and the predicted crop yield using the proposed deep rein-

forcement learning and the othermachine learning algorithms

are shown in Fig.8. It is done to observe if the proposedmodel

and the other ML algorithms can preserve the distributional

properties of the actual crop yield data.

Fig.9 defines the individual probability density plots of the

original data, proposed DRL method and other experimented

ML algorithms.

From Fig. 9, it is explicitly defined that the proposed deep

reinforcement learning model can more approximately pre-

serve the distribution properties of the actual crop yield data

when compared to the other experimented machine learning

algorithms.

3) MODEL ACCURACY MEASURES

Evaluation of the model accuracy is an integral part of the

model development process. It enables in identifying the

optimum model for the data representation and performance

of the model for the future timestamps.

Accuracy refers to the ratio of predictions which the model

has forecasted precisely. Accuracy reflects the closeness of

the predicted value to the actual value or the true value.

Fig.10 graphically represents the accuracy measure of the

predicted data using the proposed deep reinforcement learn-

ing algorithm and the other experimented machine learning

algorithms.

On observing the experimental values and results obtained

for the paddy crop dataset, the deep reinforcement learning

model is found to predict the data with better accuracy and

precision of 93.7% over the other experimented algorithms.

Though the accuracy measures of other deep learning

algorithms like BDN, BAN, IDANN, RAE and Deep LSTN

are reasonably close to the proposed approach the computa-

tional cost and time complexity is more than the proposed

model. The BDN and IDANN are asserted to be more suit-

able for predicting continuous data enabling greedy layer-

by-layer learning efficiently by evaluating the parameters

quickly. A critical disadvantage is that the approximation

process is restricted to an individual bottom-up pass and

the existing greedy process is very slow and inefficient.
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FIGURE 10. Prediction accuracy measure of: (a) Proposed DRL algorithm, (b) Deep learning algorithm, (c) Artificial neural network
algorithm, (d) Gradient boosting algorithm and (e) Random forest algorithm, (f) Bernoulli DBN, (g) Bayesian ANN, (h) Interval deep
generative ANN, (i) Rough autoencoders.
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FIGURE 10. (Continued.) Prediction accuracy measure of: (a) Proposed
DRL algorithm, (b) Deep learning algorithm, (c) Artificial neural network
algorithm, (d) Gradient boosting algorithm and (e) Random forest
algorithm, (f) Bernoulli DBN, (g) Bayesian ANN, (h) Interval deep
generative ANN, (i) Rough autoencoders.

RAE automatically learns from the data samples, which is an

essential feature, it is simple to train specific examples of the

algorithm that will perform well on a particular kind of infor-

mation. It doesn’t require any new designing, just relevant

training data. But the auto encoders’ decompressed outcomes

will be degraded on comparison to the actual inputs deviating

from lossless arithmetic compression. Also in generalizing

the model requires a large amount of training data. Though

the RAE supports application in greedy layer-wise approach

pertaining for deep networks, better randomweight initializa-

tion schemes, batch normalization and residual learning could

provide sufficient training for deep networks. BAN exposes

few powerful insights and techniques to deep learning by

automatically estimating errors associated with predictions

but however, they are difficult to scale for large datasets. This

is even evident by comparing the MAPE value obtained from

the proposed approach and the BAN model.

In terms of error measures evaluation, the DRQNpresented

the lowest error values and almost preserved the original

data distribution. It is evident from the results obtained that

the proposed deep reinforcement learning DQRN model can

solve the crop yield prediction problem by learning from the

various dataset parameters through memory replaying and

self-learning. Thus the predominance of the proposedmethod

additionally enhances the system intelligence to predict the

yield by minimizing the dependence on expert experience.

VI. CONCLUSION AND FUTURE WORKS

The evolution of DRL has raised the self-reliance and the

intelligence of theArtificial Intelligence algorithms andmoti-

vates to propose a novel crop yield prediction system. The

results observed from the precision and efficiency tests illus-

trate the effectiveness and versatility of the proposed Deep

Recurrent Q-Network for yield prediction. By building a

yield prediction environment, the proposed method makes

it feasible for the agent to identify and learn the crop yield

prediction through self-exploration and experience replay.

Through the dataset prediction results, it is evident that the

yield prediction agent administers the process, suggesting

that the proposed method can precisely define the char-

acteristics for crop yield. The combination of RNN based

feature processing and DQN based self experimental anal-

ysis is the key objective to attain favorable results. Unlike

the supervised learning-based crop yield prediction process,

DRQN based process provides a complete solution that inde-

pendently mines the non-linear mapping between the crop

yield and the climatic, soil and groundwater parameters. This

advantage can definitely minimize expert dependency and

prior knowledge for developing crop yield prediction mod-

els. Hence the proposed approach provides a perception of

implementing a more generalized model for yield prediction.

However, the RNN based DRL can cause the gradients to

explode or disappear if the time series is very much longer.

Experimenting data prediction through a wide range of ML

predictive algorithms can be observed as a basis for decision

making, but it is critical to interpret the statistical uncertainty

related to these predictions. Hence there exist needs to design

a framework that predicts both target and their prediction’s

uncertainty. Probabilistic predictive modeling strategies like

information theory, probabilistic bias-variance decomposi-

tion, composite prediction strategies, probabilistic boosting

and bagging approaches etc. can be considered to handle the

uncertainty in statistical predictions that can be observed as

a future extension of the current model. Another alternative

approach to be considered is to use an LSTM based DRL.

Exploration of more crop yield prediction parameters with

respect to pest and infestations and crop damage can be

included in the current framework to construct a more robust

working model in the future. Further improvement in the

computing efficiency of the training process is an intriguing

option to be concentrated.
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