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Abstract: Accurate crop planting structure (CPS) informa-

tion and its relationship with the surrounding special

environment can provide strong support for the adjust-

ment of agricultural structure in areas with limited culti-

vated land resources, and it will help regional food

security, social economy, and ecological balance adjust-

ment. However, due to the perennial cloudy, rainy, and

scattered arable land in Karst mountainous areas, the

monitoring of planting structure by traditional remote

sensing methods is greatly limited. In this regard, we

focus on synthetic aperture radar (SAR) remote sensing,

which can penetrate clouds and rain, without light con-

straints to image. In this article, based on parcel-based

temporal sequence SAR, the CPS in South China karst

area was extracted by deep learning technology, and

the spatial coupling relationship between CPS and karst

rocky desertification (KRD) was analyzed. The results

showed that: (a) The overall accuracy of CPS classifica-

tion was 75.98%, which proved that the geo-parcel-based

time series SAR has a good effect for the CPS mapping in

the karst mountainous areas; (b) Through the analysis of

the spatial relationship between the planting structure

and KRD, we found that the lower KRD level caused the

simpler CPS and the higher KRD grade caused more com-

plex CPS and more richer landscape types. The spatial

variation trend of CPS landscape indicates the process

of water shortage and the deepening of KRD in farmland;

(c) The landscape has higher connectivity (Contagion

Index, CI 0.52–1.73) in lower KRD level and lower con-

nectivity (CI 0.83–2.05) in higher KRD level, which shows

that the degree of fragmentation and connection of

CPS landscape is positively proportional to the degree

of KRD. In this study, the planting structure extraction

of crops under complex imaging environment was rea-

lized by using the farmland geo-parcels-based time series

Sentinel-1 data, and the relationship between planting

structure and KRD was analyzed. This study provides a

new idea and method for the extraction of agricultural

planting structure in the cloudy and rainy karst mountai-

nous areas of Southwest China. The results of this study

have certain guiding significance for the adjustment of

regional agricultural planting structure and the balance

of regional development.

Keywords: crop planting structure, time series SAR, karst,

rocky desertification, farmland geo-parcels

1 Introduction

Agriculture is the foundation of social and economic

development [1], and grain output is an important guar-

antee for social stability [2]. It affects the planning of

national and regional economic development [3]. Crop

planting structure (CPS) is one of the key factors affecting

grain yield; it indicates the type of crops and its spatial

distribution [4]. For a region, CPS means the relationship

between food security and economic income [5]; however,

the relationship between CPS and ecological environment

receive little attention, and how these factors interact with

each other remains an undefined question [6–8]. In order to

clarify the problem, we selected the karst mountainous area

in Southwest China, one of the three major karst concen-

trated distribution areas in the world [9], as the study area.

In general, arable land resources are very scarce in karst

mountainous areas around the world [10]. Different from
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the protection measures usually taken in similar fields in

developed countries [11], as a large number of poor people

live in China’s karst mountainous areas, farmers often

reclaim land on hillsides leading to massive soil erosion

and karst rocky desertification (KRD) resulting in a fragile

ecological environment and even natural disasters such as

floods and mudflows [12,13]. Therefore, obtaining accurate

CPS information and clarifying the relationship and rules

between CPS and fragile ecological environment can better

guide the adjustment of regional CPS, which is of great

significance for balancing regional food security, farmers’

income, and ecological benefits.

CPS mapping employ remote sensing, which is a rela-

tively effective way to get the spatial distribution information

due to the relatively large scale and high frequency acquisi-

tion of plant growth information [14,15]. This improves the

limitations of traditional surveys and subsidiary decision

of CPS optimization. In traditional classification methods,

crops are classified based on optical images and used on

a broad plain or global scale. A large number of studies

applied Moderate Resolution Imaging Spectroradiometer

data (normalized difference vegetation index, NDVI and

enhanced vegetation index, EVI) [16,17] or Landsat [18]

time series data to monitor the crops growth and recognize

2 or 3 types of crops such as rice, cotton, etc. However, the

CPS means a combination of different types of crops; large

scale remote sensing images cannot meet the extracting

demand of complex type crops. With the development of

earth observation and information technology [19], high-

resolution remote sensing images provide sufficient data

support for crops’ classification [20,21]. But serious mixed

pixel and lack of optical image data restricted thesemethods

from being applied very well in South China karst area

where the geological environment is extremely fragile [22]

and perennial rainy. For example, in the center of SCK area,

Guizhou province, the mountain area covered about 87%

[23], and there are 1–2 effective optical images data can be

collected, and the acquisition time of remote sensing image

is not necessarily during the growing period of crops [24,25].

Many studies researched on how to avoid the errors

caused by fragile landscape and focused on accurate ground

object identification. Zhu et al. [26] and Deng et al. [27]

increased the accuracy of the extracted winter wheat

planting area based on field geo-parcels. Lv et al. compared

the pixel-based, superpixel-based, and region-based classi-

fication methods, and they found that the region-based

method had better segmentation accuracy and boundary

fit, and solved the salt and pepper errors and low boundary

adherence problems [28]. On the basis of farmland geo-par-

cels, some scholars extracted single planting types by over-

laying time series data of parcels, and achieved good results

[29–32]. Synthetic aperture radar (SAR) is considered to be

one of the most important information sources for agricul-

tural monitoring in cloudy and rainy regions due to the

all-weather and all-day imaging capability [33]. Due to the

complexity of SAR imaging mechanism, many scholars use

SAR microwave remote sensing to sense the cultivated land

underlying surface and try to extract a single category of

crops, such as rice [34,35] and wheat [36–38], but it is diffi-

cult to identify the complex planting structures. In recent

years, with the development of deep learning technology,

some scholars have tried to carry out CPS classification of

SAR remote sensing data with deep learning [15,39,40], and

achieved good results.

In order to reveal the interaction and law between

planting structure and rocky desertification, we tried to

obtain accurate CPS information by using temporal series

SAR data-based farmland geo-parcels, used the edge

extraction method based on convolutional neural net-

works (CNN) to automatically extract the farmland plots,

and used the recursive neural network (RNN) to identify

the crop types. By overlaying the spatial distribution map

of KRD grades, the spatial coupling relationship between

KRD grades was analyzed, and the relationship between

KRD and CPS was revealed to a certain extent. In order to

guide the fine adjustment of CPS in karst mountainous

areas and to balance the relations among regional food

security, ecological benefits, and farmers’ economic ben-

efits, this article provides feasible ideas and methods.

2 Materials and methods

2.1 Study area

The study area shown in Figure 1 is located in Anshun city,

Guizhou province, between 106°3ʹ0ʺ E to 106°17ʹ22ʺ E and

26°11ʹ7ʺ N to 26°23ʹ38ʺ N, covering an area of approximately

322.11 km². The climate of this region is the north subtro-

pical monsoon humid climate with adequate rainfall. There

are two sub-plains (cover area greater than 3.33 km²) in this

area. Those are scarce resources in Guizhou province which

is the only province in China without any plain. This area

has a diverse karst and non-karst physiognomy.

2.2 Data

2.2.1 Multisource remote sensing images

There are three types of remote sensing images employed

for this research: Google earth (GE) optical image data,

Sentinel-1A SAR image data, and unmanned aerial vehicle
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(UAV) optical image data. We used GE image data which

were downloaded from the website (https://earth.google.

com/web/) for extracting farmland parcels; SAR data were

download from ESA website (https://scihub.copernicus.eu)

for crops classification; A number of UAV images which

were captured during two field investigations, were ran-

domly selected to make samples for training and the

remaining were used for validation (Table 1).

The GE image consisted of mass different time pic-

tures, the period of image download from Apr. 2018 to

Aug. 2018; the farmland was barely changed.

Sentinel-1A containing four sensor modes has 20 m

spatial resolution and two polarizations, VV and VH in C

band. In this article, 12 images during crop growing sea-

sons from Apr. 2018 to Aug. 2018 with IW mode and VV

polarization were chosen for crop classification (Table 2).

The UAV images were captured by the Phantom 4 pro-

duced by DJI. In two field investigations, 3,172 UAV photos

were captured from the UAV flies under the autopilot mode,

which was pre-programmed with flight parameters such as

altitude 120m, side lap 80%, end lap 75%, and range.

2.2.2 Non-image data

In order to understand the distribution of crops better,

geologic maps were employed for distinguishing the

karst and non-karst area; the policy conditions and socio-

economic data can help in acquiring the crops plant-

ing information under policy orientation. The geologic

maps were provided by the State Engineering Technology

Institute for KRD. And the policy conditions and socioeco-

nomic data such as Anshun statistical yearbook were down-

loaded from the web of Anshun people’s government.

KRD grades can be considered as an index depended

by slope, bare rock, soil erosion etc. Zhou et al. [41] and

Figure 1: Location of the study area. (a) The location of study area in Anshun city, Guizhou province. (b) Details of study area based on

Sentinel-1A SAR image taken on April 3, 2018.

Table 1: Details of multisource remote sensing images

Data type Sensor Data Spatial resolution (m) Band/polarization Obtained from

Optical image Google image 2018.4–2018.8 0.5 RGB Web

UAV 2018.8–2018.9 0.05 RGB Field surveys

SAR image Sentinel-1A 2018.4–2018.8 20 VV Web
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Li et al. [42] established standards for classifying KRD. In

this article, we adopted the standard to classify the study

area into eight areas and name them separately (Figure 2).

2.3 Processing

In ENVI 5.3, SAR images were preprocessed by data import,

multi-looking, speckle filtering, geocoding, and radiometric

calibration [39]. First, multi-looking produced the intensity

images with VV and VH band. Second, speckle filtering

was used for reducing the speckle noise. Third, geocoding

was used to transfer the slant distance geometry into a geo-

graphic coordinate projection based on the selected digital

elevationmodel, and the gray value of image was converted

to a backscatter coefficient (dB). Finally, by exporting the

SAR time series image dataset clipped by the boundary of

study area, we got time sequence images. Through multiple

experiments, the IW mode and VV polarization data pre-

sented the highest classification accuracy.

The UAV photos were preprocessed such as align

photos, build mesh, three-dimensional triangulation,

build point cloud, and mosaic photos, finally derived a

total 18 ortho-images with 0.05 m spatial resolution, and

investigated a total of 12,999 farmland parcels covering

13.68 km2 (Table 3).

3 Methods

There are three steps for crop structure mapping: farm-

land parcels extraction, SAR time series construction,

and crop classification. Then, transfer non-images data

as KRD grades, policy conditions, and socioeconomic

data to the parcels. Finally, coupling analysis of the rela-

tionship between KRD and crop structure is performed.

The workflow of the crop structure mapping method is

shown in Figure 3.

3.1 Software and map design

In this article, we employed Pix4D mapper software to

preprocess the UAV data, and used ENVI 5.3 software

to preprocess the Sentinel-1A SAR images. We accom-

plished the farmland parcels extraction and crop types

identification with our own software. Then, all maps were

made by using ArcMap10.2 software.

According to the morphological characteristics of

the study area (Figure 4), we used a square composition.

When designing the map, we fully considered the detailed

presentation of the parcels-based planting structure. So,

Table 2: Details of Sentinel-1A images

ID Acquisition time Polarization ID Acquisition time Polarization

T1 03-04-2018 VV T7 14-06-2018 VV

T2 15-04-2018 VV T8 26-06-2018 VV

T3 27-04-2018 VV T9 08-07-2018 VV

T4 09-05-2018 VV T10 20-07-2018 VV

T5 21-05-2018 VV T11 01-08-2018 VV

T6 02-06-2018 VV T12 25-08-2018 VV

Figure 2: Partition of study area where ‘N’ stands for non-karst and

‘K’ stands for karst. The N1 and N2 represent the non-karst in study

area. The K1–K5 represent KRD-I to KRD-V; K3-1, K3-2, and K3-3

indicate that there are three KRD-III areas distributed separately.
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we used partial magnification on the map to show the

details.

3.2 Farmland parcels extraction Models

Three mature match networks were introduced to extract

farmland parcel edges suitably in step one. Holistically-

nested edge detection (HED) network was used for non-karst

parcel extraction as the parcels’ shape was inherently reg-

ular. For karst area, hilly farmland parcels were extracted by

Dink-net network and inconsecutive parcels were extracted

by U-net network.

3.2.1 HED

Using HED [43] network, the end-to-end edges were pre-

dicted; this network adds multiple side outputs and

connects with the final convolution layer of each con-

volution pooling stage based on Visual geometry group

network and then outputs edges of different scales.

In this way, the results learned from each layer of

the network are output through the side output layer,

and a weighted fusion layer is adopted to utilize the

results of these side outputs to realize the learning of

multi-scale features of the image. In addition, edge fea-

tures are continuously inherited and learned in the

multi-layer network to finally get a more accurate

Table 3: Details of UAV field surveys

FLY ID Parcel Area (km2) FLY ID Parcel Area (km2)

2018.8 081601 747 0.94 2018.9 091502-04 1,566 1.39

081602-03 990 1.42 091505 613 0.79

081604 1,238 1.00 091601-02 1,472 1.51

081605 758 0.79 091603-04 718 0.81

081606 1,517 1.37 091605-07 1,348 1.47

081608 1,460 1.58 091609 572 0.61

Total 6,710 7.10 Total 6,289 6.58

Figure 3: The workflow of the crop structure mapping.
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farmland boundary line and then get regular farmland

map spots through “line to polygon.”

3.2.2 Dink-net

Due to the arbitrariness of the mountain farming in karst

areas and the shielding effect of trees and weeds, the

boundary is often not obvious. But these farmlands pre-

sent unique texture and color features in the image. Thus,

Dink-network is adopted to extract hilly farmlands.

3.2.3 U-net

U-net was originally applied to medical imaging proce-

dures to improve the utilization of sample data to obtain

an improved segmentation result with a small number of

sample images. U-net can learn effective features by mul-

tiple layers from the sample dataset: sample image X and

ground truth Y constitute patch (X, Y), and pixel i in

image X and its label l, i in Y can be detected by filter

kernels and explained as xi. The L-layer network includes

a series of nonlinear transforms and pool layers:

( ) ( )= + ∈ …−f x wH b l L, 1, , ,i l l l1 (1)

where Hl is the covn layer l of the entire network, Hl −1 is

the pool layer, bl is a bias term, and wl is the parameter of

layer l (Figure 5).

Figure 4: Geomorphological map of the study area.

Figure 5: Extraction results of farmland parcels (partial). (a and c) Pre-extraction GE image; (b and d) results of farmland parcels extraction

for (a) and (c).
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3.3 Crop types identification

The farmland parcel layer was overlaid on SAR images;

the mean intensity value of VV within each single parcel

pixel was assigned to the corresponding parcel. Then, the

VV intensity value of ten SAR images were assigned to the

parcels one by one, and finally, the time series parcels for

crop type identification were constructed.

RNNs are designed to learn features from sequence

datasets, and they perform well in signal processing and

speech transformation [44,45]. Compared with CNNs, RNNs

mainly consider the contextual information of the sequence,

whichmeans that every state’s input covers the output of the

previous state [46–48]. In this study, an RNN structure with

long short-term memory (LSTM) [49] units is used to learn

the features from the established time series of optical and

SAR datasets to classify crops.

In this article, we selected the stack type to realize

the classification task. The deep architecture consists of

six LSTM layers for extracting high-level nonlinear time

characteristics from multitemporal remote sensing data-

sets. Moreover, another SoftMax layer was stacked on the

last unit to perform the multiclass prediction, and this

layer has the same number of neurons as the class

number. This structure allows every hidden layer to

determine the features on different time scales.

3.4 Crop type structure analysis using

landscape theory

Landscape has multi-characteristics such as diversity,

function, and scarcity, and these were descripted in

land space by patch of ecologic system. In this article,

we employed the landscape indices such as percentage of

landscape (PLAND), mean patch size (MPS), and CI, to

describe the crops distribution as types and scales and

then combined them to draw the landscape structure

containing CPS, spatial heterogeneity, and the correla-

tion with KRD.

PLAND was used for expressing the total percentage

of a certain crop type’s area. The higher the value was,

the larger the type of coverage. The formula for the

PLAND calculation is shown in equation (2):

∑= / ×
=
a APLAND 100.

i

n

ij

1

(2)

CI and MPS were employed to draw the fragment of

certain type. They are reciprocal to each other, but CI

expresses the mean parcel size and MPS shows the

number of parcels in certain zone. The formulas for the

CI and MPS calculation are shown in equations (3 and 4):

∑= /
=
a NMPS ,

i

n

ij j

1

(3)

∑=
=

N aCI .j

i

n

ij

1

(4)

In the formulas (1)–(4), a is the area value; i is the

parcels’ number (from 1 to n); j is the crop type; A is the

sum of areas of farmland in study area; N is the sum of

number of farmland parcels.

4 Results and analysis

4.1 Results of farmland parcels extraction

and crops classification

There are 270,833 parcels that were extracted and cover

20897.19 ha. Of these, 234,780 parcels (17893.86 ha) are
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Figure 6: The proportions of various crops in karst and non-karst areas.
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situated within karst area, the rest 36,053 parcels (3003.33 ha)

are situated within Non-karst area. According to SAR time

series, farmland parcels were divided into seven crop types:

rice (35%), corn (24%), onion (11%), yam (13%), tobacco (2%),

vegetables (5%), and others (10%). The crops in the study

area are mainly distributed in the karst area (86.68%), and

only 13.32% are distributed in the non-karst area (Figures 6

and 7) (Table 4).

4.2 Evaluation

We used six UAV images data for manual visual interpre-

tation, and compared with the extracted planting type.

The crop classification results of the accuracy assessment

are as follows: the rice is 86.14%, the corn is 78.96%, the

onion is 89.13%, the yam is 64.53%, the tobacco is

68.17%, the vegetables are 71.44%, and others are 73.5%.

The overall accuracy is 75.98%.

4.3 Landscape analysis of CPS types

According to the proportion and distribution of the

planting structure in the study area, the planting types

with the PLAND index of the planting structure greater

than 20% were selected as the main landscape in the

region, and the planting types with the PLAND index

greater than 30% were selected as the absolute dominant

landscape [50]. Therefore, these areas were divided into

groups with different planting structures: the absolute

dominant CPS landscape of N1, N2, and K1 was “rice,”

Figure 7: CPS composition of different areas: (a) total CPS composition of different areas; (b) detail of (a).

Table 4: Quantity and area of various crops in karst and non-karst areas

Non-karst Karst Total

Area (ha) Parcels (plot) Area (ha) Parcels (plot) Area (ha) Parcels (plot)

Rice 1196.93 14,167 6212.08 80,867 7409.01 95,034

Corn 525.70 6,412 4600.34 64,244 5126.05 70,656

Onion 388.65 4,588 1802.90 21,594 2191.54 26,182

Yam 343.31 4,493 2319.17 30,251 2662.48 34,744

Tobacco 41.10 299 331.07 3,586 372.16 3,885

Vegetable 250.46 3,069 767.91 10,400 1018.37 13,469

Others 257.18 3,025 1860.40 23,838 2117.58 26,863

Total 3003.33 36,053 17893.86 234,780 20897.19 270,833
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the PLAND indices are 36.52, 42.82, and 46.38%, respec-

tively; the dominant CPS of K2–K5 was “corn,” the PLAND

indices are 32.60% (K2), 30.99% (K3-1), 42.05% (K3-2),

33.57% (K3-3), and 29.37% (K4-K5). The main landscape

of N1, N2, and K1 was “rice;” the main landscape of K2

and K3 was “rice-corn,” the sum of the PLAND indices

are 60.90% (K2), 44.29% (K3-1), 64.92% (K3-2), and

52.31% (K3-3); the main landscape of K4 and K5 was

“corn-onion-yam,” the PLAND indices are 29.37% (corn),

22.63% (onion), and 22.09% (yam).

The CI and MPS values are shown in Tables 5 and 6.

On the whole, the crops planting size of N1–K1 is rela-

tively uniform, while K2–K5 show great differentiation

and the landscape fragmentation increases. From a single

point, the CI of K2, K3-2, and K4–K5 are generally high,

and the MPS are low. These indicate that landscapes were

broken in these areas. On the contrary, the parcels of N1,

N2, and K1 with low CI and high MPS were highly

connected.

From the other point of view, the degree of the

tobacco landscape is the best. In the non-karst area, the

landscape of rice, corn, and onion is gradually dispersed.

In the karst area, especially the K2–K4, the rice, corn, and

vegetables with high CI and low MPS, it can be inferred

that the landscapes were fragmented and heterogeneous.

The graph also shows some patterns; the landscape

has the high connectivity in N1–K1, the value of CI ranges

from 0.52 to 1.73 and the landscape becomes discrete and

fragmented from K2 to K4, the value of CI ranges from

0.83 to 2.05. But K3-1 rendering features as shown from

Figure 8 the landscape was connective and the size was

equalization. Such differences also appear in the tables

and figures: the CI value were maintained a lower level,

presents a trough compared with K2 and K3-2 (Figure 9

and 10).

4.3.1 Coupling analysis of the crops’ spatial structure

and KRD spatial distribution

Based on the above analysis of the planting structure

landscape and rocky desertification (Figure 11), we sum-

marized the following coupling relationship between the

planting structure space and KRD space.

Table 5: CI values of different crops in different areas

CI (/ha) N1 N2 K1 K2 K3-1 K3-2 K3-3 K4-K5

rice 1.25 1.18 1.24 1.40 1.37 1.57 1.24 1.61 

corn 1.22 1.23 1.28 1.43 1.23 1.83 1.38 1.86 

onion 1.07 1.23 1.24 1.48 1.07 1.37 1.13 1.12 

yam 1.19 1.37 1.34 1.57 1.08 1.49 1.19 1.40 

tobacco 0.52 1.18 1.10 1.15 0.83 1.45 0.90 1.34 

vegetables 1.13 1.24 1.30 1.52 1.10 2.05 1.56 2.02 

other 1.23 1.20 1.32 1.40 1.00 1.52 1.25 1.41 
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Figure 8: PLAND value with different crop types in different areas.

Table 6: MPS values of different crops in different areas

MPS (ha) N1 N2 K1 K2 K3-1 K3-2 K3-3 K4-K5

rice 0.80 0.85 0.81 0.71 0.73 0.64 0.80 0.62 

corn 0.82 0.81 0.78 0.70 0.81 0.55 0.72 0.54 

onion 0.93 0.82 0.81 0.68 0.93 0.73 0.89 0.90 

yam 0.84 0.73 0.74 0.64 0.92 0.67 0.84 0.71 

tobacco 1.93 0.85 0.91 0.87 1.21 0.69 1.11 0.75 

vegetables 0.88 0.81 0.77 0.66 0.91 0.49 0.64 0.49 

other 0.81 0.84 0.76 0.72 1.00 0.66 0.80 0.71 
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Based on the analysis of the landscape distribution

of the main planting structures in the regions with dif-

ferent grades of rocky desertification, the PLAND index of

rice was K1 > N2 > N1 > K3 > K4–5, corn PLAND index was

K3 > K2 > K4–5 > K1 > N2 > N1, onion PLAND index

was K4–5 > K3 > K2 > K1 > N1 > N2, yam PLAND index

was K4–5 > K3 > N2 > N1 > K1, etc. Meanwhile, ranking of

CI index of rice in each KRD was N2 < N1 < K1 < K2 < K3 <

K4–5, the corn was N1 < N2 < K1 < K2 < K3 < K4–5, the

onion was N1 < N2 < K1 < K3 < K4–5 < K2, and the yam

was N1 < K3 < K1 < N2 < K4–5 < K2. The structure land-

scape dominated by rice gradually transitioned to corn,

onion, yam etc., from N1 to K5. The landscape based on

farmland parcels, it is the performance that paddy field

transitions dryland. This feature is well verified: with the

increase in rocky desertification grade, the proportion of

Figure 9: CPS composition map of N1 to K4; in the upper left corner of each image is the location of the image in the study area; the red box

in each image shows the randomly selected range and its enlarged image.
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paddy field decreased and the proportion of dryland

crops increased.

In the study area, rice is the absolutely dominant land-

scape in non-karst area and slight KRD area (PLAND

>30%). With the decrease in dominant food crop land-

scape, the proportion of other crops landscape increased,

and the landscape type of planting structure in the area

became richer. As can be seen from Table 3, from N1 to K4,

the landscape proportion of rice and corn decreased from

62 to 32%, and the landscape proportion of non-food crops

such as yam, green onion, and vegetables increased from

30 to 60%. We can conclude that the lower KRD level

caused the simpler crop structure, as the KRD grade

increased, the fragmentation and heterogeneity of farm-

land were increased, causing themore complex crop struc-

ture and more richer landscape types.

KRD caused the fragmentation of the planting land-

scape. Combined with the existing research results, soil

moisture is the difference between paddy field and dry-

land landscape [51]. With the deepening of rocky deser-

tification, soil moisture also decreases gradually, which

reflects the degree of rocky desertification [52]. It can be

concluded that the landscape of planting structure gra-

dually changed from rice to dryland crops structure with

the increase in the rocky desertification. This pattern of

change in the planting structure testifies to the degree of

water scarcity in the land.

5 Conclusion

The environmental suitability of crops is crucial to the

adjustment of planting structure in karst mountainous

areas. In the past, there have been a lot of studies on using

optical satellite images to draw crop maps. However, due

to the limitations of mountainous terrain and climate,

there were problems such as difficulty in obtaining optical

remote sensing data sources, mixing image elements,

and salt and pepper noise. To solve these problems, our

research focused on the identification of planting structure

based on farmland geo-parcels and the analysis of the

coupling relationship between planting structure and geo-

graphical environmental background.

We used GE high-resolution image to obtain the

boundary of the block, and constructed a time series

dataset from the SAR microwave image of the Sentinel-1

satellite. Considering the farmland geo-parcel’s charac-

teristics and crop growth characteristics in karst moun-

tainous areas, we have made a large number of cultivated

land and crop type samples. According to different terrain

backgrounds, different segmentation models were used

to extract the cultivated land boundary and then the

crops were classified by using RNNs network in the

time series dataset at the parcel level, which achieved a

good accuracy. We demonstrated the great potential of

SAR in the identification of implant structures.

Combined with some geographical background data,

we analyzed the relationship between the planting

Figure 10: Crops’ spatial structure and KRD spatial distribution.

Figure 11: Soil type map of the study area.
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structure and the rocky desertification environment.

From the perspective of landscape science, some con-

clusions are drawn: the paddy field size is inversely

correlated with the degree of rocky desertification; the

landscape size of dryland crops is positively correlated

with the degree of rocky desertification; The increase in

the corn landscape often indicates a more fragmented

landscape. Fewer rice landscapes often mean more com-

plex and fragmented landscapes. Our results indicated

that the planting structure indicates the extent of rocky

desertification to some extent. There is a mutual influ-

ence and restriction on each other, human intervention

plays a guiding role in this relationship.

There are still some limitations in this study. On the

one hand, farmers are the determinants of the planting

types, and farmers’ decisions depend on the environ-

mental suitability of crops and the judgment of economic

market. Our study only analyzed the limitations of nat-

ural environment. On the other hand, this study mainly

focuses on the information acquisition and analysis of

large-scale satellite remote sensing and land parcel scale.

Under sufficient conditions, it can combine with more

microscopic ground sample (soil, water, etc.) analysis

to obtain more accurate results to guide production.

These questions will be studied in our future work.
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