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[1] This paper presents a methodology for the creation of
a cropland map for Africa through the combination of five
existing land cover products: GLC‐2000, MODIS Land
Cover, GlobCover, MODIS Crop Likelihood and AfriCover.
A synergy map is created in which the products are ranked by
experts, which reflects the likelihood or probability that a
given pixel is cropland. The cropland map is then calibrated
with national and sub‐national crop statistics using a novel
approach. Preliminary validation of the map was undertaken
and the results are presented. The resulting cropland map has
an accuracy of 83%, which is higher than the accuracy of any
of the individual maps. The cropland map is freely available
at agriculture.geo‐wiki.org. Citation: Fritz, S., L. You, A. Bun,
L. See, I. McCallum, C. Schill, C. Perger, J. Liu, M. Hansen, and
M. Obersteiner (2011), Cropland for sub‐Saharan Africa: A syner-
gistic approach using five land cover data sets, Geophys. Res. Lett.,
38, L04404, doi:10.1029/2010GL046213.

1. Introduction

[2] Global cropland cover provides vital baseline infor-
mation of agricultural production in many spatially explicit
models and in applications such as the United Nations’
Millennium Ecosystem Assessment (2005), and the Global
Environmental Outlook (GEO, 2007). Furthermore, land
cover and in particular cropland influences climate ‐ it has
been shown that cropland management itself can have an
influence on the global climate [Lobell et al., 2006]. Changes
in land cover may also lead to biophysical effects on the
climate through changes in evapotranspiration, albedo and
surface roughness [Brovkin et al., 2006].
[3] Accurate spatial information of cropland is particularly

important for crop monitoring of food security and early
warning, and satellite derived land cover datasets have been
widely used for this purpose. Amajor challenge in addressing
future global food security is to determine the spatial distri-
bution as well as the identification of areas where additional
food or non‐food crops can be grown. Such information is
also essential for global economic land‐use models which

evaluate the impact of a certain policy (e.g., impact of a strict
EU biofuel target on deforestation, food security etc.) see
Havlik et al. [2010]. It has been shown both globally [Fritz
and See, 2008], and in particular for Africa [Fritz et al.,
2010], that large discrepancies between current continental
and global land cover maps exist both in terms of overall area
and spatial distribution. Ramankutty et al. [2008] estimated
that the global cropland area lies between 1.22 and 1.71 bil-
lion hectares which translates into a 40% difference between
the upper and lower estimates. Different medium to coarse
resolution global land cover datasets exist that identify
cropland, i.e. GLC‐2000, MODIS Land Cover, GlobCover,
MODIS Crop Likelihood, but each was derived using a
different classification algorithm and furthermore it does
not have particularly high accuracy for cropland estimation
[Friedl et al., 2002; Bicheron et al., 2008].
[4] Recent approaches to the development of cropland

maps have focused on using national [Pittman et al., 2010]
and sub‐national statistics [Ramankutty et al., 2008], but
there have been few attempts at integrating the current pro-
ducts, especially for agriculture. An exception is the work
by Jung et al. [2006], who used a fuzzy agreement scoring
approach to explore the synergies between global land cover
products for carbon cycle modeling. This paper extends the
concept of the synergy map [Jung et al., 2006], by including
expert judgment in ranking the land cover products as well as
the inclusion of regional and national products derived from
higher resolution satellite data. A novel approach to calibra-
tion based on national and sub‐national information is also
introduced and the validation of the resulting cropland map
is presented.

2. Data and Methods

2.1. Data Sources

[5] Five land cover products are used in this paper:
GLC‐2000, MODIS Land Cover, GlobCover, MODIS Crop
Likelihood and AfriCover. Table 1 provides the details of
these datasets. Although there are other cropland products
available [e.g., Ramankutty et al., 2008; Ramankutty and
Foley, 1998], they are not included in this analysis because
they are either rather old or use the products listed above in
their development and are at a coarser resolution. Instead we
chose to use the original land cover products in this analysis.
[6] Cropland data at the country level are reported by the

Food and Agriculture Organization of the United Nations
(FAO). Sub‐national level data have been assembled from
various national statistics publications and agricultural census
surveys by IFPRI (International Food Policy Research Insti-
tute). IFPRI’s sub‐national crop database covers all major
crops in the world and includes mostly the second‐level sub‐
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national units (e.g. a district in Kenya) but also some third‐
level administrative units if available [You et al., 2009]. In
some locations, favorable biophysical conditions allow
multiple cropping for certain crops. Cropping intensity is
defined as the ratio between harvested crop areas (where
double or triple cropping areas are counted twice or three
times respectively) and the physical areas where the crops are
planted. The cropping intensity data by country is compiled
from various sources, including national statistics, agricul-
tural census, household surveys, and expert opinions [You
et al., 2009]. We calculated physical areas by dividing the
harvested area by the corresponding cropping intensity. We
then sum all these physical areas by crops and get the total
cropland for a certain administrative unit.
[7] The final cropland by sub‐national units serves as a

lower bound for the validation of cropland extent from sat-
ellite data. There are two reasons for adopting this approach.
Firstly, the crop list may miss minor crops produced in a
particular region, and secondly, that account has not been
taken of mixed cropping (i.e. planting two or more crops at
the same plot within a year) due to data availability. Pasture
and areas of low intensity cropping are not included in the
cropland extent map.

2.2. Methodology

[8] Themethodology consists of a series of steps, which are
shown in Figure 1 and are described in each of the sections
that follow. Before starting, all the land cover products were
standardized to a resolution of 1 km.

2.2.1. Creation of a Synergy Map
[9] The basic idea behind the synergy approach is to give

each pixel a score based upon the agreement between the
different land cover products used in the analysis [Jung et al.,
2006]. The synergy approach is extended in this paper in two
ways. The first modification allows the producer of the final
map to rank the land cover products before they are combined
(either based on expert judgement, timeliness or accuracy
assessment) rather than giving all products the same weight.
The more agreement between the maps, the higher the
likelihood or probability that cropland exists at that pixel.
Figure 2a illustrates how this ranking works using three dif-
ferent land cover products. Land cover product #1 is given the
highest ranking by experts followed by land cover products
#2 and #3. The black pixels are areas of cropland in each land
cover product. A pixel is assigned a value of 1 if all three
maps agree that cropland exists. A value of 2 is assigned to
areas of cropland where the land cover products #1 and #2
agree but land cover product #3 does not. With three land
cover products, there are 7 possible combinations as shown
in Table 2, which provides a simple illustration. However,
this methodology can be applied to any number of land cover
products where five maps have been used in the development
of the final cropland map outlined in this paper.
[10] The second modification to the synergy methodology

of Jung et al. [2006] is referred to here as priority ranking,
which allows for the incorporation of regional products at
places where confidence is the highest. Thus maps with very
high confidence, i.e. those based on high resolution data in

Table 1. Comparison of Land Cover Products

Characterstics GLC‐2000 MODIS Land Cover GlobCover MODIS Crop Likelihood AfriCover

Reference year 2000 2005 2005 2000–2008 1982–2000
Producer JRC University of Boston ESA/JRC University of Maryland FAO
Resolution 1 km 500 m 300 m 250 m and 1 km 30 meter
Reference Bartholomé and

Belward [2005]
Friedl et al.

[2002]
Bicheron et al.

[2008]
Pittman et al.

[2010]
(http://www.fao.org/waicent/faoinfo/

sustdev/EIdirect/EIre0053.htm)

Figure 1. Overview of the methodology for the creation of a cropland map.
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combination with information from the ground such as a
TM‐based visual interpretation, are always ranked higher
than the other land cover products, even if they have no or
little agreement with the priority ranked product. This con-
cept is illustrated in Figure 2b where the effect of the priority
ranking can be seen. There are two pixels, labeled with values
of 4 and 5, where 4 in this situation means that land cover
products #2 and #3 agree on cropland but land cover product
#1 does not while a value of 5 indicates that only land cover
product #1 indicates cropland at that pixel. This is also
illustrated in Table 2 in the right hand column. The order of
these rankings is switched from Figures 2a to 2b because land
cover product #1 has a higher priority in the ranking and
therefore this pixel gets a value of 4 instead of 5 when
applying the priority ranking method. This algorithm would
most likely be used if there is a regional product available that
has been derived from higher resolution images together with
ground data so confidence in this product would be higher
than the rest.
[11] For the cropland map created for Africa, five different

land cover maps were used in order of rank or confidence:
AfriCover, MODIS Crop Likelihood, MODIS Land Cover,
GlobCover and the GLC‐2000 land cover products. When
five different products are combined, there are 30 different
possible combinations or rankings from 1 to 30, see Table 3.

AfriCover is given priority ranking over the other land cover
products. The remaining land cover maps were then ranked
based on how accurate they are perceived to be in cropland
estimation. In this case we assumed that the more recent
product was indeed perceived as more accurate (1st most
recent MODIS Crop Likelihood, 2nd most recent MODIS
Land Cover, 3rd most recent GlobCover and least recent
GLC‐2000). A synergy map was then created after imple-
menting the ranking.
2.2.2. Creating a Cropland Map Through Calibration
With National Crop Statistics
[12] To create a map of cropland, the synergy map must

be calibrated using crop statistics. Where only national crop
statistics are available, the process is as follows for one
country at a time:
[13] 1. Cells with the highest ranking are selected and the

sum of the cropland area is calculated taking the minimum
value of cropland as specified in the legend definitions of
each land cover product. Where the synergy map shows
agreement of 2 or more land cover products, the average
cropland area would be used. For example, in Africa the
GLC‐2000 uses 50% for the minimum cropland while
MODIS uses 60%. If both maps agreed that a given pixel
contained cropland, a minimum value of 55%would be used.
[14] 2. The cells with the next highest ranking are added to

the previously selected cells and the total area of the selection
is calculated.
[15] 3. Step 2 is repeated until a total area of the selected

cells (summed up on a country level) match the national
statistics as closely as possible.
[16] This process creates a cropland map based on the

minimum value of cropland specified in the definitions of
cropland in different land cover products. It is also possible to
create these maps using the maximum definition and the
average. An illustration of the algorithm is provided in
Figure 3 for a simple example. The synergy map pictured has
pixels with ranks between 1 to 4. The total areas of cropland
belonging to these classes are 59, 75, 36 and 77, respectively.
The national statistics for that country indicate an area of 180
so the classes are summed until they approach this value,
which would be classes 1 to 3, giving a total value of 170.
Hence the new statistics on cropland for that country would
be 170, and the resulting map is a combination of the three
highest ranked areas, or areas with the highest likelihood of
containing cropland.
2.2.3. Calibrating the Synergy Map With Sub‐National
Crop Statistics
[17] The detailed sub‐national crop database compiled by

IFPRI [You et al., 2009] contains statistics for nearly all crops,
but in some sub‐national units there may only be a few or no
statistics available. However, it is still possible to make use

Figure 2. Creating a synergy map based on (a) ranking the
land cover products and (b) giving priority to the top rank
which means that the layer is always used first even if there
is no agreement with another map at a specific pixel. The
black pixels are areas of cropland in each product.

Table 2. Synergy Map Ranking Combinations When Combining
Three Land Cover Products

Rank
Value Meaning for Ranking Meaning for Priority Ranking

1 All land cover products agree All land cover products agree
2 LC #1 and LC #2 agree LC #1 and LC #2 agree
3 LC #1 and LC #3 agree LC #1 and LC #3 agree
4 LC #2 and LC #3 agree Only LC #1 indicates cropland
5 Only LC #1 indicates cropland LC #2 and LC #3 agree
6 Only LC #2 indicates cropland Only LC #2 indicates cropland
7 Only LC #3 indicates cropland Only LC #3 indicates cropland
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of these data by applying some simple modifications to the
cropland map created from the national calibration. The
process is illustrated in Figure S1 of the auxiliary material for
a country with 3 sub‐national units represented by dark grey,
light grey and white.1 Numbers in each pixel show the area
of the cropland. Sub‐national cropland areas are calculated
from the nationally calibrated map and compared to the sub‐
national statistics using these simple rules:
[18] 1. When no data are available at sub‐national level, the

cropland areas are taken from the national level map, which
is the white zone in Figure S1.
[19] 2.When the sub‐national level statistical data results in

higher cropland areas than the one derived from the national
analysis (pixel areas summed up on a sub‐national level from
previous analysis – see section 2.2.2), then the sub‐national
cropland values are used for this zone, shown as light grey in
Figure S1.
[20] 3.When the national level analysis yields a higher area

of cropland than the sub‐national level, the algorithm out-
lined in section 2.2.2 is rerun for such zones. However, the
sub‐national statistics are used in place of the pixels summed
from the nationally calibrated map, with the requirement that
the national crop totals must be preserved.
2.2.4. Validation of the Cropland Map
[21] The cropland map was validated against a sample

of 2553 points systematically distributed over Africa at each
lat/long intersection. These vector points were placed on top
of Google Earth as KML files within agriculture.geo‐wiki.
org and the validation was done as the percentage of crop-

land visible within a 1 km pixel. The outline of the pixel
appears directly on top of Google Earth when the validation
tool embedded into agriculture.geo‐wiki.org is used. Using
Google Earth as a tool for validation of land cover has been
undertaken for the validation of other land cover products
[Pekkarinen et al., 2009; Bicheron et al., 2008] and is par-
ticularly appealing in remote areas of Africa where no other
datasets for validation are currently available. The majority
of the very high resolution images were from the year 2003 to
2007. Even though not ideal we still consider this validation
dataset sufficient to validate our cropland map. In the future
Google Earth/Google Earth Engine will make an increasing
amount of very high resolution time series available which
will allow to improve the validation datasets. The validation
was undertaken by experts trained in the recognition of
cropland areas. Three different confidence levels were
defined: 1 = very confident (corresponding to very high
resolution Google Earth images (60 cm to 1 m); 2 = medium
confidence (high resolution – 2 to 10 m) or Landsat in non‐
complex landscapes; and 3 = least confident (30 m Landsat
data). The experts were a group of young scientists who have
been specifically trained in the validation of land cover during
the summer of 2010. Validation was undertaken at each lat-
itude/longitude intersection across Africa, and distributed
between the scientists. In some cases, multiple validations
were undertaken at the same point.

3. Results

[22] The validated cropland map is provided in Figure S2.
A confusion matrix was produced differentiating between
cropland and non‐cropland. The overall accuracy for all
2553 pixels was 82.7%, the omission errors for cropland

Table 3. Synergy Map Ranking Combinations When Combining Five Land Cover Productsa

Class GLC‐2000 Pixel MODIS Land Cover Pixel GlobCover Pixel MODIS Crop Likelihood Pixel AfriCover Pixel

1 1 1 1 1 1
2 0 1 1 1 1
3 1 1 0 1 1
4 1 0 1 1 1
5 1 1 1 0 1
6 0 1 0 1 1
7 0 0 1 1 1
8 0 1 1 0 1
9 1 1 0 0 1
10 1 0 1 0 1
11 0 0 0 1 1
12 0 0 1 0 1
13 0 0 0 0 1
14 1 1 1 1 0
15 0 1 1 1 0
16 1 1 0 1 0
17 1 0 1 1 0
18 1 1 1 0 0
19 1 1 0 1 0
20 1 0 1 1 0
21 0 1 0 1 0
22 0 0 1 1 0
23 1 0 0 1 0
24 0 1 1 0 0
25 1 1 0 0 0
26 1 0 1 0 0
27 0 0 0 1 0
28 0 1 0 0 0
29 0 0 1 0 0
30 1 0 0 0 0

aWhere 1 indicates the presence of cropland and 0 indicates no cropland present.

1Auxiliary materials are available in the HTML. doi:10.1029/
2010GL046213.
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and no cropland were 61.8% and 8.0% respectively, and the
commission errors were 49.7% for cropland and 12.4% for no
cropland.When confidence level 3 was excluded, the number
of validated pixels reduced to 2125, but the results show a
robust pattern (i.e. overall accuracy of 83.1%, omission errors
of 62.5% (cropland) and 7.6% (no cropland) and commission
errors of 49.8% (cropland) and 12.1% (no cropland). Finally,
when just those pixels are included with very high confi-
dence, the overall accuracy increases to 85.7% although the
sample size decreases quite substantially to 1889 pixels.
[23] High accuracies are achieved in eastern Africa (prob-

ably due to the inclusion of AfriCover), whereas the accuracy
is lower in Western Africa (Burkina Faso, Ivory Coast, and
Ghana). A case study in South Africa has been chosen which
shows the 4 different cropland input maps, the probability
layer, and the resulting calibrated synergy map (Figure S3).

4. Summary and Discussion

[24] We synergistically combined existing cropland data
sets to improve estimates of croplands in Sub‐Saharan Africa,
reducing local discrepancies with national and sub‐national
crop statistics. The resultant cropland map ranges from 83–
86% accuracy. The methodology is flexible in that it can
easily incorporate new products as they become available, in
particular with respect to new Landsat based products that
will be developed over Africa (e.g., AfriCover Senegal). An
accuracy of 83% represents both an improvement over the

original input products and an independent dataset (the M3‐
Cropland layer produced by Ramankutty et al. [2008]). If the
same error matrix is applied to the M3‐Cropland layer the
resulting accuracy is 69% (although the pixel size is larger
and hence not directly comparable). However, the accuracy
assessment also shows that there is still room for improve-
ment. The method described here obviously depends highly
upon the accuracy of the input layers as well as the reliability
of the sub‐national statistics. As more high quality data
becomes available in the near future, this product is expected
to improve further.
[25] We expect that the improved cropland extent map will

also be incorporated into models in order to decrease the
current uncertainty which is associated with cropland extent,
and that this will lead to an overall improvement in predic-
tions applied in the field of global vegetation modeling,
global land use modeling, climate change modeling and earth
systems modeling in general.

[26] Acknowledgments. We would like to thank Markus Tum, Luke
Burns and Adriana Gomez for carrying out the validation. This research
was supported by the European Community’s Framework Programme
(FP7) via EuroGEOSS (226487).
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