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Abstract 14 
Automated phenotyping technologies are capable of providing continuous and precise 15 
measurements of traits that are key to today’s crop research, breeding and agronomic 16 
practices. In additional to monitoring developmental changes, high-frequency and 17 
high-precision phenotypic analysis can enable both accurate delineation of the 18 
genotype-to-phenotype pathway and the identification of genetic variation influencing 19 
environmental adaptation and yield potential. Here, we present an automated and 20 
scalable field phenotyping platform called CropQuant, designed for easy and cost-21 
effective deployment in different environments. To manage infield experiments and 22 
crop-climate data collection, we have also developed a web-based control system 23 
called CropMonitor to provide a unified graphical user interface (GUI) to enable real-24 
time interactions between users and their experiments. Furthermore, we established a 25 
high-throughput trait analysis pipeline for phenotypic analyses so that lightweight 26 
machine-learning modelling can be executed on CropQuant workstations to study the 27 
dynamic interactions between genotypes (G), phenotypes (P), and environmental 28 
factors (E). We have used these technologies since 2015 and reported results 29 
generated in 2015 and 2016 field experiments, including developmental profiles of 30 
five wheat genotypes, performance-related traits analyses, and new biological insights 31 
emerged from the application of the CropQuant platform.  32 
 33 
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Introduction 34 
The great American wheat breeder and agricultural innovator Orville Vogel once 35 
stated, the plant we are looking for is in our plots, but we have to be there when it is. 36 
In order to select varieties with greater yield potential and enhanced environmental 37 
adaptation, agricultural practitioners, including breeders, farmers and crop researchers, 38 
have been optimising trait combination since the beginning of agriculture1,2. Four 39 
decades after temporary success in ensuring global food security3, we are now facing 40 
an even bigger challenge to feed generations to come4. Due to a narrowing range of 41 
available genetic diversity of modern crop germplasm collections5 and increased 42 
fluctuations in growing conditions6, there is increasing emphasis placed on exploiting 43 
new sources of genetic variation to enhance environmental adaptation and sustainable 44 
yield in crop landraces and wild relatives7. To identify and assess these types of traits, 45 
multiple regular measures of crop growth and development are required to quantify 46 
subtle and dynamic phenotypes from many plots in different growing environments, 47 
demanding new screening technologies to integrate field environmental datasets with 48 
multi-scale phenotypic analyses to understand genotype-by-environment interactions 49 
(GxE) and associate them to genetic variation8–10.  50 
 51 
   In contrast to current field phenotyping methodologies, which are still involving 52 
laborious manual scoring and relatively subjective selection, modern genetic and 53 
genomics techniques are being rapidly deployed in breeding and crop research to 54 
identify and utilise traits such as improved stress tolerance and disease resistance11. 55 
For example, quantitative trait locus (QTL) analysis and genome-wide association 56 
studies (GWAS) are used to identify loci12, whole genome sequencing used to reveal 57 
gene content and genetic variation13, and marker-assisted selection (MAS) and 58 
genomic selection used to breed new lines with favourable alleles14,15. Therefore, field 59 
phenotyping and the integration of environmental data with meaningful phenotypic 60 
analyses are a key bottleneck that limits the potential of recent advances in crop 61 
genetic and genomic technologies16,17.  62 
 63 
   Remote sensing platforms18 and open image-based analytics software libraries19 64 
start to enable researchers, breeders and agronomists to develop new approaches to 65 
understand and improve crop performance. For instance, unmanned aerial vehicles 66 
(UAVs) and light aircraft are being used to study crop performance and field 67 
variability20,21. Satellite imaging22–24 and ground-based portable devices25,26 have been 68 
applied to take snapshots of crop growth to estimate yield-related traits using canopy 69 
photosynthesis rate and normalised difference vegetation indices (NDVI). Field-based 70 
agricultural vehicles have been developed to capture physiological and developmental 71 
traits during the growing season18,27. Finally, large imaging platforms equipped with 72 
3D laser scanners (e.g. near-infrared laser lines and Light Detection and Ranging, 73 
LiDAR) and multi- or hyper-spectral sensors are applied to automate crop monitoring 74 
of a fixed number of pots or plots, either in the field28,29 or in greenhouses12,30. 75 
Although these advances are making important contributions to the research domain, 76 
there are limitations and challenges associated with their usage such as high costs, 77 
restricted mobility and scalability, limited frequency of screening, and inadequate 78 
software tools for phenotypic analyses31,32. In particular, while satellite imagery and 79 
UAVs are capable of screening tens of thousands of plots at multiple locations, their 80 
applications are subject to civil aviation rules, low spatial resolution and bad weather 81 
conditions such as heavy rainfall, strong wind and cloud coverage. Ground-based 82 
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portable devices and vehicles have shown greater mobility and high-resolution field 83 
data between multiple sites; however, they require experienced specialists to operate, 84 
limiting their applications to infrequent phenotyping. Still, stationary large imaging 85 
platforms are providing key data on dynamic crop growth and GxE interactions; but 86 
their scale of operation is restricted and they are relatively expensive for less well-87 
funded research laboratories to access. Furthermore, they mostly rely on proprietary 88 
analytics software for data management and trait analysis, requiring ongoing licensing 89 
maintenance to use software products and extra fees if tailored functions are needed. 90 
For these reasons, it is challenging for researchers and breeding communities to adopt 91 
new phenotyping approaches due to their expenses, lack of suitable software, limited 92 
scope of operation and maintenance costs33. The ability to facilitate crop improvement 93 
programmes at multiple scales and locations is still limited.  94 
 95 
   To enable the next-generation breeding and associated crop research34, affordable 96 
field phenotyping technologies need to be developed. New methods should exploit 97 
up-to-date remote sensing technologies together with state-of-the-art computer vision 98 
and software solutions, to equip researchers with diverse tools for multi-scale field 99 
phenotyping needs. The work described here aims to address these challenges by the 100 
development of an automated field phenotyping platform called CropQuant, which 101 
integrates cost-effective hardware with open source software capable of complex 102 
analytic solutions. We demonstrate applications of CropQuant (CQ) through multiple 103 
growth phenotypes measurements based on defined wheat genotypes over two 104 
growing seasons. Dynamic predictive growth models were also created to forecast the 105 
performance of wheat genotypes under varied environment conditions.   106 
 107 

Materials and Methods 108 

An open and low-cost hardware design  109 
In order to carry out automated phenotyping, we have deployed many low-cost crop 110 
monitoring CQ workstations (terminals) operating jointly via a preinstalled or self-111 
operating infield wireless network. Figure 1 shows the system architecture of the CQ 112 
platform. A terminal is centred around a simple single-board computer (Fig. 1a), 113 
running a customised Python-based analytic software package on the Linux Debian 114 
operating system (OS), integrating Pi or USB camera sensors (e.g. red-green-blue 115 
(RGB) or no infrared filter, NoIR), climate sensors (ambient and soil-based), sensor 116 
circuit boards, with wired or wireless data communications (Figs 1b&c). The design 117 
of the CQ platform is driven by the concept of Internet of Things (IoT)35,36 as well as 118 
how to utilise hardware and software resources that are widely available, so that crop 119 
phenotyping solution can be scalable and affordable for the communities.  120 
 121 
   We have used these technologies in field experiments since 2015. Figure 2 shows 122 
an experimental scale of how CQ workstations were deployed for onsite and offsite 123 
wheat assessment experiments in 2015 and 2016. To keep costs low so that the 124 
technology can be adopted by the communities easily, we have developed different 125 
CQ versions (Figs 2a-d). For example, an all-in-one CQ (Fig. 2a) uses a Raspberry Pi 126 
2 single-board computer to control internal hardware (Figs 2b), including (1) a Pi 127 
camera sensor for time-lapse crop photography, (2) a tailored circuit board (Fig. 2c) 128 
to integrate climate sensors for collecting environmental data (i.e. soil temperature 129 
and moisture, ambient temperature and humidity, and light levels), (3) a USB WiFi 130 
dongle (or a radio transmitter) for data transfer and remote interactions, and (4) a USB 131 
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flash drive for local data storage. Supplementary Figure 1 demonstrates how an all-132 
in-one CQ was used in field experiments. 133 
 134 
   Besides the relatively costly all-in-one version ($230-$240 to build), other more 135 
specialised versions (Fig. 2d) were much cheaper to produce. For example, a business 136 
card size CQ (version 4, $80-90) uses a Pi Zero computer and is tailored for crop 137 
photography. A version 2 CQ (Fig. 2b, $170-180) can mount different sensor groups 138 
(ambient or soil-based) for assessing agronomic characterisation and crop adaptation. 139 
With hardware modularity in mind, we have tested a range of single-board computers 140 
(e.g. the Raspberry Pi series, Intel’s Galileo and Edison) for performing simple infield 141 
image analysis as well as integrating modular components. Although we finally chose 142 
Pi computers due to its performance-to-price ratio and extensive community support, 143 
the platform can operate on other single-board computers, if Pi computers are not 144 
available. For the peripheral hardware, we used off-the-shelf weatherproof containers 145 
(IP67 rating) together with micro-USB and Ethernet couplers (IP66 rating) to ensure 146 
environmental endurance and outdoor deployment. Supplementary Figure 2 shows 147 
the hardware design of a version 2 CQ. A full hardware list and a construction manual 148 
are included in Supplementary Note 1.  149 
 150 

Offsite self-operating mode 151 
   Figure 2e demonstrates an offsite field experiment using the CQ platform in 2015, 152 
where 10 field workstations were deployed to monitor canopy development (Movie 1) 153 
and crop growth (Movie 2) on one-metre wheat plots. CQ devices were powered by 154 
lead acid batteries with trickle charging from solar panels. To operate the device with 155 
minimal energy requirements, we have implemented a headless access mode to carry 156 
out wired data transfer. Besides the programmed imaging task, the system was only 157 
wakened if an Ethernet connection (i.e. local area network, LAN) was established. 158 
Offsite CQs were self-operating and used to perform image-based phenotyping. The 159 
infield imaging script running on CQs can be seen in Supplementary Note 2.  160 
 161 

Onsite networking mode 162 
For onsite experiments (Fig. 2f), CQs were powered by 5V/2A power supplies and 163 
connected to a field WiFi network. There were 14 networked CQ terminals (21 at 164 
peak time, with two dedicated for tiller abortion studies) jointly operating in 2016, 165 
monitoring 12 six-metre wheat plots to study performance-related traits and yield 166 
production. Although not thoroughly tested, for pre-installed WiFi network, the scale 167 
of the CQ platform can be increased by adding more standard routers to allow more 168 
CQ connections. We have added new functions to networked CQs including wireless 169 
control, programmable imaging, and on-board quality control (Online Methods). For 170 
instance, end-users can access CQ workstations remotely for real-time inspection, 171 
either using a portable device (e.g. a tablet or a smartphone) in the field or an onsite 172 
office computer (Fig. 2g and Supplementary Fig. 3). They can check the field in 173 
different regions to: (1) review historical crop images, (2) initiate new experiments, 174 
and (3) transfer crop-climate data to external computing storage.  175 
 176 
   These monitoring activities are administered by our web-based control system, 177 
CropMonitor (Figs 2h-j and Supplementary Fig. 4), where the status of each CQ 178 
terminal is updated constantly with information such as online or offline status, 179 
operational mode (e.g. green for operating, amber for idle, and red for operation error 180 
or ending tasks), representative daily images, micro-environment readings, and the 181 
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usage of computing resources (i.e. CPU and memory). Furthermore, the CropMonitor 182 
system can support a range of tasks. For example, when deploying CQs in the field, 183 
CropMonitor can activate live streaming between a CQ terminal and a smart device 184 
(e.g. a smartphone or a tablet) to enable the calibration and installation of CQ devices 185 
(Supplementary Fig. 5). During the experiment, the CropMonitor system can 186 
establish a mesh network (based on all-in-one CQs) to support data communications 187 
between the field and external servers (Online Methods and Supplementary Note 3). 188 
Users can reposition CQ terminals at any time to change or initiate new monitoring 189 
tasks. Notably, the IoT-style setting can improve the mobility of the CQ platform. For 190 
example, Supplementary Figure 6 shows a speed breeding experiment37 monitored 191 
by CQs over a 75-day period in 2017, which was accomplished by moving CQs to 192 
indoor, i.e. a growth chamber (the speed breeding condition) and a glasshouse (the 193 
control condition).  194 
 195 
   To increase the scalability of the phenotyping platform, we recently developed a 196 
mesh network system to connect infield terminals with or without any pre-installed 197 
network infrastructure. Supplementary Figure 7 illustrates the network topology, 198 
where all-in-one CQs are operating jointly as backbone routers (i.e. cluster servers), 199 
running both dynamic host configuration protocol (DHCP) and virtual network 200 
computing (VNC) servers for networking. Cheaper CQs (versions 2-4) are connected 201 
to the routers as terminals (i.e. end devices). Depending on the number of routers and 202 
the coverage of WiFi dongles (25-30 metres) or radio transmitters (several hundred 203 
metres), the field mesh network can be expanded or downsized flexibly. We dedicate 204 
an all-in-one CQ as a coordinator to control data communications between terminals 205 
and external networks. Meanwhile, computing tasks such as image selection, quality 206 
control and initial data annotation are distributed to terminals to reduce computational 207 
burden of the in-depth trait analysis (Supplementary Note 4).  208 
 209 
   Additionally, to verify the outputs of low-cost remote sensors integrated in CQs, we 210 
have utilised the meteorological outputs of a commercial weather station (Figs 2k&l), 211 
including temperature, rainfall, photosynthetically active solar radiation, wind speed 212 
and relative humidity. Phenotypic and climate datasets were saved on an onsite high-213 
performance computing (HPC) cluster (SGI UV2000 system with Intel Xeon cores) 214 
for durable data storage (Fig. 2m). Since the application of the CQ technology, we 215 
have successfully accomplished three tasks essential for the next-generation field 216 
phenotyping17: (1) continuous monitoring via time-lapse crop photography, (2) infield 217 
evaluation through networked terminals and the CropMonitor system, and (3) efficient 218 
data transfer using distributed computing and wireless data communications through 219 
an infield network (Supplementary Fig. 8).  220 
  221 

The high-throughput analysis pipeline   222 
In order to enable accurate delineation of the genotype-to-phenotype pathway and 223 
identify genetic variation influencing environmental adaptation and yield potential, 224 
we chose a high-frequency (two-three times per hour) and high-precision (2592x1944 225 
pixels per image) phenotyping approach to monitor the morphological change of 226 
crops. After the crop photography phase, we exploited open image processing and 227 
machine learning libraries such as OpenCV38, Scikit-learn39 and Scikit-image40 and 228 
developed an automated analysis pipeline to extract biologically relevant outputs.  229 
 230 
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   We designed the analysis pipeline to be executable on either a workstation PC or an 231 
HPC cluster. Firstly, to arrange the collected image series, we have developed a 232 
selection algorithm to choose representative images based on their size, clarity41, 233 
imaging dates and genotypes (Fig. 3, Step 1). Only high-quality images were retained 234 
for trait analysis (Online Methods and Supplementary Note 5). All datasets were 235 
archived in a central repository such as HPC clusters for future reference. Then, we 236 
developed a referencing algorithm to define the location of a monitored plot over time 237 
(Fig. 3, Step 2). In real-world agricultural and breeding situations for which CQs are 238 
deployed, strong wind, heavy rainfall, irrigation and chemical spraying can lead to 239 
modest camera movements, causing cross-reference problems when comparing trait 240 
analyses for a plot over time (Movie 3). To resolve this issue, we have designed the 241 
referencing algorithm to identify the initial plot location so that each image in the 242 
series can be transferred to the same position for comparison. For example, the 243 
algorithm detects 2D coordinates of white reference canes installed in the plot and 244 
dark markers on a ranging pole for height scales using colour- and shape-based 245 
feature selection39. Then, it classifies pixels into five groups to represent the canopy 246 
space and background objects such as wheel tracks, sky, and the reference canes using 247 
simple k-means42 and spectral clustering43 algorithms. Finally, a pseudo 3D reference 248 
system is established to record important coordinates of the plot region, the canopy 249 
space, and height markers, together with converting measurements from pixels to 250 
metric units such as centimetres (Online Methods and Supplementary Note 6).  251 
 252 
   Following Step 2, we integrated the initial reference location into a performance-253 
related trait analysis algorithm. For a given image series, the algorithm applies an 254 
adaptive intensity and gamma equalisation method44 to minimise colour distortion 255 
caused by varied field illumination. Then, it tracks geometric differences38 between 256 
the monitored plot and the reference location. If the plot location has changed in a 257 
given image, a geometric transformation method45 will be applied to reposition the 258 
image, removing areas outside the plot region and may or may not generate a black 259 
bar to the top of the image (Fig. 3, Step 3). Within the plot region, the algorithm 260 
detects the visible part of the ranging pole (Movie 4) as well as the canopy space for 261 
height measurement. For instance, to measure the height of the canopy, an entropy-262 
based texture analysis is used to determine whether the canopy region is changing 263 
between two consecutive images using gray-level co-occurrence matrices (GLCM)46. 264 
If positional changes (moving up or down, depending on growth stages) are identified, 265 
the canopy height is recorded and corner-featured points47 are detected (Fig. 3, Step 4), 266 
generating many red pseudo points casting in the canopy region for measuring canopy 267 
height (Movie 5 and Supplementary Note 7). These pseudo points can also be used 268 
to represent the tips of erect leaves at stem elongation or jointing (the Zadoks scale48, 269 
growth stages, GS 32-39), reflective surfaces of curving leaves or crop heads between 270 
booting and anthesis (GS 41-69), and corner points on spikelets during senescence 271 
(GS 71-95). Using the trait analysis algorithm, we have computed the dynamic height 272 
changes to present growth patterns for different wheat genotypes (Fig. 3, Step 5.1).  273 
 274 

Developmental related trait measurements 275 
In addition to the canopy height, we also developed functions to calculate other traits. 276 
For example, vegetative greenness is calculated based on the normalised greenness 277 
value (0-255) for a given plot over time. The output was used to assess the change of 278 
green biomass and vegetation period. We used this trait to evaluate a Stay-Green 279 
mutant (prolonged green leaf area duration with delayed leaf senescence; Fig. 3, Step 280 
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5.2). The main orientation of a plot (0-180o) is also quantified based on edge detection 281 
methods49, representing the alignment of stems to estimate the change of stem rigidity 282 
(Fig. 3, Step 5.3). Using this trait, we have identified lines with higher lodging risk 283 
either during ripening or when interacting with heavy rainfall or strong wind (Online 284 
Methods and Supplementary Table 1).  285 
 286 

Results 287 

Use case 1 – Monitoring five wheat NILs  288 
   The diverse environments for which wheat has been adapted to grow provide 289 
opportunities for us to explore the dynamic interactions between genetic diversity and 290 
phenotypic traits under varied environmental conditions50. To test the CQ platform, 291 
we chose wheat near-isogenic lines (NILs, Online Methods) to examine a number of 292 
key performance-related phenotypes in the same Paragon (a UK spring wheat variety) 293 
genetic background51. Figure 4 demonstrates five dynamic developmental profiles 294 
generated from the experiment between May and August 2015, a 95-day period. The 295 
experiment was conducted in plots in a field which is 2.1 miles away from Norwich 296 
Research Park UK (see the plot layout in Supplementary Table 2) and all five NILs 297 
were monitored twice per hour. The genotypes were: (1) Late-DTEM (days to ear 298 
emergence48, the number of days between sowing and ear emergence; late means 299 
GS55 is delayed), with Ppd-1 loss of function (lof); (2) Early-DTEM (GS55 is moved 300 
forward), with Ppd-D1a photoperiod insensitivity; (3) Short stems, Rht-D1b semi 301 
dwarfing; (4) Stay-Green, a stay green mutant; and (5) Paragon wild type (WT).  302 
 303 
   To compare the performance of the NILs, we used Paragon WT as the reference 304 
line and highlighted six key growth stages, from stem elongation or jointing (GS 32-305 
39) to ripening (GS 91-95). The thermal time (degree-day, oCd, using a 0°C base52) 306 
was also used as a heuristic tool53 to normalise the crop growth. The five growth 307 
curves (1258-2297 °Cd) approximately followed a sigmoid curve. At the beginning of 308 
the experiment, Ppd-D1a NIL (Early-DTEM, coloured amber) was already at the end 309 
of the jointing stage (GS37-39) and hence was the first to reach a maximum height; 310 
whereas Ppd-1 lof (Late-DTEM, coloured blue) was the last to increase in height. By 311 
cross-referencing developmental profiles based on six growth stages, we noticed that 312 
although Ppd-D1a and Rht-D1b (Short-Stem, coloured red) had similar maximum 313 
heights (83.4cm and 80.6cm), the latter displayed a relatively steady rate of increase 314 
in stature. Ppd-1 lof’s growth was the most delayed line, resulting in an extended 315 
period of vegetation, stem extension, and overall time to ear emergence. As this 316 
genotype has received the most thermal time units, it was the tallest line in the field 317 
experiment. Although all NILs experienced some degree of height reduction due to a 318 
significant storm on 24th July 2015, Paragon WT (coloured purple) presented a much 319 
lower lodging risk, as it maintained its height afterwards. To verify the phenotypic 320 
observation, we scored heading dates and canopy heights manually on the same plots 321 
and obtained a Pearson correlation coefficient of 0.986 (Supplementary Table 3). 322 
 323 
   We summarised different temperatures and accumulated degree-days (ADDs) in 324 
both 2015 and 2016 growing seasons (Fig. 5a). As the average temperature in 2015 is 325 
much lower than in 2016, we used a fixed ADD period (1250-2300 °Cd) to segment 326 
crop growth under different climates. Within the same ADD period, Figure 5b shows 327 
dissimilar growth curves of Paragon WT (Supplementary Table 4). The 2015 curve 328 
was much steeper during stem elongation (GS32-59, 1250-1750 °Cd), possibly 329 
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reflecting the cold spring. Flowering half complete (GS65) was reached on 24th June 330 
2015 (an early drilling late maturity mode). While the 2016 curve (values are the 331 
means of two biological replicates) had a steadier and extended development due to a 332 
warm spring. GS65 was reached on 12th June 2016, 12 days ahead of 2015 (a late 333 
drilling early maturity mode). Using the CQ platform, not only have we collected 334 
high-frequency crop climate datasets, we also could identify dynamic developmental 335 
variances for genotypes under different climate patterns. 336 
  337 

Use case 2 – New biological insights into growth patterns 338 
High-frequency and high-resolution deep phenotyping has already been employed in 339 
human disease research to reveal the underling mechanisms of individual’s disease54. 340 
In plant research, the similar approach is being adopted to characterise phenotypes of 341 
plant responses to environmental challenges for field experiments55. While applying 342 
CQs in wheat assessment experiments, we have explored new biological insights into 343 
dynamic growth patterns using the large phenotypic data captured in the field. 344 
 345 
   Figure 6 presents some preliminary results of how we utilised the high-frequency 346 
phenotypic data to extract underlying growth patterns for Paragon genotypes. Initially, 347 
we calculated daily relative growth rates (RGR, comparing with the previous day) for 348 
the five NILs monitored in 2015 and compared them with two Paragon WT measured 349 
in 2016. All RGR data were aligned by the associated growth stages for comparison, 350 
showing that all lines were active from jointing to flowering and became inactive after 351 
grain-filling (Fig. 6a). After that, to study the change of RGR during the growth 352 
stages (GS32-69), we explored the frequency and the degree of the RGR data. To be 353 
precise, we converted the data series from its original time domain (with equal daily 354 
readings) to the frequency domain using a fast Fourier transform algorithm (FFT)56. 355 
After the conversion, we separated the frequencies (x-axis, cycles per day, i.e. the 356 
frequency of growth) and the magnitude spectrum (y-axis, normalised amplitudes, i.e. 357 
the degree of growth) and generated underlying growth patterns of all the monitored 358 
lines (Supplementary Note 8). Noticeably, for Paragon WT, although temperatures 359 
and developmental profiles were significantly different between 2015 and 2016, the 360 
underlying growth patterns for Paragon WT in both years were very similar (Fig. 6b). 361 
We identified two distinct growth peaks: (1) around 15 days (15.3 days and 15.6 days 362 
respectively) and (2) seven-eight days (8.4 days and 7.8 days), indicating that 363 
Paragon WT is likely to control its underlying growth pattern based on the number of 364 
elapsed days instead of other factors such as temperatures.  365 
 366 
   For Late-DTEM and Early-DTEM NILs whose genetic backgrounds only differ by 367 
carrying alleles such as Ppd-D1a and Ppd-1 lof, their growth patterns also contain 368 
two peaks (Fig. 6c): (1) similar to Paragon WT, seven-eight days (7.1 days and 7.7 369 
days) and (2) 23.0 days for Early-DTEM and 15.3 days for Later-DTEM. For other 370 
Paragon NILs (e.g. Stay-Green mutant and Short-Stem), although the patterns were 371 
slightly different, we found that at least one growth peak was close to the region of 372 
seven-eight days (Supplementary Note 8 and Supplementary Fig. 9). To verify the 373 
FFT approach, we created a hypothetical Paragon growth data by combining all 374 
Paragon NILs across two years as a technical replicate. Figure 6d shows that no clear 375 
growth peaks can be detected from the hypothetical datasets. Additionally, we have 376 
applied the FFT approach to converted the RGR series with equal degree-day 377 
readings; similarly, no clear growth peaks can be identified (Supplementary Note 9). 378 
 379 
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   As all the tested Paragon NILs show a growth peak at seven-eight days and only 380 
Late-DTEM had a growth peak at 23 days, this might provide some insights into the 381 
mechanism of Ppd-D1a. The cyclical 23-day peak in growth over the common 15-day 382 
peak might reflect a changed output of the circadian clock of which Ppd1 (PRR7 in 383 
Arabidopsis

57) is accelerating the development in a cyclical manner. We are currently 384 
conducting a number of experiments, from gene expression to cell biology to advance 385 
our understanding of this discovery generated by the CQ platform.  386 
 387 

Use case 3 – GxE predictive modelling  388 
Crop modelling is used in breeding and crop research for integrating complex external 389 
and internal variables to understand GxE interactions and genetic systems. Many 390 
existing models use genotypes (G) and environmental factors (E) as input parameters 391 
to predict phenotypes (P) as the output of the models58–62. Similarly, we established a 392 
light-weight GxE model to predict crop growth using continuous crop-climate data 393 
collected by the CQ platform. Also, we used the computational power of CQ’s single-394 
board computers to explore how to operate the GxE model on a daily basis together 395 
with infield phenotyping tasks.   396 
 397 
   The key input components (environmental factors, growth stages and growth traits) 398 
of the model and how it was utilised for predicting growth in fluctuating growing 399 
conditions are summarised in Figure 7. Firstly, we selected environmental factors that 400 
were strongly correlated with the performance-related traits such as RGR and height 401 
at four key growth stages (from jointing to flowering) using Pearson correlation 402 
(Supplementary Table 5). This approach has identified five out of the 12 factors 403 
(p<0.01), including degree-day, solar radiation, rainfall, temperature, and daily light 404 
duration. Two heat maps (Fig. 7a) were produced to present the selected factors at the 405 
four stages (Online Methods and Supplementary Note 10). After that, we built a 406 
stage-based predictive model using training datasets of growth stages in 2015 and 407 
2016 (Online Methods and Supplementary Note 11). We employed support vector 408 
machines (SVM)63, a popular machine learning algorithm for classification, with 409 
radial basis function kernels to classify growth stages. Figure 7b illustrates the 410 
classified growth stages (coloured blue) benchmarked against the stages scored by 411 
expert crop physiologists (coloured red). Supplementary Figure 10 illustrates the 412 
performance of the model when classifying the timing and duration for other wheat 413 
genotypes. We found that SVMs trained on two-season Paragon WT data had the 414 
highest scores using the benchmarking approach. Although the model modestly 415 
mistimes in booting (GS41-49) and heading (GS51-59) due to their short duration, we 416 
are adding new training data acquired in 2016 and 2017 to improve the model.  417 
 418 
   On the basis of the identified environmental factors and growth stage modelling, we 419 
explored a set of linear regression models to establish a global predictive model to 420 
forecast the continuous growth curve of Paragon genotypes, an approach that can be 421 
used to help farmers and breeders to optimise crop growth and genotype selection in 422 
the future. Figure 7c shows how the growth predictive model performs on the 423 
hypothetical Paragon growth data (a technical replicate with mean squared error: 424 
46.593, correlation: 0.999). The environmental factors and corresponding daily RGR 425 
data are grouped together for each stage and a linear regression model is then 426 
constructed to fit growth rate within the forecast growth stages, together with an 427 
ordinary least squares method to determine model coefficients. A relative growth rate 428 

estimate equation 𝑦"
# =	𝛽#𝑥" + 𝑐

# is used, where 𝑥" is the environmental data at time 429 
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point 𝑡, 𝛽# is the model coefficients (weight vectors), and 𝑐# are constant offsets (i.e. 430 

intercepts for each growth stage). The super-script 𝑠 denotes different growth stages 431 
(Online Methods and Supplementary Note 12).  432 
 433 
   Growth estimates at each stage are concatenated to form a single vector, based on 434 
which height values (in centimetres) and stage-based growth rates are calculated. 435 
Using the predictive model, we produced growth estimates for four wheat NILs 436 
(Supplementary Fig. 11). In this way, we compared how well the model performed 437 
with respect to the trait analyses recordings obtained from the CQ platform. To link 438 
the predictive model with crop agronomy, we also calculated the average standard 439 
deviation (SD) of the predicted crop height values, so a real-time warning message 440 
can be triggered on the CropMonitor control system. For example, if crop is growing 441 
outside the safe region (the bounds of its estimated height region, ±1SD, Fig. 7d), 442 
warning messages will be generated to inform the users that the growth is either too 443 
quick or too slow.  444 
 445 

Discussion 446 
With the development of modern high-throughput and low-cost genotyping platforms, 447 
the current bottleneck in breeding and crop research lies in phenotyping. Here, we 448 
describe CropQuant, an automated and scalable field phenotyping system which we 449 
believe can enable researchers with a toolkit that can fulfil multi-scale and diverse 450 
phenotyping needs for a broader plant research and breeding communities. To deliver 451 
the technology, we used the IoT in agriculture ethos to combine networked sensors, 452 
distributed computing hardware, computer vision, image analysis, machine learning 453 
and modelling to provide high-frequency field phenotyping together with GxE growth 454 
predictions, in near real time and in a manner which closely match human scoring. 455 
 456 
   To enable the CQ system to monitor and compare developmental changes between 457 
wheat genotypes using phenotypic data collected under different climate patterns, we 458 
carried out an open hardware R&D strategy so that CQ devices could be built and 459 
reproduced by other research groups in a relatively easy and cost-effective way. We 460 
utilised widely available Pi single-board computers and off-the-shelf climate sensors 461 
to facilitate the hardware design. For example, a CQ device can be equipped with a 462 
range of imaging sensors (e.g. RGB or NoIR Pi cameras, or USB and IP cameras) for 463 
varied experiments, including using Pi cameras to perform side-view and top-view 464 
imaging for crop growth and canopy development studies, setting up USB endoscope 465 
cameras below the canopy to study tiller abortion, and connecting IP cameras for field 466 
level monitoring. Environment sensors were grouped by functions, i.e. ambient and 467 
soil-based. So, dissimilar sensor groups could be selected for different experiments. 468 
To increase the capability and usefulness of the low-cost CQ device, we provided the 469 
hardware construction manual and the circuit board design (Supplementary Fig. 12) 470 
so that imaging and remote sensing functions could be integrated as well as expanded. 471 
We believe that, following the current hardware design, crop-climate data collection 472 
in the field can be standardised, data evaluation and communication can be carried in 473 
the field, and terminal nodes can be scalable on the CQ platform. Notably, due to the 474 
limited manufacturing ability and R&D funding, the maximum indoor and outdoor 475 
terminal nodes operating on the CQ platform at the same time was 21, although in 476 
theory the system can operate at least 255 nodes simultaneously.    477 
 478 
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   From the software development perspective, we created the CropMonitor control 479 
system to provide users with a unified web-based platform which can be used to 480 
connect phenotyping hardware with ongoing experiments in an integrated design. Not 481 
only does it allow different users to monitor experiments in real time, but it can 482 
incorporate different solutions in one shared web place to support experiments at 483 
different phases, i.e. from device deployment to the completion of the experiment. 484 
With crop-climate data collected in a standard manner, we developed a number of 485 
open-source trait analytic algorithms to measure multiple performance-related traits to 486 
identify genetic variation under different climate patterns. The software solutions 487 
have been evaluated by noisy images caused by complex field environment. Still, it 488 
can reliably execute the trait analysis tasks. To verify the results generated by the 489 
analysis pipeline, we have scored the performance phenotypes manually on the same 490 
plots over two growing seasons and obtained a strong correlation. Furthermore, we 491 
established dynamic predictive growth models to forecast the performance of wheat 492 
genotypes under varied growing conditions, which could be valuable for agronomic 493 
practices. Although the results are promising, it is noticeable that more training 494 
datasets are required to improve these models, ideally from varied growing conditions. 495 
As the software solutions were implemented on open image analysis, computer vision 496 
and machine learning libraries, they can be easily adopted and expanded for other 497 
experiments by the communities. To support computational users to understand our 498 
work, we have provided detailed comments in our source code.  499 
 500 
   From a biological perspective, the use of key performance traits generated by the 501 
CQ platform can be an excellent tool for screening early establishment, vegetation 502 
period, flowering, growth patterns and lodging. For example, vegetative greenness is 503 
a useful marker to quantify senescence; utilising the side-view movie, we can closely 504 
monitor the process of wheat aging, from the lower stem to the canopy region, a new 505 
approach to determine physiological maturity which is important for researching grain 506 
development and ripening. Also, continuously monitored greenness can be used in 507 
plant pathogen interaction to analyse the activity of pathogens on the leaf surface, as 508 
broad yellowish symptoms can be observed from susceptible plants (e.g. rust in 509 
wheat). Moreover, crop-climate data acquired by the CQ platform can also assist us to 510 
carry out novel biological discoveries. For instance, we are using deep-learning neural 511 
network architectures to train a convolutional neural network classifier (CNN) to 512 
quantify yield component traits such as spike per unit area and spike/spikelet number 513 
(Supplementary Fig. 13).  514 
 515 
   The CQ platform, in combination with networked remote sensors, the web-based 516 
control system, computational analytic solutions, and machine-learning based growth 517 
modelling, has enabled a cost-effective and scalable field-scale phenotyping of wheat 518 
germplasm. Multiple performance-related measurements were quantified in near real 519 
time and related to growing conditions. This technology has the potential for multiple 520 
applications in breeding and crop production, for example, to optimise the timing of 521 
fertiliser applications, irrigation, and predicate harvest dates for maximising yields in 522 
different agronomic scenarios. In crop breeding systems, regular field monitoring 523 
using the CQ platform identified multiple growth and developmental variables that 524 
provided statistically significant phenotypic analysis. These can increase the accuracy 525 
of breeding values, particularly for environmental response factors. With more field 526 
experimental data collected from different environments feeding into the system, the 527 
GxE predictive model and analytics software pipeline can be continuously improved. 528 
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In particular, as the field of machine learning has progressed enormously in the last 529 
few years, our ability to model complex nonlinear functions and extract high-level 530 
phenotypic features is also growing. For example, we are applying deep learning (i.e. 531 
CNN and recurrent neural networks, RNNs) to learn and extract features from 532 
multidimensional imaging data (including visible and invisible spectrums) that are 533 
exceptionally difficult to accomplish through traditional image analysis approaches. 534 
Hence, we are consistently exploring deep learning to provide more accurate crop 535 
growth and development scores as well as yield-related trait quantifications, offering 536 
considerable value to the communities. Our future plan for the CQ platform is to 537 
improve the hardware to enhance mobility and modularity, and work with a broader 538 
plant research communities to jointly increase the software package for capability and 539 
applicability in different growing conditions. So, we could finally deliver real-time 540 
infield analysis and integrate field-based phenotyping, UAVs, and satellite into a 541 
multi-level and multi-dimensional crop analytic system. 542 
 543 

Conclusion 544 
We believe that the CropQuant technologies described here may have a significant 545 
impact on future crop research, breeding activities, and agronomic practices. The 546 
reasons are: (1) the low-cost and widely available hardware centred by single-board 547 
computers is capable of enabling tasks such as continuous crop monitoring, infield 548 
evaluation and efficient data transfer, which are essential for the next-generation field 549 
phenotyping; (2) automated trait analysis algorithms integrated in the CQ platform are 550 
open-source and expandable software solutions, which are easily accessible and based 551 
on community driven numeric and scientific libraries; (3) use cases presented in the 552 
paper explain how to apply the CQ platform to study dynamic interactions between 553 
genotypes, phenotypes, and environmental factors, which is capable of producing new 554 
biological insights of growth patterns through phenotypic analyses. Moreover, our 555 
work endeavours to address the affordability and scalability issue for the research 556 
communities, which are independent from specific commercial hardware platforms 557 
and proprietary or specialised software applications, allowing the utilisation of the CQ 558 
platform to accomplish data annotation, performance-related phenotypic analysis, and 559 
cross-referencing results freely by the academic communities. Our work confirms 560 
previously reported results in the literature and produces novel approaches to enhance 561 
the reproducibility of indoor and outdoor crop growth and development experiments. 562 
Our case studies of wheat NILs are not limited. Natural variation, mineral or nutrient 563 
stress and other crop species could also be monitored using the platform. 564 
 565 

Methods  566 
Methods and any associated references are available in the online version of the paper. 567 
Note: Supplementary information is available in the online version of the paper.  568 
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Online Methods 754 
 755 
Five wheat NILs used in the field trial represent a range of genetic variation all with 756 
the genetic background of the UK elite spring wheat ‘Paragon’. The development of 757 
the Late-DTEM: Par (Norstar + Gamma 319c) 3c-11, Ppd-1 loss of function (lof) 758 
lines is described previously64. The development of the Early-DTEM NILs: Par 759 
(GS100 2A+CS2B+Son64 2D)-T10 B10 -3b16 and Ppd-D1a photoperiod insensitive 760 
has also been published65. The novel line Stay-Green is line 2316b selected on the 761 
basis of stay green phenotype from a population of 7000 Paragon EMS mutants 762 
carried through single seed descent up to M6 developed under the Wheat Genetic 763 
Improvement Network of the UK Department of Food and Rural Affairs (Defra). The 764 
semi-dwarf NILs (short) were produced by marker assisted backcrossing (to BC6) 765 
using Rht-B1 and Rht-D1 KASP markers (LGC). which is available online from 766 
http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB. The sources of Rht-D1b and 767 
Rht-B1b were the UK winter wheat varieties ‘Alchemy’ and ‘Robigus’ respectively. 768 
The five wheat lines were sown in single 1 m2 plots in autumn 2014 at Church Farm, 769 
Norfolk UK, and grown according to standard agronomic practice. The manual score 770 
of days to ear emergence (DTEM) was done when 50% of the plot showed 50% 771 
emergence of the ear from the flag leaf. The manual measurement of plant height was 772 
done from the ear tip to ground level. 773 
 774 
The CropQuant hardware contains many components, of which the centre one is a 775 
Raspberry Pi 2 or Pi 3 single-board computer (we have also used Intel® Edison in a 776 
different version of CropQuant workstation). Based on a mobile ARM processor, the 777 
Raspberry Pi computer features on-board external connections in the form of USB 778 
and Ethernet to allow expansion using additional peripherals as well as an array of 779 
digital GPIO (general purpose input and output) pins to interface with. The crop 780 
growth image acquisition was performed using a 5MP RGB or NoIR (No InfraRed 781 
filter) camera module connected via a CSI (Camera Serial Interface) port on the Pi 782 
mother board. Digital temperature and humidity sensors are connected via 783 
manufacturer supplied circuits to the GPIO pins of the Pi for interactive control. The 784 
sensors themselves are mounted separate from the circuits, externally on the 785 
CropQuant’s housing, wired through the base of the device and sheltered by a smaller, 786 
open housing unit. The external mounting allows for accurate sensing of ambient air 787 
conditions while sheltering the electronics from direct water damage. The CropQuant 788 
terminal is housed within a weatherproof (IP66 rated) plastic container, sealed around 789 
all openings allowing operation in the field. Physical connection to the system for 790 
data transfer via USB or Ethernet and power (12/5V DC) is facilitated by water-791 
resistant couplers designed to be sealed against the rain and air moisture.  792 
 793 
The CropQuant software package runs on Linux-based operating system Debian. It 794 
contains two servers, NetATalk and VNC sever, to facilitate infield data transfer and 795 
remote systems control, which allows users to connect to each CQ terminal through a 796 
wireless (using a tablet or a smartphone) or a wired connection (using a laptop). To 797 
enable real-time systems interactions, a GUI-based imaging program has been 798 
developed and added into the software package to control the RGB or NoIR camera 799 
module for time-lapse crop monitoring. The program can automatically detect the IP 800 
address of a given CropQuant terminal so that the terminal can be associated with its 801 
specific experiment ID of the field trial. After that, the program requests users to 802 
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specify information such as genotype, biological replicates and imaging duration via a 803 
GUI dialog box, where users can initiate the image acquisition. The program can 804 
automatically adjust white balance, exposure mode and shutter speed in relation to 805 
variable infield lighting conditions using the picamera package*, a Python interface to 806 
the Raspberry Pi camera hardware. Both image resolution and imaging frequency 807 
(three times per hour in our field trials) can be changed if users want to modify their 808 
experimental settings. The program also conducts the initial quality control and data 809 
backup after each image is captured.  810 
 811 
   Besides the image acquisition, the software package contains a variety of functions 812 
such as performing simple workstation and network diagnostics and synchronising 813 
with the central server twice within an hour to upload sensor data and CropQuant 814 
hardware information (see CropMonitor). Representative daily images are routinely 815 
selected and transferred to the central server during the night, which provides a daily 816 
snapshot of the monitored crops. Image data backups held on the SD card of the 817 
device are routinely synchronised with the server to provide an external backup as 818 
needed, with verification of multiple separate backups being performed by the process 819 
before it removes the archived data to free storage space. Relying on the Linux 820 
crontab scheduling system, we can monitor the performance of the software package 821 
and resume it automatically in cases of software interruption or power disruption. The 822 
SD card image running on the current version of CropQuant can be downloaded via 823 
https://drive.google.com/drive/folders/0B17ZL8AzLo8wNFJUVS1lOFkzb3M?usp=s824 
haring. Source code is freely available for academic usage, which was arranged into 825 
source trees and saved in both local and central repositories. We are also preparing an 826 
online Github repository for the CropQuant project. 827 
 828 
*https://picamera.readthedocs.io/en/release-1.13/ 829 
 830 
CropMonitor is an IoT-style control system developed to oversee the whole CQ 831 
platform. It is operated through an onsite central server, logging updates received 832 
from individual clients, i.e. CQ terminals. A Python application on each workstation 833 
is running at regular intervals, scheduled by the native Cron Linux command line 834 
utility. The application queries the terminal to determine workstation status 835 
information such as uptime, network addresses and storage usage. Sensor data and 836 
more variable system data such as CPU temperature and the usage of processor and 837 
memory are sampled at a higher frequency and a median average of the readings is 838 
recorded during the half-hourly query. Once the application has collected all 839 
necessary data it is encoded into a JSON data object and transmitted over HTTP to the 840 
central server which stores the data in an SQL database running on a HPC cluster. 841 
CropQuant status is displayed and automatically updated using a web-based interface, 842 
determining whether each node is online by the time of the most recent update. The 843 
web interface provides information, including the location of each CropQuant 844 
terminal in the field (a field map needs to be uploaded to the central server), graphs of 845 
collected terminal and sensor data, and facilitates device configuration, SSH and VNC 846 
linking to all active nodes. Nodes within the CropMonitor system are categorised into 847 
groups and projects as defined by the user, allowing the organisation of workstations 848 
and restriction of access to stored data. CropMonitor provides a centralised real-time 849 
monitoring system to administer the network of infield workstations and collate 850 
collected data for visualisation, batch processing and annotation. 851 
 852 
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The image selection algorithm is designed to perform speedy assessment of large 853 
image datasets captured in field trials by comparing images to a number of fixed 854 
criteria. The Python-based algorithm can be executed either on a normal computer or 855 
a HPC cluster. All images which meet the analysis standards will be collated. Over 856 
200 GB data have been generated by ten offsite CropQuant terminals in the 2015 857 
season during a 95-day period, with 50GB data were actually analysed after the 858 
selection procedure. In turn, an image is measured based on its brightness, sharpness, 859 
and shadow percentage, allowing all images which perform above a set of thresholds 860 
to be retained for further traits analysis. To determine the brightness of an image, the 861 
median value of pixel intensity is taken by transforming the image into HSV colour 862 
space. If the median intensity value is lower than a set threshold, the image is culled 863 
and not used from this point forward. The image clarity is determined by applying a 864 
Sobel edge detection41 to the image. The detectable edges are calculated and then 865 
correlated with sharpness and exposure range of the image. The result of the clarity 866 
detection is also compared to a set threshold, which will disqualify images if they are 867 
out of focus or unclear with ill-defined edges. The final image test is of the percentage 868 
shadow within the visible area. Dark pixels found in an image with an illumination 869 
value of below 20% are either too dark for feature extraction or containing too much 870 
shadow in monitored plots. Once all rules have been passed, selected images are 871 
included in a result folder with a CSV file recording image metadata for further high-872 
throughput image analysis.  873 
 874 
The plot detection algorithm detects initial reference positions of monitored plots. 875 
The algorithm identifies the coordinates of white reference canes (the plot region) and 876 
dark height markers on a ranging pole, using an ensemble of colour-based feature 877 
selection on the basis of HSV (hue, saturation and value) and Lab non-linear colour 878 
space. It also classifies pixels into different groups, including sky, soil between plots, 879 
crop canopy, shadow, and plot regions using simple unsupervised machine-learning 880 
techniques such as k-means and spectral clustering. After detecting initial reference 881 
objects in the image, the algorithm establishes a pseudo 3D reference system that 882 
records the 2D coordinates of the plot area, the canopy region, and height markers 883 
through a range of feature selection approaches. The pixel-metric conversion is also 884 
computed based on height markers on the ranging pole. 885 
 886 
The CropMeasurer algorithm employs an adaptive intensity and dynamic gamma 887 
equalisation to adjust colour and contrast to minimise colour distortion caused by 888 
diverse infield lighting. The algorithm tracks geometric differences between the plot 889 
on a given image and the initial position. If different, a geometric transformation 890 
method will be applied to recalibrate the image, which removes areas outside the plot 891 
area and could generate different sizes of black bars to the top of the given image. 892 
Within a plot, CropMeasurer tracks the crop height by detecting the visible part of the 893 
ranging pole and defines the canopy region through a combined adaptive thresholding 894 
and local Otsu threshold methods. Finally, the algorithm applies Harris and Shi-895 
Tomasi corner detection methods47 to locate corner-featured points within the canopy 896 
region. Red pseudo points are generated to represent the tips of erect leaves, reflective 897 
surfaces of curving leaves, heads and the corner points on ears. The main orientation 898 
of a given plot is quantified based on an optimised Canny edge detection method49, 899 
which computes the alignment of crop stems.  900 
 901 
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Data interpolation and analysis have been used to handle minor data loss during the 902 
field experiments. Four days’ data gap (at the end of May 2015) has been recorded on 903 
a number of offsite CropQuant workstations, which was caused by SD card crash due 904 
to short-term battery failure. We used cubic spline interpolation method66 to fill the 905 
small gap in the phenotypic datasets.  906 
 907 
RGR and FFT conversion the data is recorded on a daily basis, the maximum 908 
frequency component visible is every two days (0.5 cycles-per-day) due to the 909 
Nyquist-Shannon sampling theorem67. The cycles-per-day can be viewed in the same 910 
manner as Hertz, which is known as cycles-per-second and indicates a measure of 911 
frequency. We represent the frequency in cycles-per-day as the data were recorded at 912 
daily intervals. 913 
 914 
The growth stage predictive model is the basis of the GxExP model. The model is 915 
produced to explore how to predict growth stages for different wheat genotypes in 916 
relation to real-time performance traits and environment data. It employs support 917 
vector machines (SVM), a popular machine learning technique for classification, with 918 
radial basis function kernels to classify growth stages. The performance of the model 919 
is tested by Paragon WT (G1) growth data from 2015 and 2016. For Paragon WT 920 
(2015), the model is trained with all other 2015 genotype data, whereas for the 2016 921 
Paragon WT datasets, the model is trained with all 2015 data, all models utilise K-922 
Fold2 cross-validation for prediction. To simulate the real-world situation for the stage 923 
prediction, we did not allow the model to obtain knowledge of the previous stages. 924 
Hence, the model mainly modestly mistimes booting (GS41-49) and heading (GS51-925 
59) due to the short duration of both stages. 926 
 927 
   The prediction in comparison with the manually recorded growth stages suggests a 928 
successful prediction of the timing and duration across all growth stages for both 2015 929 
and 2016 datasets, except for the short transition period during booting (GS41-49), 930 
where the duration of booting is two days short. Due to the limited data points for 931 
booting across all genotypes used for training, the model cannot differentiate booting 932 
from heading sufficiently. For this matter, we are planning to add training datasets 933 
from other varieties such as Watkins and Chinese Spring wheat in other field trials. 934 
The stage prediction is trained by Paragon WT growth data from both 2015 and 2016: 935 
(1) to predict the 2015 Paragon WT, the model is trained with all other 2015 NIL 936 
growth data; (2) whereas the 2016 Paragon WT was based on all 2015 growth data. 937 
Through this approach, the model can rectify itself using previous years’ training data. 938 
After the training phase, the model utilises K-Fold68 cross-validation for the growth 939 
stage prediction. 940 
 941 
The GxE interaction model explores the interactions between the recorded crop 942 
growth of five wheat genotypes and a number of environmental factors. Correlations 943 
are performed for each environmental factor grouped over three days with the 944 
recorded growth data. The reason to group environmental factors into nested three-945 
day periods is to remove outliers and smooth the input data. The correlations are 946 
determined for the first four growth stage for five genotypes. The analysis is 947 
performed on the grouped data as particular stages (e.g. booting and heading) contain 948 
few recorded growth data due to the short duration of both stages were present during 949 
the growth. To determine the interactions between relative growth rates (RGR) and 950 

environmental factors, we used the formula (𝑒/0/)23 to convert negative correlation 951 
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values to positive counterparts, as the RGR series is a decreasing sequence in relation 952 
to the increasing nature of growth stages. 953 
 954 
   Based on significant environmental factors, linear regression models45 have been 955 
explored and a single linear regression model is selected to estimate RGR of five 956 
genotypes in relation to given infield environment conditions. Environmental factors 957 
with insignificant correlations (where p > 0.01, with respect to the height over the 958 
entire time-series) are removed from the analysis as they provide little predictive 959 
power. Ordinary least squares are used to derive the model coefficients. The RGR 960 
data is normalised to present percentage changes in height between two consecutive 961 
days. To predict the canopy height for a given genotype, environment data at each 962 
growth stage is input to the global model. To derive the height of the plant over time, 963 

successive application ℎ" =	ℎ"25(1 + 𝑦")  is applied, where ℎ"  is taken from the 964 

above equation, ℎ"25 is the height of the plant at the previous time-point, and ℎ7 is 965 
equal to the initial height.  966 
 967 
   The performance of the model is verified by estimating the growth of all five NILs, 968 
including the overall paragon growth data (GT). The estimation is displayed with 969 
respect to the true canopy height datasets. The mean squared error recorded for G2 970 
(genotype two, Late-DTEM), G3 (genotype three, Early-DTEM) and G4 (genotype 971 
four, Stay-Green) shows that the estimated height is close to the true growth curves. 972 
However, the error is much larger for G1 (genotype one, Paragon WT) and G5 973 
(genotype five Short). This is due to the majority of crop growth happens during the 974 
early stages (GS32-GS59), estimation deviation during these initial stages could affect 975 
the overall height results. As the global predictive model might not be sensitive 976 
towards specific genotypes, we are still seeking a better approach to incorporate all 977 
genotypes with a similar genetic background into the prediction. The stage predictions 978 
are used in the linear regression growth model that could be run on a single-board 979 
computer such as a Pi computer to give accurate quantifications. We have chosen to 980 
establish the predictive growth model based on data produced from the CQ platform 981 
and hence did not perform cross-validation tests to offer more rigorous evidence of 982 
how well the model will generalise to new data. Given larger datasets containing 983 
more biological replicates, conducting cross-validation produces more reliable growth 984 
models with increased precision. Warning messages will be triggered via the CQ 985 
platform, if the crop growth rate has deviated from the bounds of its estimated growth 986 
region (±1SD).  987 
 988 
High definition movies referred in this manuscript can be freely downloaded at 989 
https://drive.google.com/drive/folders/0B17ZL8AzLo8wNFJUVS1lOFkzb3M?usp=s990 
haring (source code is freely available for academic usage and we are also preparing 991 
an online Github repository for the CropQuant project). 992 
 993 
Code availability. We used a Jupyter Notebook (i.e. the iPython Notebook) to 994 
present and explain algorithms and software solutions associated with the CQ project. 995 
They are freely available for academic use. Software packages running on CQs, high-996 
throughput trait analysis algorithms, and GxE modelling can be downloaded via 997 
GoogleDocs for academic usage and an online Github repository is being prepared.  998 
https://drive.google.com/drive/folders/0B17ZL8AzLo8wNFJUVS1lOFkzb3M?usp=s999 
haring   1000 
 1001 
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Figure 1 1002 
 1003 

 1004 
Figure 1. A high-level system architecture of the CropQuant platform. 1005 
(a) The hardware and software design for a CQ workstation, including a single-board 1006 
computer, climate sensors, a tailored circuit board to integrate sensors, an imaging 1007 
sensor, local USB storage, wired and wireless network components, Debian operating 1008 
system, and custom-made Python software package for crop images and climate data 1009 
collection. (b) Data communications between CQs and either a portable device in the 1010 
field or an onsite PC workstation. (c) The network setting that integrates CQ terminals, 1011 
infield wireless network, and the CropMonitor control system. 1012 
 1013 
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Figure 2  1014 
 1015 

 1016 
Figure 2.  The CropQuant phenotyping platform used in field experiments. 1017 
(a) An all-in-one CQ workstation. (b) The internal hardware design of a version 2 CQ 1018 
workstation. (c) A custom-made circuit board that integrates low-cost climate sensors. 1019 
(d) Different versions of CQ built for dissimilar monitoring tasks. (e) CQs used in 1020 
offsite field experiments, powered by batteries and solar panels. (f) The CQ platform 1021 
established for onsite field experiments, powered by 5V/2A power supplies. (g) Real-1022 
time crop inspection using either a portal device in the field or a PC in an office. (h-j) 1023 
the CropMonitor control system administers CQ terminals and records information 1024 
such as online or offline status, operational mode, daily representative crop image, 1025 
micro-environment for the plot region, and computational resource for each connected 1026 
CQ terminal. (k) An infield WIFI system installed for field trials. (l) A commercial 1027 
field weather station. (m) HPC clusters used for durable data storage and trait analysis.  1028 
 1029 
 1030 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2017. ; https://doi.org/10.1101/161547doi: bioRxiv preprint 

https://doi.org/10.1101/161547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tools and Resources 

 24 

Figure 3 1031 
 1032 

 1033 
Figure 3.  The high-throughput analysis pipeline established for batch processing 1034 
and measuring performance-related traits.  1035 
(1) Step 1, high-quality crop images were selected by the selection algorithm and 1036 
stored in both local and central repositories. (2) Step 2, initial reference positions of 1037 
monitored plots were detected by the referencing algorithm, which also calculated the 1038 
pixel-metric conversion rate. (3) Steps 3 and 4, the performance-related trait analysis 1039 
algorithm was designed to track plots of interest and conduct trait analyses to quantify 1040 
the canopy region and performance-related traits. (4) Step 5, traits such as dynamic 1041 
crop growth patterns in relation to thermal time (degree-day), vegetative greenness (0-1042 
255), and the main plot orientation (0o-180o) were quantified and illustrated. 1043 
 1044 
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Figure 4 1045 
 1046 

 1047 
Figure 4. The performance of five wheat NILs monitored by the CQ platform to 1048 
identify dynamic developmental profiles. 1049 
Five wheat NILs (Late-DTEM, Early-DTEM; Short, Stay-Green, and Paragon WT) 1050 
and their dynamic performance in relation to environmental factors such as solar 1051 
radiation, rainfall, and temperature, during the 95-day monitoring period. Six growth 1052 
stages of Paragon WT were used as reference. Accumulated thermal time in degree-1053 
day units was computed for comparison.  1054 
  1055 
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 1057 

 1058 
Figure 5. Recognising subtle and dynamic developmental variances for wheat 1059 
genotypes under different climate patterns using the CQ platform.  1060 
(a) Different temperatures and accumulated degree-day patterns recorded in 2015 and 1061 
2016. (b) Aligning and comparing growth curves of Paragon WT in 2015 and 2016 1062 
within similar growth stages and the degree-day period (1250-2300 °Cd).  1063 
 1064 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2017. ; https://doi.org/10.1101/161547doi: bioRxiv preprint 

https://doi.org/10.1101/161547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tools and Resources 

 27 

Figure 6 1065 
 1066 

 1067 
Figure 6. Extracting underlying growth patterns from continuous phenotypic 1068 
data using a fast Fourier transform (FFT). 1069 
(a) RGR (growth % of the previous day) is used to present the daily growth rate of all 1070 
the NILs at different growth stages. (b) The underlying growth patterns for Paragon 1071 
WT in 2015 and 2016 after the FFT conversion. (c) The underlying growth patterns 1072 
for Late-DTEM and Early-DTEM, after the FFT conversion. (d) Using a hypothetical 1073 
Paragon NILs growth data (merging all the NILs) to study the growth pattern.   1074 
 1075 
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 1077 

 1078 
Figure 7. Establishing a GxE predictive model to forecast the performance of 1079 
wheat genotypes under different climate patterns. 1080 
(a) Applying a correlation model to identify highly correlated environmental factors, 1081 
including thermal time, solar radiation, rainfall and growth stage duration using 1082 
Pearson correlation (p<0.01). (b) A growth stage-based predictive model applied to 1083 
estimate the key growth stages of Paragon WT in 2015 and 2016 compared with 1084 
manual scoring. (c) A global growth model comparing real growth curve measured by 1085 
CQ (red dotted line) with estimated growth curve (green line). (d) Warning messages 1086 
triggering mechanism to alert users if crop growth is outside the safe bounds (±1SD) 1087 
of the estimated growth region.  1088 
 1089 
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 1092 
Supplementary figure 1. An all-in-one CQ device deployed in field experiments. 1093 
(a) Low-cost remote sensors (e.g. light levels, ambient temperature and humidity, soil 1094 
temperature and moisture) integrated by a tailored circuit board and then connected to 1095 
a Raspberry Pi computer via GPIO (general purpose input/output) pins. (b) A number 1096 
of all-in-one CQs being tested for establishing a mesh network in the Zhou laboratory. 1097 
(c) An all-in-one CQ device deployed in a wheat field experiment in 2017. (d) A soil-1098 
based sensor installed to collect soil temperature and moisture for a six-metre wheat 1099 
plot. (e) Light levels and ambient temperature and humidity sensors mounted on the 1100 
top of the all-in-one CQ, together with an Ethernet coupler (black) and a micro-USB 1101 
coupler (blue). 1102 
 1103 
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Supplementary	figure 2 1104 
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 1106 
 1107 
Supplementary figure 2. The hardware design of a version 2 CropQuant. 1108 
(a) Side view: (1) a Raspberry Pi 2, (2) digital sensor circuits, (3) a Pi camera module, 1109 
(4) a sensor GPIO connection, (5) an external sensor housing, (6) a digital sensor 1110 
connection, (7) an inline power fuse, (8) a voltage converter, (9) an external power 1111 
connection, (10) an external Ethernet connection coupler. (b) Front view: (1) a 1112 
camera module, (2) an external camera UV lens, (3) a camera sunlight shield, (4) an 1113 
external sensor housing. (c) Base view: (1) a digital humidity sensor, (2) a digital 1114 
temperature sensor, and (3) an external power connection.  1115 
 1116 
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Supplementary	figure 3 1117 
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 1119 
Supplementary figure 3. Real-time infield crop monitoring via portable devices. 1120 
(a) A crop scientist using an Android tablet to connect to infield CQ terminals to 1121 
examine the performance of wheat growth. (b&c) After connecting to the VNC server 1122 
running on a CQ terminal, different experiments can be inspected and managed by 1123 
crop scientists via a VNC viewer on the portable device, e.g. smartphones or tablets. 1124 
 1125 
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Supplementary	figure 4 1126 
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 1128 
Supplementary figure 4. The CropMonitor control system. 1129 
(a) Grid view of the CropMonitor system, which provides a regular overview of all 1130 
CQ terminals in the field, including online (green) or offline (red) status, operational 1131 
modes (amber means the imaging is either finished or halted), and the duration of 1132 
crop monitoring. An experimental layout of monitored plots is also provided, showing 1133 
the location of all CQ terminals and their operational modes. (b) List view of the 1134 
system showing CQ’s online duration, network addresses, computing storage, and 1135 
SSH/VNC tools to access CQ terminals directly from the CropMonitor control system. 1136 
(c) Individual view of the system which illustrates an individual CQ workstation, 1137 
containing climate sensor data and systems information during the monitoring period.  1138 
 1139 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2017. ; https://doi.org/10.1101/161547doi: bioRxiv preprint 

https://doi.org/10.1101/161547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tools and Resources 

 33 

Supplementary	figure 5 1140 
 1141 

 1142 
Supplementary figure 5. A real-time stream function activated for deploying CQ 1143 
workstations in the field.  1144 
(a-b) A live stream function showing the location of a CQ terminal in the field as well 1145 
as assisting device deployment and systems calibration via the CropMonitor system 1146 
running on each CQ device.  1147 
 1148 
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Supplementary	figure 6 1149 
 1150 

 1151 
Supplementary figure 6. Outdoor and indoor wheat experiments (e.g. wheat 1152 
speed breeding) monitored by the CQ platform in 2017.     1153 
 1154 
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Supplementary	figure 7 1155 
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 1157 
Supplementary figure 7. The network topology of the mesh network system 1158 
established by many all-in-one CQs jointly operating in the field.  1159 
 1160 
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Supplementary	figure 8 1161 
 1162 

 1163 
Supplementary figure 8. The systems architecture diagram of how to network 1164 
CropQuant terminals, the CropMonitor system, and a HPC cluster. 1165 
 1166 
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Supplementary	figure 9 1167 
 1168 

 1169 
 1170 
Supplementary figure 9. The underlying growth patterns for Green Mutant NIL 1171 
and Short-Stem NIL extracted through a fast Fourier transform (FFT) approach. 1172 
 1173 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2017. ; https://doi.org/10.1101/161547doi: bioRxiv preprint 

https://doi.org/10.1101/161547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tools and Resources 

 38 

Supplementary	figure 10 1174 
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 1176 
Supplementary figure 10. A predictive model to forecast the timing and duration 1177 
of key growth stages for genotypes with Paragon background. 1178 
(a-e) The model predicts the growth stages based on all Paragon growth data 1179 
(acquired in 2015 and 2016) and environmental factors selected by the GxE 1180 
correlation model. (f) The model forecasts the growth stages based on overall 1181 
Paragon data (the hypothetical growth dataset) and environmental factors. 1182 
 1183 
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Supplementary	figure 11 1184 
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 1186 
Supplementary figure 11. A predictive model to forecast the dynamic growth 1187 
patterns of wheat genotypes with Paragon background in field conditions. 1188 
(a-b) The growth prediction based on Late-DTEM NIL and Early-DTEM NIL growth 1189 
data. Vertical dash lines indicate the manually segmented growth stages, from Stem 1190 
elongation or jointing (GS32-39) to Ripening (GS91-95). The red dotted lines stand 1191 
for real CQ measurements. If outside the safe bounds of the growth estimates, a 1192 
warning message (a triangle coloured red) will be triggered on the CropMonitor 1193 
control system. For example, the Late-DTEM line was growing too slow. (c) The 1194 
growth prediction based on Stay-Green NIL growth data. (d) The height prediction 1195 
based Short-Stem NIL growth data, which was growing too fast.  1196 
 1197 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2017. ; https://doi.org/10.1101/161547doi: bioRxiv preprint 

https://doi.org/10.1101/161547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tools and Resources 

 40 

Supplementary	figure 12 1198 
 1199 

 1200 
 1201 
Supplementary figure 12. The circuit for the all-in-one CQ workstation. 1202 
 1203 

10k

10k

4.7k

4.7k

1k

100

1
6
M
H
z

A
T
M
E
G
A
3
2
8
P

68

VCC

GND

P_GND

TEMP

HUMID

NC

VCC

GND

DHT

LDR

NC

LED

GND

a b

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 1, 2017. ; https://doi.org/10.1101/161547doi: bioRxiv preprint 

https://doi.org/10.1101/161547
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tools and Resources 

 41 
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 1206 
Supplementary figure 13. Using deep-learning neural network architectures to 1207 
train algorithms to quantify yield component traits based on images acquired by 1208 
the CQ platform.  1209 
(1) Step 1, pre-processing and calibrate image series captured by the CQ platform in 1210 
the field. (2) Step 2, based on texture and pattern classification methods such as grey 1211 
level co-occurrence matrices (GLCM) and texture entropy, detecting spike-featured 1212 
regions, which are divided into sub-images as training data for a CNN (Convolutional 1213 
neural network) classifier. (3) Step 3, to count spikes per unit area and spike numbers 1214 
on a given image, further smaller sub-images are produced to fit a whole spikelet 1215 
region. CNN is trained to count spikelet-only sub-images. (4) Step 4, the machine-1216 
learning based estimation are correlated with manual measurements, so that the 1217 
estimation model can be improved.  1218 
 1219 
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