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ABSTRACT Accurate and spatially explicit cropland maps are crucial for many applications, which include
sustainable crop monitoring, food security, and land and agriculture planning and management. Zimbabwe
lacks reliable data on cropland extent of the old and new re-allocated areas for inventory purposes. Objectives
of this paper are to map cropland utilizing: 1) automatic classification; 2) multi-classifier system (MCS); and
3) normalized difference vegetation index and bare-soil index (NDVI-BSI) thresholding and determine the
spatiotemporal cropland changes. Change detection is implemented through a post-classification statistical
method. The classified results are compared with SADC and ESA land cover products, GFSAD30AFCE
cropland layer, and Google Earth imagery. Results reveal that MCS and NDVI-BSI performed the best and
achieved overall accuracies of 80.54% and 79.32% for 2013, and for 2018, they attained accuracies of 87.90%
and 88.56%, respectively. Automated classification, MCS, and NDVI-BSI thresholding produced average
cropland areas of 3416396, 10346778, and 9788833 Ha, respectively. Visual assessment observations show
that NDVI-BSI thresholding outperformed the other two techniques. Comparing further theMCS and NDVI-
BSI thresholding approaches’ results of total cropland areas of Zimbabwe’s ten provinces for the years
2013 and 2018, coefficients of determination of 0.8404 and 0.9619, respectively, are achieved. Change
detection shows a general increase in the cropland area due to human activities despite the prolonged
drought. However, we recommend further exploration of NDVI-BSI threshold values to derive cropland
layers since the method is robust and can be automated easily and faster without inputting training data.
We also recommend simulation of the changes in cropland areas using cellular automata and/or agent-based
modeling.

INDEX TERMS Bare-soil index (BSI), change detection, cropland, decision-level fusion, multi-classifier
system, normalized difference vegetation index (NDVI).

I. INTRODUCTION

Agriculture and food are predominantly the world’s major
businesses, which are closely linked to sustainable devel-
opment [1]. Most of the agricultural systems have to be
transformed with aspirations to achieve global food security
and environmental sustainability [2]. Global demand for food
amongst other agricultural croplands’ products is now amajor
driver of croplands and pastures expansion across much of the
developing world [3]. The demand has increased at alarming
rates during the past decades, whilst the agricultural land base
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needed for production has been shrinking in many parts of the
world [2]–[4].

The world population is projected to reach 9.7 billion
by 2050 [5], hence improved agricultural land production will
be needed to meet such global demands. With the highest
population growth rate, Africa is anticipated to account for
more than half of the world’s population between 2015 and
2050 hence resulting in escalation of per capita consumption
rates [2], [4], [5].

As stated by the Food and Agriculture Organization (FAO)
of the United Nations, croplands cover about 12% of Earth’s
ice-free land [2], [4]. Foley et al. [2] and Gibbs et al. [3] at
some point indicated that agriculture was expanding mainly
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in the tropics, where about 80% of the new croplands were
predicted to be substituting forests. Contrarily, Chen et al. [6]
highlighted that over the past decade, rapid urbanization
and forest plantations have caused large areas of crop-
land to shrink. Accurate knowledge and spatially explicit
information on croplands distribution and changes can
provide valued information crucial to understand activ-
ities taking place at the various locations which can
influence policy making regarding sustainable food secu-
rity, cropland management, food production and water
resources [6]. Long term cropland inventories can support
detection and improve understanding of cropland changes
whether due to natural, climate change or human induced
effects. Accurate maps showing cropland and non-cropland
extent are the preliminary stage to developing higher-level
products [7].
The world in general is awash in a heterogeneous spatial

data gamut from satellite imagery, Unmanned Aerial Vehicle
(UAV)-borne, airborne LiDAR to crowd sourced data [8], [9].
Endeavoring to efficiently monitor land cover/use changes,
remote sensing techniques can provide reliable source of
data for information extraction [10]. Satellite remote sens-
ing has proved to be a cost-effective tool [11], [12] that
has been widely implemented to determine croplands spa-
tial distribution and extent over small and large regions.
Due to the repetitive and synoptic coverages at relatively
short, regular intervals, change detection became an imper-
ative application of remote sensing [13] as well as monitor-
ing and analyzing agricultural activities [14]. According to
Ramankutty et al. [15], precise, current cropland distribu-
tions have been established from globally gridded land cover
classification datasets. In contrast, Xiong et al. [7] argued
that accurate and precise cropland extent maps at high spa-
tial resolution over large areas such as continent or globe
can be challenging to produce due to the smallholder dom-
inant agricultural systems like those found in Africa and
Asia.
Extraordinary potentials for remote sensing research and

education have been brought to reality by the advent of
generic, scalable cloud based geospatial computing image
processing and multi-date platforms such as Google Earth
Engine (GEE) [7], [16] or Amazon Web Services (AWS)
[17]. Cloud computing is a method of remotely delivering
and accessing information technology services and servers
to store, manage and process data through web-based tools
and applications [18], [19]. AWS provide a comprehen-
sive and secure cloud services platform, offering compute
power, database storage and analytics services in thirteen (13)
regions across the world, and from 2015, the entire archive
of Landsat 8 scenes was made publicly available [17], [18].
Machine Learning AWS also provide tools to build machine
learning models, including data analysis, training and evalu-
ation [18]. On the other hand, GEE contains over 200 public
datasets, over 5 million images and more than 5 petabytes
of data. GEE’s suite of tools includes a collection of super-
vised classification algorithms (including Random Forest,

CART and SVM) and workflows for building, training,
applying and assessing classification algorithms.1

Cropland can be defined as arable land that is suitable
for or used for crops production. The cropland in this paper
refers to arable land comprising crop cultivated areas, fal-
lows and plantations. Cropland is dynamic in nature hence
the uniqueness of its characteristics compared to other land
covers such as built-up, forest and pasture [20]. It under-
goes various stages namely intensification, marginalization
and abandonment [21]. Annually, cropland repeatedly per-
severes preparation of fields, planting, growing and har-
vesting [20]. It is crucial to accurately map croplands
and have up-to-date assessment of their spatial distribu-
tion. Azzali and Menenti, [22] successfully implemented
NDVI time series tomap vegetation types and soil and climate
of Southern Africa, but the cropland class needed its own
special approaches to map it rather than including it within
the land use classes.

Focusing on the African continent, Xiong et al. [7] devel-
oped an automated methodology of mapping cropland in
Africa using MODIS NDVI. Xiong et al. [23] mapped crop-
land extents at 30 m spatial resolution for African continent
using Landsat 8 and Sentinel-2 imagery in GEE.
Hentze et al. [24] implemented MODIS time series data to

map extent of cropland area in Zimbabwe focusing on former
freehold tenure agricultural areas. However, their classifi-
cation results underestimated the redistribution of farmland.
Most of Zimbabwean cultivated fields are heterogeneouswith
small fragmented farms, hence accurate mapping requires
imagery with high to moderate (30 – 250m) spatial resolution
and sophisticated approaches.

Limited research has been conducted related to the map-
ping of cropland areas in Zimbabwe as a whole. These few
include amongst them Hentze et al. [24], who implemented
MODIS NDVI time series. Most of the available cropland
maps were derived from global and regional land cover
products. The products do not necessarily target the agricul-
ture component of the landscape and examples include ESA
CCI-LC [25] GLC2000 [25], [26], GlobCover 2005/2009
[27], [28] and MODIS Land Cover [27], [29], Land cover
datasets from University of Maryland and the World Land
Cover dataset from the USGS EROS Data Centres Global
Land Characteristics Database.
Furthermore, cropland class is frequently captured incon-

gruously in such products since it has a dynamic status
and due to the existence of diverse agro-systems, [27]. The
products do not correctly account for specificities of some
regions [30]. Waldner et al. [27] mentioned that cropland
class is typically portrayed according to a land cover typology
that focuses mainly on the natural vegetation types and is
habitually contained within mosaic or mixed classes, mak-
ing it difficult to use for agricultural applications (neither
as an agricultural mask, nor as a source of information for
crop-covered area). There are inevitable uncertainties when

1 https://developers.google.com/earth-engine/classification
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it comes to the croplands’ extents, locations and their total
areas extracted from the aforementioned land-use, land-cover
(LULC) products, mainly due to the coarse spatial resolution
of the map products.
Zhang and Roy [31] briefly underscored advantages of

utilizing existing LULC maps as a source of training data.
Wessels et al. [32] used land cover maps derived from 20 m
SPOT5 images (EKZNW land cover maps) as training and
validation datasets. Radoux et al. [33] developed an algorithm
that automatically extracted training sample from Global
Land Cover (GLC) 2000 map, Corine Land Cover (CLC)
map and GLC 2000 for global land cover mapping
using 300-m MERIS. Jia et al. [34] proposed an automatic
way to update a land-cover map from a 30 m resolution
(finer-resolution) global land-cover dataset initially produced
by Gong et al. [35]. This research is aimed at exploring
the automation of cropland mapping from MCD12Q1 LULC
dataset and since it contains annual land cover maps, cropland
changes can be determined.
Change detection analysis encompasses a wide assortment

of processes utilized to identify, describe and quantify differ-
ences in the state of an object or phenomenon by observing
it at different times but same location [10], [36]. It is vital
for the sustainable development of economy and environ-
ment [4]. It is crucial to comprehend and characterize the
dynamics occurring on croplands to assist in assessing food
security scenarios at different levels and times especially for
areas with food insecurity. Zimbabwe is considered to have a
fragile food and nutrition security situation at both household
and national levels for the past decade, mainly due to eco-
nomic challenges, poor rainfall and erratic weather patterns
resulting in reduced production of the main crops [37]–[39].
FAO once pointed out that the country as a whole lacks an
overarching comprehensive agriculture policy framework and
related sub-sectoral strategies [40]. This was due to the fact
that the existing policy implementation was not contribut-
ing significantly to improving the lives of the women and
small-scale farmers [41]. Recently, Zimbabwe’s Ministry of
Agriculture published a first draft of the nation’s agriculture
policy framework (2018-2030) [42]. Timely and accurate
information regarding cropland extent is crucial for applica-
tions in the sectors of food security, agricultural monitoring,
water management, modeling of land-use change and earth
systems [27], [43].
Zimbabwe currently lacks reliable data on the extent of the

re-allocated and new areas under cultivation [30]. In addition,
there are no spatially explicit cropland products avail-
able showing the spatial extent of cropland areas [44] for
Zimbabwe. The country suffers from inescapable cloud cover
problem especially during the crop growing season, hence
mapping cropland distribution and extent in a timely, accurate
and reliable way using optical satellite imagery with high to
medium spatial resolution is a challenging task. As a result,
further applications of the cropland maps such as change
detection on the cropland among others are encumbered.
This research is conducted in anticipation to prompt the

establishment of a National Cropland Data Layer based on
satellite remote sensing data and be part of an annual or
bi-annual cropland inventory that can be adopted by the
respective and relevant agriculture and policy making agen-
cies. The objectives of this research are to map cropland
through (i) automatic classification (ii) multi-classifier sys-
tem (MCS) and implementation of decision-level fusion
(iii) NDVI-BSI thresholding and to determine the spatiotem-
poral cropland changes by a post-classification area compar-
ison method.

II. STUDY AREA

Zimbabwe is a landlocked country situated in the south-
ern part of Africa, between Zambezi and Limpopo rivers
(FIGURE 1). It borders Mozambique to the east and north-
east, South Africa to the south, west and south-west is
Botswana and Zambia to the north-west. The country lies
between latitude 15.60◦ and 22.42◦ S and longitude 25.22◦

and 33.08◦ E. It covers an area of approximately 390 757 km2

and has a total population of almost 16 million as of 2018 and
a relatively high population growth rate of around 2.3% annu-
ally [45]. The agricultural production is lagging behind with
a growth rate of less than 1% annually [46]. This connotes a
deteriorating food security status quo for the country [46].

Zimbabwe has a tropical climate with different local dis-
parities and is reliant on the rains brought by Indian Ocean
monsoons (seasonal winds) [47], [48]. The climate follows
a bimodal rainfall pattern and generally experiences three
seasons notably: (i) a hot, wet summer commencing mid-
November to March (ii) a cold, dry winter season from
April to July (iii) a hot, dry spring season from August to
mid-November. The country’s highest rainfalls are usually
recorded in the Eastern Highlands, whereas the hottest tem-
peratures are experienced in the Zambezi valley.

Agriculture is the backbone of Zimbabwe’s economy and
underpins the economic, social and political lives of the
majority of the people of Zimbabwe [47]. Of the 39 million
hectares land cover of Zimbabwe, 33.3 million hectares were
considered to be arable farming land as noted in the 1980 gov-
ernment documentation [49]–[51]. Trade Economics defined
agricultural land as the share of land area that is arable, under
permanent crops and under permanent pastures [52]. Accord-
ing to World Bank, Zimbabwe’s agricultural land was about
16 200 000 Ha as of 2014 [52]. Although Zimbabwe is now
considered to have only 4.3 million hectares of arable land,
it is estimated that less than 3 million hectares are currently
under cultivation [41], [53].

III. MATERIALS AND METHODS

A. DATA

1) SATELLITE DATA

Due to the inescapable cloud cover problem, two satellite
sensor imageries are implemented for each of the years under
investigation. The satellite imagery hosted on GEE imple-
mented with corresponding date ranges and spatial resolution
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FIGURE 1. Study area Zimbabwe showing land tenure type and an inset showing location of Zimbabwe on the
African continent.

TABLE 1. Image collections ID implemented and their purpose.

are shown in TABLE 1. The peak of crop growing season in
Zimbabwe falls between January and March/April, hence the
choice of utilizing images captured in January, February and
March.
Mosaics are created after masking out clouds from each

image composite available using the median of the cloud-free
pixels.

2) ANCILLARY DATA

a: DIGITAL ELEVATION MODEL (DEM)

Shuttle Radar Topography Mission (SRTM) 30 m resolution
DEM is used to develop a slope map, and was downloaded

from http://explorer.usgs.gov/. SOTER slope classes [54] are
utilized as reference.

b: LAND USE SHAPEFILE

2010 Land use shapefile from Surveyor General (FIGURE 1),
Zimbabwe, is used to clip areas where agricultural activities
are expected to occur.

c: FOREST/NON-FOREST

Global PALSAR-2/PALSAR Forest/Non-Forest Map [55] for
the years 2007, 2013 and 2017 are implemented to mask out
forest areas. The raster layer is vectorized prior to masking
out.

3) TRAINING AND VALIDATION DATA

a: AVAILABLE LULC REFERENCE MAPS AND CROPLAND

DATA LAYERS

The U.S. Geological Survey (USGS) provides MODIS Land
Cover Type product (MCD12Q1.006) data that characterize
five global land cover classification systems at 500 m spatial
resolution. MCD12Q1.006 data is available annually from
2001 to 2016. LC_Type 2 data is used as a source of train-
ing and validation data for automated classification in GEE.
In GEE its image collection ID is MODIS/006/MCD12Q1.

An online cropland product derived by Xiong et al. [23]
also called the Global Food Security-support Analysis Data
at 30 m for the African Continent, Cropland Extent prod-
uct (GFSAD30AFCE) is distributed through NASA’s Land
Processes Distributed Active Archive Center (LP DAAC)
under the GFSAD30AFCE node on http://explorer.usgs.gov/
and/or can be found on https://croplands.org/app/map. The
GFSAD30AFCE achieved a weighted overall accuracy
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FIGURE 2. Generic flowchart of classification approaches implemented (a) automated classification (b) multi-classifier system (c) NDVI-BSI
threshold.

of 94% when it was assessed against UN FAO statistics [23].
The interactive map or layer providing 30 m spatial res-
olution global cropland layer was used to manually select
some samples used for training and validation purposes of
MCS/ensemble classification in addition to the Global Nav-
igation Satellite Systems (GNSS) collected samples. The
cropland and non-cropland samples were also used for val-
idation of NDVI-BSI threshold classification.
ESA’s Land Cover Climate Change Initiative (CCI-LC)

Climate Research Data Package (CRDP) contains 300 m
spatial resolution land cover map products (2001, 2007, 2013
and 2015) whose cropland classes are utilized for comparison
purposes with the cropland layers derived for 2001, 2007,
2013 and 2018 cropland layers respectively. The datasets are
available on https://www.esa-landcover-cci.org/.
SADC Land Cover Dataset was produced and pub-

lished by Environmentek, CSIR in 2002 in vector dig-
ital data format. The dataset was created at 1:250
000 scale from satellite imagery. It can be downloaded from
http://gsdi.geoportal.csir.co.za/projects.

4) LOCAL KNOWLEDGE, PREVIOUS RESEARCH AND

EXISTING LITERATURE

Some authors are relatively familiar withmost of the cropland
areas in Zimbabwe, their knowledge is also implemented
in selecting the samples utilized for this research. Nonethe-
less, the selected samples are verified using the google earth
images, GFSAD30AFCE interactive cropland layer and liter-
ature. The training and validation samples included samples
implemented in previous researches on Zimbabwe crop map-
ping including Useya and Chen [48], Chemura et al. [56] are
also adopted for this research.

Published articles including Hentze et al. [24],
Sibanda and Murwira [57], Maguranyanga et al. [58],
Makanza et al. [59], etc. are also adopted as reference
data used for training dataset. Websites containing crops
and croplands data utilized include http://zw.geoview.info,
http://www.greenfuel.co.zw/, https://www.tangandatea.com/,
https://www.bordertimbers.com/, etc.

5) GOOGLE EARTH

Samples obtained from the various sources are verified using
Google Earth (http://earth.google.com). ‘‘Google Earth con-
tains an increasingly comprehensive image coverage of the

globe at very high-resolution imagery (VHRI) 0.61–4 m

allowing the user to have zoom-in-views (ZIV) into specific

areas in great detail, from a base 30-m resolution data, based

on GeoCover 2000,’’ [60].

B. METHODOLOGY

This research is conducted in three parts as represented
by flowcharts in FIGURE 2. The figure illustrates (a) the
automated classification (b) MCS (c) logical combination of
NDVI-BSI threshold.

1) AUTOMATED CLASSIFICATION

Acquisition of reliable reference sample data from the
ground or aerial photographs at or near the time of satel-
lite overpass [61] can be a challenge which can also hin-
der automation of supervised classification techniques [31].
However, global LULC products can provide valuable infor-
mation though they may have limited land use classes [31].
This approach is aimed at automating supervised
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classification by utilizing MCD12Q1 product as the
reference dataset since the optimum training size and dis-
tribution is typically anonymous for large area classifica-
tion. MCD12Q1 provides annual land cover maps from
2001 to 2016, hence it is cost-effective and suitable for
automatic classification approach in GEE.
The collections of raw Landsat 5, 7 and 8 scenes within

the filtered date ranges (TABLE 1) are ‘‘computed to Land-
sat top of atmosphere (TOA) in GEE by applying standard

TOA calibration and then assigning a cloud score to

each pixel using the SimpleLandsatCloudScore algorithm.

Lowest possible range of cloud scores at each point are

selected and then compute per-band percentile values from

the accepted pixels. The algorithm also uses the Land-

satPathRowLimit algorithm to select only the least-cloudy

scenes in regions where more than maxDepth input scenes are

available,’’ GEE.2

Random forest (RF) algorithm with 10 trees is used
to downscale MODIS/006/MCD12Q1 to Landsat resolu-
tion. 1000 samples are randomly and automatically selected
from the resampled MODIS/006/MCD12Q1 LC_Type 2 for
the 10 classes namely; water, wetlands, croplands, urban,
crop mosaic, barren, forest, shrub, grass and savannah.
RF and classification and regression trees (CART) algorithms
are employed separately for the automated classification
approach. Cropland and crop mosaic classes are combined
and extracted from the classified image to represent the crop-
land for Zimbabwe to be used for further analysis. Output
croplands from the two Landsat sensors are aggregated into a
single seamless layer.

2) MULTI-CLASSIFIER SYSTEM (MCS)

Satellite remote sensing potentially offers unswerving,
timely resources that are expected to meet high scientific
standards [60], but the inescapable cloud problem jeopardizes
the quality of imagery provided. Endeavoring to improve
the cloud-free spatial coverage, multi-sensor images are
employed as data sources since their times of detecting and
measuring the radiation that is reflected or backscattered from
the target are different for each sensor. Therefore, the tempo-
ral resolution is increased indirectly hence maximizing on the
cloud-free scenes that can be captured to compensate portions
overwhelmed with clouds.
Various classifiers learn distribution patterns differ-

ently [48], multi-classifier system (MCS) and decision-level
fusion (FIGURE 3) are employed to improve the quality of
classified maps.
A good MCS must comprise classifiers which have

complementary capabilities [48], [62]–[64] and exploit
the redundant information [9]. The MCS comprises of
CART [65], [66], support vector machines (SVM) [67] and
RF [68] algorithms. 70% of the total randomly captured
samples are used to train the classifiers whereas 30% are used

2 https://developers.google.com/earth-engine/api_docs

FIGURE 3. Multi-classifier system schema.

for validation. 1500 samples are used for both training and
validation.

The classes discerned and their respective number of
samples are waterbody (100), forest (100), fallow (100),
bare (100), built-up (100), sugarcane (100), maize (75), cof-
fee/tea (75), tobacco (75), banana (75), sorghum/millet (75),
tomato (75), bean (75), groundnut (75), vegetable (75),
pine (75), orchard fruits (apple, orange, avocado and
macadamia nut) (75), and mixed (75).

Post-classification is performed to aggregate and mask
cropland layer comprising fallow, sugarcane, maize,
coffee/tea, tobacco, banana, sorghum/millet, tomato, bean,
groundnut, vegetable, pine, orchard fruits, and mixed classes.

3) ACCURACY ASSESSMENT

Accuracy assessment is an important part of any classifi-
cation project. It compares the classified image to another
data source that is considered to be accurate or ground truth
data. The evaluation can be performed in two forms namely
qualitative and quantitative.

a: QUALITATIVE EVALUATION: VISUAL ASSESSMENT

For the classified images from the three approaches, visual
evaluation is employed where each classified map is com-
pared visually with google earth image and cropland layers.
Some errors can be identified but the estimation of their sizes
is dependent on the map user or producer.

b: QUANTITATIVE EVALUATION: ERROR/CONFUSION

MATRIX

To quantitatively assess the accuracy of a classifier, an error
or confusion matrix is an effective, standard descriptive tool
implemented to organize and exhibit the thematic accuracy of
a classified map [69]. A random 30% of captured samples are
used for the accuracy assessment in ensemble classification
scenarios employed.
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4) RESAMPLING

Resampling refers to a process whereby new pixel values are
interpolated from existing values whenever the raster’s struc-
ture is modified during cell resizing operation [70]. Images
from different sensors need to be resampled such that the
registration is accurate to subpixel locations [71]. Classified
Sentinel-2 images are resampled to match spatial resolution
of Landsat classified images, i.e. from 20 meters per pixel
(mpp) to 30 mpp. The resampling process is implemented
in ArcMap using the nearest neighbor (NN) interpolation
algorithm aiming to minimize data integrity losses owing to
the cell resizing since such resampling can have significant
effects on the integrity of the data being compared [70].
NN is convenient because of its speed and ability to maintain
the integrity of categorical data [70].
Root Mean Square Error (RMSE) is computed and imple-

mented to assess the quality of the resampled dataset
using (1).

RMSE =

√

√

√

√

n
∑

i=1

[(X
′

i − Xi)2 +
(

Y
′

i − Yi
)2
]

n
(1)

where X′
i;Y

′
i are coordinates of Ground Control Point(s) on

resampled image, Xi;Yi are coordinates of Ground Control

Point(s) on reference image.

RMSE in the X coordinate = 0.001 m
RMSE in the Y coordinate = 0.013 m
Overall RMSE = 0.013 m

C. PLURALITY VOTING (DECISION-LEVEL FUSION)

Decision-level fusion merges the interpretations of differ-
ent objects obtained from different source of informa-
tion [64]. It is implemented in this paper to integrate the
ensemble classified maps since it does not require prior
knowledge about spectral configuration of the Landsat and
Sentinel-2 [48]. Mandanici & Bitelli [72] discussed how
Landsat 8 and Sentinel-2 can be integrated at pixel-level.
Where more than a single map are to be overlaid, plurality
voting [48], [73], [74] can be implemented to adopt the
class to be incorporated into the ultimate classified map
(FIGURE 3). This method is particularly successful when the
classifiers involved output binary votes.
‘‘Thus by considering three classifiers: {C1, C2, C3}.

Letting x be a new input example. If the three classifiers are

identical, then when C1(x) provides a wrong classification,

C2(x) and C3(x) will also provide erroneous results. If the

errors made by the three classifiers are uncorrelated, the case

might be that when C1(x) is wrong, C2(x) and C3(x) may be

correct. In such a case, the majority vote amongst the three

classifiers will correctly classify x.’’

Prior to the decision-level fusion, Sentinel-2 classi-
fied maps are resampled to 30 m spatial resolution and
co-registered. Integrated classification is eventually assessed
for its overall accuracy prior to post-classification change
detection analysis.

1) SPECTRAL INDICES ALGEBRAIC COMBINATION USING

NDVI AND BSI

Spectral indices enhance the spectral information and
increase the separability of the LULC classes of interest thus
enhancing the quality of the produced LULC map [75]. The
spectral indices methods can have advantage over conven-
tional multi-band spectral data classification. Both NDVI and
BSI are pixel-based methods, easy to implement, though they
require the user to determine at which threshold values are
most suitable.

a: NDVI THRESHOLD ANALYSIS

NDVI is a spectral index that quantifies vegetation by mea-
suring the difference between near-infrared (which vege-
tation strongly reflects) and red light (which vegetation
absorbs) [76]. NDVI analysis give a rough sense of the
photosynthetic activity within an area. NDVI values always
ranges from −1 to +1, but there is no distinctive bound-
ary for the different land cover types, actually, it depends
on the image at hand and study area. The general rule is
to test different threshold values and check image visually.
NDVI is calculated on a pixel-based method using (2) [77].

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(2)

where ρNIR is surface reflectance value of near-infrared band

and ρRed is surface reflectance value of red band.

NDVI values closer to +1 indicate dense vegetation, usu-
ally greener forests. On the other hand, low NDVI values
designate less or no vegetation. Soils tend to generate rather
small NDVI values approximately 0.1 – 0.2, negative NDVI
values reflect potential water bodies. Nevertheless, there are
some limitations such as sensitivity to soil and aerosols.

b: BARE SOIL INDEX (BSI) THRESHOLD ANALYSIS

BSI is a spectral index that enhances the identification of bare
soil areas and fallow lands [78] depending on the soil char-
acteristics. This index helps in separating the vegetation with
different background types either completely bare or sparse
canopy or dense canopy, etc. [79], [80]. As is the same
with all indices, there is no distinct boundary for each type
of land cover. Good human judgment, experience and prior
knowledge of the study are crucial in order to select the
best threshold values. BSI is calculated on a per-pixel basis
using (3) [77], [81].

Bare Soil Index =

[

(ρRed + ρSWIR) − (ρNIR + ρBlue)

(ρRed + ρSWIR) + ρNIR + ρBlue)

]

(3)

where ρNIR is surface reflectance value of near-infrared

band and ρRed is surface reflectance value of red band,

ρSWIR is surface reflectance value of shortwave-infrared

band and ρBlue is surface reflectance value of blue band.

BSI increases as the bare soil exposure degrees of ground
increase. Just like all other indices, not all surface soils
have same color, presence or lack of organics, period since
disturbance whether land clearing, wildfire, exposure due to
infertile or dry soils.
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2) SLOPE GENERATION

Downloaded 30 m spatial resolution SRTM DEM scenes are
projected to UTMZone 36S,WGS84Datum, thenmosaicked
and further manipulated to derive slope map in degrees.
The Slope tool calculates the maximum rate of change of
elevation [82] from each cell to its neighboring cells, thus the
tool fits a plane to the z-values of a 3 × 3 cell neighborhood
around the processing or center cell inArcGIS [83]. Basically,
the maximum change in elevation over the distance between
the cell and its eight neighbors identifies the steepest downhill
descent from the cell [83].

3) CONDITIONAL MODEL

Conditional model in ArcMap is employed to integrate
NDVI, BSI and slope maps. Raster calculator is the tool used
(as shown in FIGURE 2 (c)) to delineate vegetation condi-
tions and expose soil conditions. The following conditional
statements are implemented.

Con((‘‘NDVI’’ > 0.2) & (‘‘NDVI’’ < 0.85) & (‘‘BSI’’

> 6000) & (‘‘BSI’’ < 9000) & (Slope < 5◦), 1, 0) (4)

Croplands and fallow (pixels satisfying the conditions
in (4) are re-coded to value 1 whereas any other classes are
re-coded to value 0 and discarded. Land-use and non-forest
layers are used to mask out the final cropland layer. Vegeta-
tion and bare soil have a highly negative correlation [80], [84].
Vegetation density can be calculated from using vegetation
and bare soil indices as inputs [84].

D. CHANGE DETECTION ANALYSIS

Pre-classification and post-classification techniques are
implemented to assess the changes occurring on the crop-
lands. Each approach has its own pros and cons.

1) POST-CLASSIFICATION COMPARISON (CHANGE

DETECTION STATISTICS)

The change detection statistical analysis is an efficient way
of describing the changes observed [43] in the cropland class.
The analysis chiefly focuses on the initial state classification
changes to determine class-for-class image difference. The
estimated cropland area or percentage statistics are derived
from classified maps between successive years under inves-
tigation. The class changes are represented as percentages
using (5). Positive change reflects an increase, whereas neg-
ative change depicts a decrease.

(final state− initial state)

initial state
× 100% (5)

IV. RESULTS

A. DESCRIPTIONS OF WHAT CONSTITUTES CROPLAND

TABLE 2 illustrates the description of what constitutes
cropland class from ESA LC, this research, MCD12Q1,
GFSAD30AFCE and SADC LC. Having a precise and clear
definition of what is being mapped is vital prior to com-
mencement of effective mapping. Endeavoring to minimize

TABLE 2. Definitions of cropland.

the cropland definition challenges, the common understand-
ing from the definitions provided in TABLE 2 is that the
standard definitionmust be compatible and relevant to remote
sensing and in situ observations which incorporate as much
of the diversity found within global agricultural systems as
possible [85].

B. CLASSIFICATION OVERALL ACCURACIES

Accuracy assessment of LULC maps constructed from
remotely sensed data is crucial since it avails the data quality
information to map users [69]. Various accuracy statistics can
be computed from a confusion matrix. Nonetheless, there
is no general consensus that has been reached on which
measures are appropriate for a given objective of accuracy
assessment, although the kappa statistic seems to be generally
favored [69]. This research employs error matrices to deter-
mine both overall accuracies (OA) and kappa coefficients
(KC) of classified maps. KC cogitates the whole error matrix
instead of the diagonal elements as is the case with overall
accuracy [48], [69].

Automated classification used MCD12Q1.006 as a source
of training and validation data. The OA and KC for respective
classifiers and satellite imagery are presented in TABLE 3.
However, random forest produced relatively lower KC with
respect to OA compared to CART algorithm. The KC are
at odds with OA, there are discrepancies between the
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TABLE 3. Classification accuracy of automated classification procedure. 1000 samples split into 70% training and 30% validation are used for 10 classes
namely: water, wetlands, croplands, urban, crop mosaic, barren, forest, shrub, grass and savannah.

TABLE 4. Ensemble classification overall accuracies and fused product accuracy. A total of 1500 samples split into 70% training and 30% validation are
used for 18 classes namely: waterbody, forest, fallow, bare, built-up, sugarcane, maize, coffee/tea, tobacco, banana, sorghum/millet, tomato, bean,
groundnut, vegetable, pine, orchard fruits(apple, orange, avocado and macadamia nut), and mixed.

two measurements. Probably one main reason why there is
such a large difference between kappa and overall accuracy
is that one of the discerned classes accounts for the large
majority of the map. Kappa coefficient is a supplementary
measure to overall accuracy, and at times, both are highly
correlated, such that reporting kappa is redundant with overall
accuracy. There is no direct relationship between KC and
overall accuracy as they increase, and it depends on the
marginal proportions [86]. The KC are sensitive to sample
size [87]. Rossiter [86] highlighted that kappa statistics at
times maybe difficult to explain to map users.
CART classified maps are adopted for further analysis and

the RF classified images are disregarded.

C. ENSEMBLE CLASSIFICATION RESULTS

MCS consisting of CART, SVM and RF are implemented
together with 1500 randomly selected samples split into
70% training and 30% validation, and their OAs and respec-
tive KC are presented in TABLE 4. Eventually, the plurality
voting method is used to fuse the classified maps. On all
cases, the fused seamless map produced higher OAs andKCs.
In 2001, Landsat 7 imagery produced better overall clas-

sification accuracy for all the classifiers than Landsat 5.
Compared to 2007 classification accuracies, Landsat 5 per-
formed better than Landsat 7. This is probably due to the
reduce quality of image because of failure of Scan Line
Corrector (SLC) which compensates for the forward motion
of Landsat 7 that occurred since the 31st of May, 2003.
For 2013, Landsat 8 performed better than Landsat 7, whereas
in 2018, Landsat 8 performed better than Sentinel-2. The
quality of Sentinel-2 imagery is severely affected by clouds.
However, the fused seamless classified images produced

higher overall accuracy than the ensemble classifiers for all
the years. Useya & Chen [48] research also found that ensem-
ble classifiers produce better overall classification accuracies,
and the same has been proved by this research.

D. RELATIONSHIP BETWEEN NDVI AND BSI

2-D scatterplots are applied to interactively examine the
structure of the data contained by NDVI and BSI bands. Upon
plottingNDVI against BSI, the 2-band clusters relate to image
properties (the land use classes), an inverse relationship can
be apprehended. FIGURE 4 shows the 2013 2-D scatterplot of
all pixels in the image. The 2-D scatterplots represent only the
data in the main window, therefore different land-use classes
produce a different scatterplot. For this research, very dense
vegetation (forests) have relatively low BSI values and very
high NDVI values. Waterbodies correspond to both lowest
NDVI and BSI. Cropland lies between NDVI range 0.2 – 0.82
and BSI range 6000 – 9000. When combined with slope data,
areas corresponding to slope less than 5◦ are most likely to
be cropland.

E. VISUAL ASSESSMENT AND COMPARISON

Validation of the cropland maps synthesized through the
approaches aforementioned is further aided by expert visual
assessment with support of high-resolution images avail-
able on ESRI world imagery. Some locations are randomly
selected and analyzed visually.

FIGURE 5(a), (b) and (d) depict Chisumbanje sugar-
cane estate as represented by the classified maps from
the three approaches implemented and FIGURE 5(e) is
GFSAD30AFCE cropland layer representing same site.
FIGURE 5(a) shows under-representation by the automated
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FIGURE 4. Screen shots when choosing the optimal threshold values for NDVI-BSI approach.

FIGURE 5. Chisumbanje sugarcane estate as presented by (a) automated classification approach (b) MCS approach (d) NDVI-BSI
approach (e) GFSAD30AFCE cropland layer (f) ESRI world imagery. (c) is an inset of Zimbabwe showing the location of Chisumbanje
Estate.

classification technique whereas FIGURE 5(e) reveals some
over-representation by the GFSAD30AFCE cropland layer.
Agricultural field parcels of a different land tenure type sur-
round the sugarcane estate. The field patches are relatively
small, hence are not distinctively classified. Nonetheless,
the multi-classifier system shows better representation of the
three classification techniques.
FIGURE 6 (a), (b) and (d) shows a fallow area as rep-

resented by the classified maps from the three approaches
employed. The automated classification under-estimates the
fallow area (FIGURE 6(a)). NDVI-BSI threshold technique
(FIGURE 6 (b)) represents fairly better than the ensemble
classification method (FIGURE 6 (d)) since it captures well
the stream near middle of FIGURE 6(f). GFSAD30AFCE
cropland layer over-estimates the fallow area (FIGURE 6 (e)).

From the visual assessment, MCS produced better results
than NDVI-BSI thresholding approach. Automated classifi-
cation severely under-estimated the cropland.

F. CROPLAND AREA COMPARISON

FIGURE 7 depicts cropland areal comparison between the
methods explored. Automated classification method that uti-
lized MCD12Q1.006 layer recorded the lowest cropland
areas of the three approaches employed for the four years
under investigation. The observed cropland area ranged from
3017617.92 to 4221719.52 Ha.

MCS cropland area ranges from 9 763 951 Ha to
10 793 606 Ha whereas the NDVI-BSI thresholding approach
measured cropland areas ranges from 9 223 020 Ha to
10 482 323 Ha. The 2015 Zimbabwean cropland from the
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FIGURE 6. Fallow area as presented by (a) automated classification approach (b) MCS approach (d) NDVI-BSI approach (e) GFSAD30AFCE
cropland layer (f) ESRI world imagery. (c) is an inset of Zimbabwe showing the location of fallow area.

FIGURE 7. Total extracted cropland areas.

GFSAD30AFCE Cropland layer had a total area of 10 691
861.67 hectares, whereas SADC LC, cropland class had
approximately 10 865 641.130 Ha in 2002.
Compared to the extracted values from the three classi-

fication methods implemented, the two cropland layers are
matching closer with areas extracted from the ensemble and
NDVI-BSI threshold approaches.
According to Trade Economics [52], agricultural land in

Zimbabwe occupies almost 16 320 000 Ha, but arable land
is estimated to be 10.34% of total Zimbabwe land area i.e.
about 4 300 000 Ha. Zimbabwe’s ministry of Agriculture,
Mechanization and Irrigation Development [88], [89] keeps
records on crop planted areas from crop censuses which are

conducted yearly. The total planted areas are also included
in FIGURE 7. The remote sensing extracted values are much
higher than those in the ministry’s records though the cen-
suses do not necessarily include plantations and minor crops.

ESA LC cropland layer recorded cropland areas of approx-
imately 8 301 789 Ha in 2001, 8 425 152 Ha in 2007,
8 433 198 Ha in 2013 and 8 465 283 Ha in 2015. These areas
are less than areas from GFSAD30AFCE 2015’s cropland
layer and SADC’s LC.

From the cropland areas comparison both MCS and
NDVI-BSI approaches have comparable results though
NDVI-BSI values are lower than MCS.

G. CHOOSING BEST APPROACH

The automatic classification approach despite having the best
classification accuracies, the visual assessment and the areal
comparison show under-representation of cropland areas.
Overall accuracies for MCS and NDVI-BSI for 2013 are
80.54% and 79.32% respectively and for 2018 are 87.90%
and 88.56% respectively. Their visual assessment results are
comparable, hence both methods have their own pros and
cons depending on the selected location. For cropland areal
comparison, MCS produced higher areas than NDVI-BSI
logical combinations thresholding approach.

In addition, FIGURE 8 shows the relationship between the
extracted cropland areas for the 10 provinces in Zimbabwe
from the MCS and NDVI-BSI thresholding approaches
for 2013 and 2018. The strongest relationship is between
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FIGURE 8. Relationship between ensemble classification and NDVI-BSI for years (a) 2013 (b) 2018.

FIGURE 9. NDVI-BSI threshold cropland distribution maps for 2001, 2007, 2013 and 2018.

2018 croplands areas with a coefficient of determination (R2)
of 0.9619. 2013 extracted areas have an R2 = 0.8404.
It is crucial to determine whether the relationships between

croplands’ areas extracted are statistically significant. F-test
is performed on the croplands’ areas for 2013 and 2018 and
we obtained p-values of 0.7801 and 0.8725 respectively. The
achieved p-values are both greater than 0.05, therefore the
variables are not statistically significant. The linear regression
models are statistically suitable to represent croplands from
both MCS and NDVI-BSI at national-level.

FIGURE 9 shows final seamless cropland maps for
2001, 2007, 2013, and 2018 from NDVI-BSI thresholding
approach.

H. STATISTICAL CHANGE DETECTION

TABLE 5, TABLE 6 and TABLE 7 present the statistical
thematic change dynamics results from post classification
using MCS approach for years under investigation respec-
tively, where initial state classes are the column data and the
final state classes are the row data. Row for image difference
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TABLE 5. Statistics of percentage changes that occurred since
2001 to 2007.

TABLE 6. Statistical percentage changes that occurred between
2007 and 2013.

depicts the direction of change that is, positive values show
increase and negative values show decrease in land use class.
TABLE 5 reveals that from 2001 to 2007, 3.05% of the for-

est transitioned to cropland, whereas 2.60% changed to built-
up area. Of the cropland class, 96.25% remained unchanged,
whereas 1.20% and 1.60% of cropland class were converted
to forest and built-up respectively. Of the bare class 2.81%
transitioned to forest, 3.75% changed to cropland and 3.02%
became built-up.
TABLE 6 shows that from 2007 to 2013, 6.75% of the

forest changed to cropland, whereas 2.88% changed to built-
up area. Of the cropland class, 96.50% remained unaltered,
whereas 1.30% and 1.02% of cropland class were con-
verted to forest and built-up respectively. Of the bare class,
0.94% transitioned to forest, 1.59% changed to cropland and
1.03% became built-up.
Table 8 reveals that from 2016 to 2018, 8.40% of the

forest became cropland, whereas 0.60% changed to built-up
area. Of the cropland class, 97.42% remained unchanged,
whereas 0.92% and 1.48% of cropland class were converted
to forest and built-up respectively. Of the bare class, 0.80%
transitioned to forest, 1.05% changed to cropland and 0.93%
became built-up.
FIGURE 10 is a sankey diagram illustrating the gross

gains or losses information contained in TABLE 5,
TABLE 6 and TABLE 7 between or amongst land classes.
The transitional changes that have occurred since 2001 until

TABLE 7. Statistical percentage changes that occurred from 2013 to 2018.

2018 show the dynamic behavior of land use classes. Percent-
age values on both sides indicate land use type to Zimbabwe’s
total surface area.

V. DISCUSSION

This paper is aimed at producing cropland maps from high-
moderate spatial resolution imagery and determining the
changes that occurred since 2001 till 2018. Three approaches
are employed namely (i) automated classification using
MCD12Q1.006 as a source of training and validation data
(ii) ensemble classification using randomly selected training
and validation samples (iii) NDVI-BSI thresholding. There
are uncertainties in the mapping of croplands as observed
by the three methods not agreeing on the cropland extents
and total areas extracted. Visual inspection analysis is imple-
mented and it is observed that automated classification
method under-estimated the croplands extent compared to the
other two methods.

A. MAPPING CROPLANDS

From the cropland maps produced (FIGURE 9), small-
holder farming is the most prevalent form of agriculture
in Zimbabwe, classification and mapping of the heteroge-
neous small-scale croplands is possible using the aforemen-
tioned implemented approaches. However, there are some
limitations associated with each approach. From the visual
analysis, the automated classification methodology gener-
ally underestimated the locations visually explored. This is
due to the quality of the source of training and validation
data. However, there are uncertainties associated with the
land cover labels of annual land cover maps highlighted by
the producers. Reference data is critical when performing
classification, hence this approach accentuates the necessity
to create reliable local, nationwide land use inventory to pro-
mote automated classification techniques. Nonetheless, this
methodology for generating cropland is automatic, consistent
and repeatable.

Fritz et al. [90] and Hentze et al. [24] implemented
RMSE to compare FAO’s agricultural statistics with crop-
land areas from GLC-2000 minimum, GLC-2000 maxi-
mum, SAGE, MODIS minimum and MODIS maximum.
16 countries; Botswana, Burkina Faso, Central African Rep.,
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FIGURE 10. Sankey diagram showing the land use transitions from 2001 - 2007 - 2013 - 2013 - 2018 in Zimbabwe. Target node’s color is used by the
flow links between parallel columns. Class changes between successive nodes are indicated by the width of the link between the parallel columns.
Percentage values on both sides indicate land use type to total area.

Chad, Eritrea, Gambia, Lesotho, Mali, Mauritania, Morocco,
Namibia, Rwanda, Senegal, Somalia, Togo, and Zimbabwe
were considered. The inevitable difference is due to the
diverse methodologies and reference data utilized to derive
the products. Reference data can be out-of-date or unreliable.
Selection and interpretation of the global LULC products

need careful and comprehensive appraisal prior to use. The
same observation pattern is revealed in this research. Spatially
accurate crop mapping over large areas remains a bottleneck
especially when implementing remote sensing.
Authors are recommending implementation of other spec-

tral indices that can assist to promote automated cropland
mapping. More exploration and exploitation of NDVI-BSI
technique is recommended.

B. CHANGE DETECTION

Changes of cropland areas show a general increase
(Tables 5, 6, and 7). Since the year 2000 there have been
major changes in the agrarian economy of Zimbabwe due to
the launch of the ‘‘Fast track land reform’’ programme which
resulted in significant backward shifts in agricultural produc-
tivity [24], [91]. The agricultural land was redistributed to the
black majority [39], [92], and this resulted in the existence of
a lot of smallholder farmers. The annual population growth
of 2.3% may explain the increase in cropland. The bigger the
population the more food required to feed the growing popu-
lation. Also in 2016/2017 farming season, the government of
Zimbabwe re-introduced the ‘‘command agriculture’’ scheme
where farmers were provide with farming inputs [93] hence
explaining a further increase in the croplands in 2018.

C. CLIMATE DATA

Climate data was collected from Climate Change Knowl-
edge Portal. FIGURE 11 shows average annual precipi-
tation and temperature from 2000/2001 agriculture season
to 2014/2015 season. 2000/2001 season recorded the high-
est annual precipitation and least mean annual temperature
2004/2005 season recorded the least annual precipitation and
highest mean annual temperature.

In 2001/2002 agriculture season, most parts of southern
Africa experienced a drought [49]. Zimbabwe experienced
severe droughts during the 2005/2006 and 2009/2010 agricul-
tural seasons, and the 2007/2008 season was the worst [94].
In February of 2016, Zimbabwe declared a ’state of disaster’
due to drought worsened by the El Niñoweather phenomenon
which affected South Africa, Malawi and Zambia as well
as Zimbabwe [95] and the same sentiments were expressed
by Chisango [91] that the 2015/2016 season suffered a dev-
astating drought.

However, during the 2016/2017 farming season, Zim-
babwean government re-introduced the command agricul-
ture scheme [48], [91], which can probably explain a
rise in the cropland as show by TABLE 7. From the
drought information, we can conclude that the planted areas
information recorded by the ministry is definitely not the
maximum potential for Zimbabwean farmers. There are
many fallow areas being under-utilized, no crops are being
grown.

There is a general increase in cropland area regardless the
prolonged drought. Population increase and human activities
are the main causes of cropland changes.
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FIGURE 11. Average annual precipitation and temperature of Zimbabwe.

However, we recommend the implementation of cellular
automata approach and agent-based simulation modeling to
simulate the possible various changes happening on crop-
lands since they have the capacity to include various variables
that can better reflect and assist with forecasting.

D. WAY FORWARD

Performance of the NDVI-BSI thresholding approach
is generally comparable with the performance of the
MCS approach. The main disadvantage of MCS is that it
requires good training and validation datasets, which in-turn
is not a prerequisite for NDVI-BSI. The collection of training
data can be cumbersome if not impossible or expensive.
The NDVI-BSI approach can easily be automated over

time, once long-term evaluation is carried out, it allows syn-
thesizing of relatively accurate and cheap cropland maps.
Long-term cropland inventories can support detection and
improve understanding of cropland changes.
Such automated accurate cropland mapping can be pro-

duced in GEE, a cloud-based geospatial processing platform.
Reproduction of cropland maps can be done at any time,
and the cost of production is very low. Monitoring of crop-
land areas can be promoted when NDVI-BSI thresholding
approach is applied since the method is robust, consistent and
repeatable.

VI. CONCLUSIONS

The objectives of this research are to map cropland by
implementing (i) automatic classification (ii) ensemble
classification and implementation of decision-level fusion
(iii) NDVI-BSI thresholding and to determine the spatio-
temporal cropland changes. Observations reveal that MCS
and NDVI-BSI approaches performed better than auto-
matic classification method, though there are inevitable
uncertainties in the mapping of croplands. Cropland areas

extracted from MCS and NDVI-BSI techniques are cor-
related with coefficient of determination of 0.8404 and
0.9619 for 2013 and 2018 respectively. MCS cropland areas
are adopted for change detection since the extracted cropland
areas are closer to the areas from SADC LC product and
GFSAD30AFCE Cropland layer.

The automatic classification approach under-estimated the
cropland extent despite having the highest overall classifica-
tion accuracies. Automatic classification is implemented in
Google Earth Engine and utilizes MCD12Q1.006 as a source
of training and validation data. Random forest classification
produced odd kappa coefficients with respect to the overall
classification accuracies, hence CART classification results
are adopted for further analysis.

Multi-classifier system comprising random forest, support
vector machine and CART algorithms is employed. The
ensemble classification utilizes randomly collected samples
from other projects as training and validation data. Plurality
voting method is applied to integrate individual classified
maps. The decision-level fused map produced higher overall
accuracies than individual classifiers.

NDVI-BSI obtained overall classification of 79.32% and
88.56% for 2013 and 2018 respectively. Visual inspection
produced better representation than the MCS approach.

An average area of 10 346 778 Ha of cropland was
determined. Whereas, NDVI-BSI thresholding technique
produced an average of 9 788 833 Ha cropland area.
SADC LC product’s cropland layer of 2002 had an average
of 10 865 641.130 Ha, whereas 2015 GFSAD30AFCE Crop-
land layer has a total area of 10 691 861.67 Ha.

From the post-classification change detection results,
there is a general increase in cropland despite the pro-
longed drought experienced in the country. This crop-
land increase is due to human activities and population
growth.
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However, we recommend further analysis of the NDVI-
BSI thresholding technique since it has more advantages than
the MCS approach. These advantages include no need for
prerequisite training datasets, the ability to automate easily
and finally yet importantly, its robustness and rapidness in
execution.
We also recommend simulation of cropland area changes

using cellular automata and/or agent-based models to help to
understand in detail the changes happening on croplands and
forecast future changes.
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