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For centuries ecologists have studied how the diversity and func-

tional traits of plant and animal communities vary across biomes.

In contrast, we have only just begun exploring similar questions

for soil microbial communities despite soil microbes being the

dominant engines of biogeochemical cycles and a major pool of

living biomass in terrestrial ecosystems. We used metagenomic

sequencing to compare the composition and functional attributes

of 16 soil microbial communities collected from cold deserts, hot

deserts, forests, grasslands, and tundra. Those communities found

in plant-free cold desert soils typically had the lowest levels of

functional diversity (diversity of protein-coding gene categories)

and the lowest levels of phylogenetic and taxonomic diversity.

Across all soils, functional beta diversity was strongly correlated

with taxonomic and phylogenetic beta diversity; the desert micro-

bial communities were clearly distinct from the nondesert commu-

nities regardless of the metric used. The desert communities had

higher relative abundances of genes associated with osmoregula-

tion and dormancy, but lower relative abundances of genes asso-

ciated with nutrient cycling and the catabolism of plant-derived

organic compounds. Antibiotic resistance genes were consistently

threefold less abundant in the desert soils than in the nondesert

soils, suggesting that abiotic conditions, not competitive interac-

tions, are more important in shaping the desert microbial com-

munities. As the most comprehensive survey of soil taxonomic,

phylogenetic, and functional diversity to date, this study demon-

strates that metagenomic approaches can be used to build a pre-

dictive understanding of howmicrobial diversity and function vary

across terrestrial biomes.

shotgun metagenomics | soil microbial ecology | 16S rRNA gene

sequencing | biogeography

Soil microorganisms play critical roles in regulating soil fer-
tility, plant health, and the cycling of carbon, nitrogen, and

other nutrients. Every gram of soil harbors thousands of bacte-
rial, archaeal, and eukaryotic taxa, and this taxonomic diversity is
mirrored by the diversity of their protein-encoded functions,
encompassing a seemingly limitless array of physiologies and life
history strategies. Although these characteristics of soil microbial
communities have been known for decades, the ongoing devel-
opment of high-throughput molecular tools (and the tools nec-
essary to analyze the associated flood of data) allow microbial
ecologists to characterize the taxonomic, phylogenetic, and func-
tional diversity of soil microbial communities to an extent that was
unimaginable only a few years ago. We can now move beyond
detailed studies of individual soils to conduct detailed compar-
ative studies of soils across broad spatial gradients.
Perhaps the most dramatic and well-studied spatial gradients

in biological diversity are those that exist across the major global
terrestrial biomes. Different biomes typically harbor distinct
assemblages of macrobial (plant and animal) taxa and ecologists
have spent many decades describing the apparent differences
in biological diversity. Although comparable research on the

biogeographical patterns exhibited by microbial taxa has lagged
far behind research on plant and animal communities (1), we
are beginning to understand how soil microbial diversity varies
across the globe and how this diversity is related to the physical,
chemical, and biological characteristics of ecosystems. In partic-
ular, we now know that soil bacterial communities are strongly
influenced by pH, which explains a large proportion of the var-
iance in soil bacterial diversity and community composition at
local (2, 3), regional (4–6), and continental scales (7). Soils with
near-neutral pH typically have higher bacterial diversity than
more acidic or more basic soils and the relative abundances of
many bacterial phyla have been shown to be strongly correlated
with soil pH (7). Of course, soil pH is not the only factor that can
influence bacterial communities and there is evidence that other
microbial taxa that are abundant in soil (including Archaea,
fungi, and protists) do not necessarily exhibit the same bio-
geographical patterns observed for bacteria (2, 8). Changes in
the types and quantities of organic carbon added to soil can have
considerable influences on soil microbial communities (9, 10)
and, depending on the gradients being studied or the experi-
mental treatments imposed, other factors such as soil tempera-
ture, moisture, and nutrient availability have also been shown to
influence microbial structure in soil.
Although our understanding of the phylogenetic and taxo-

nomic biogeography of soil microbial communities continues to
expand, there has been limited progress in understanding how
the functional capabilities of soil microbial communities change
across biomes. For individual well-studied soil microbial pro-
cesses (e.g., N2 fixation) (11) or specific extracellular enzymes (12),
researchers have been able to document their interbiome char-
acteristics. Likewise, previous work has demonstrated how specific
functional groups or gene categories can vary across space (e.g.,
ref. 13). However, we lack an integrated understanding of how
the functional genes encoded in their collective genomes act to
structure communities across environmental gradients. Although
we might expect an overall correlation between taxonomic com-
position and the functional attributes of soil microbial communi-
ties, this may not always be the case as distinct taxa can share
specific functional attributes and closely related taxa may have
very different physiologies and environmental tolerances (14). As
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a result, we cannot rely entirely on our understanding of the
biogeographical patterns in the taxonomic or phylogenetic struc-
ture of soil microbial communities to predict the functional
attributes or the functional diversity of these communities (15).
Using shotgun metagenomic sequencing, the direct sequencing
of the collective genomes found in a given environmental sample,
researchers have gained important insight into the potential func-
tions of microbial communities from individual soil types (16, 17)
and soils that have been experimentally manipulated in the labo-
ratory (18). The value of shotgunmetagenomic analyses is that a far
more comprehensive understanding of the traits microbes may use
to survive in an individual soil can be identified, traits which are
often very difficult to measure using biogeochemical or culture-
based approaches (19). To our knowledge, such tools have not yet
been used to directly compare microbial metagenomes across soils
representing a range of different biomes.
The current study was designed to test the hypothesis that the

microbial communities found in desert soils are taxonomically
and functionally distinct compared with those found in other
biomes and that the variability across different desert sites is less
than the variability between desert and nondesert biomes. This
was predicated on the fact that at least three of the main factors
known to shape the composition of soil microbial communities:
pH, moisture availability, and inputs of plant-derived organic car-
bon, are often very different between desert and nondesert soils.
Desert soils are drier, typically have higher pH soils than other
biomes, and the paucity (or complete absence) of plant biomass
reduces the inputs of organic carbon. We used shotgun meta-
genomic sequencing of soils from 16 sites representing a wide
range of ecosystems (forests, grassland, tundra, and deserts) to
determine how the functional capabilities of soil microbial com-
munities vary across the major global terrestrial biomes and the
extent to which these capabilities are predictable. We addressed
three basic questions: Do deserts (both cold and hot) harbor
microbial communities that are taxonomically, phylogenetically,
and functionally distinct from those found in forests, grasslands,
and tundra? What functional attributes distinguish desert and
nondesert soil microbial communities? Can we use information
on the taxonomic diversity and composition of soil microbial
communities to predict their functional attributes?

Results and Discussion

General Characteristics of the Soil Microbial Communities. Soils were
collected from 16 sites: 3 from hot deserts, 6 from Antarctic cold
deserts, and 7 from temperate and tropical forests, a prairie grass-
land, a tundra, and a boreal forest (Table S1). The sites were
selected to span a wide range of ecologically distinct biomes to
examine how cold desert soils compare with hot deserts, and to
forests, prairie, and tundra. Using a shotgun metagenomic ap-
proach, we obtained a total of 3.9–11 million 100-bp sequences
per sample (390–1,100 Mbp per sample). Only 13–23% of the
sequences (688,000–1,900,000 reads per sample) could be an-
notated using the technique applied (Table S2), a percentage
similar to that reported in previous studies that used shotgun
metagenomic sequencing to characterize soil microbial commu-
nities (17, 20) and communities in other highly diverse microbial
habitats (21, 22). As survey depth can affect estimation of the
relative abundances of gene categories, all of the shotgun met-
agenomic datasets were rarefied by randomly subsampling 688,000
annotated reads per sample before downstream analyses.
The majority of the shotgun metagenomic reads were derived

from bacteria, as shown by the analysis of both the large-subunit
(LSU) and small-subunit (SSU) rRNA reads recovered from the
metagenomic data. Between 74% and 96% of either the SSU or
the LSU reads were assigned to bacterial or archaeal taxa (Table
S3). Although fungi and other eukaryotes can represent a large
portion of the microbial biomass contained within soils, their
representation in the metagenomic data was low. A similar pat-
tern has been observed in comparable shotgun metagenomic
datasets obtained from other soils (17, 20) and is most likely a
product of many eukaryotic taxa (including fungi), having a far

lower ratio of rRNA gene copies per unit biomass than bacterial
cells. However, the ratio of fungal:bacterial rRNA reads did vary
across soils in this study, with temperate and boreal forests having
the highest fungal:bacterial ratios (Table S3), a pattern similar to
that noted previously (23).
An amplicon survey of a portion of the 16S rRNA gene was

performed to provide a higher resolution and more in-depth
analysis of the composition and diversity of the soil bacterial
communities. We used barcoded primers that target the V4 re-
gion of the 16S rRNA gene from both bacteria and Archaea with
the resulting amplicons sequenced on the Illumina HiSeq plat-
form (24). All samples were compared at an equivalent sequenc-
ing depth of 118,000 randomly selected 16S rRNA gene amplicons
per sample. These results show that all of the communities were
dominated by Acidobacteria, Actinobacteria, Bacteroidetes, Pro-
teobacteria, and Verrucomicrobia (Fig. S1), bacterial phyla that
are known to be relatively abundant and ubiquitous in soil (25).
Additional phyla including Chloroflexi, Cyanobacteria, Firmicutes,
and Gemmatimonadetes were also found in nearly all soils, but
their relative abundances were highly variable and typically rep-
resented less than 5% of the 16S rRNA reads in any individual
soil (although Cyanobacteria were more abundant in some of the
desert soils, Fig. S1). Archaea were relatively rare in all soils
(0.01–6.7% of reads) but were most abundant in the three hot
desert sites and one of the tropical rainforest sites (Fig. S1). The
observed range in archaeal abundances and the observation that
Thaumarchaeota were the dominant archaeal group in nearly all
of the soils validates results reported previously (8).

Comparison of Community Structure Determined via the Amplicon

and Shotgun-Metagenomic Approaches. The 16S rRNA gene data
obtained from both the amplicon and shotgun sequencing were
used to directly compare the taxonomic results obtained using
these two very different methods. We conducted this comparison
to determine whether biases introduced by both approaches may
influence the determination of bacterial community structure, as
suggested previously (26). Such biases may be derived from the
PCR process itself or because the 16S rRNA gene regions re-
covered from the metagenomic data can span the entire length of
the gene, whereas the PCR-based amplicon approach only tar-
gets the V4 region. Because different regions of the 16S rRNA
gene vary in the accuracy of their taxonomic assignments (27),
the two approaches may not necessarily give identical results.
However, this was not the case; the two methods generated nearly
identical estimates of bacterial community composition. This is
evident from the strong correlation between the Bray–Curtis dis-
tance matrices (Spearman r = 0.91, P < 0.001), and by directly
comparing the relative abundances of the dominant taxa (Fig. S2).
In addition, although the 16S rRNA amplicon dataset contained
orders of magnitude more of the 16S rRNA reads than the shotgun-
derived 16S rRNA dataset (118,000 and 1,884 reads per sample,
respectively), the estimates of taxonomic richness for each dataset
were significantly correlated (r2 = 0.81, P < 0.001). The strong
concordance between these two very different approaches suggests
that, at least across the wide range of soils examined here, the two
methods yield nearly identical estimates of the overall differences
in soil bacterial community diversity and composition.

Alpha Diversity Patterns. Alpha diversity, the richness and/or even-
ness of taxa or lineages contained within an individual commu-
nity, was highly variable across the 16 soils (Fig. 1). The richness
of the bacterial and archaeal communities ranged from <4,000
to >12,000 phylotypes per sample (Table S2) with all samples
compared at an identical sequencing depth. The cold desert soils
harbored far lower diversity than the other soils regardless of the
taxonomic or phylogenetic metric used (Fig. 1 and Table S2).
This trend is similar to that observed for invertebrates, with soils
from the McMurdo Dry Valleys in Antarctica having very low
levels of invertebrate diversity and extremely simple food webs
(28). Although it has been reported that these cold desert soils
harbor surprisingly high levels of bacterial diversity (29), we find
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that their diversity is actually far lower, on average, than that
found in other biome types.
As has been demonstrated previously (7), soil pH is a reason-

ably good predictor of prokaryotic diversity across the 16 soils
(y = −533x2 + 6,371x −8,823; r2 = 0.6, where x = soil pH and
y = phylotype richness). Soils close to neutral had the highest
diversity levels, whereas soils that were either very basic (the
desert soils) or acidic (the Peruvian tropical rainforest soil and
the Arctic tundra soil) had lower levels of diversity. As this study
only included 16 soils that differ in a wide variety of ways, we
cannot use this sample set to definitively identify the edaphic or
site factors responsible for the diversity patterns observed here—
indeed, there are many possible reasons why these soils harbor
such different levels of bacterial diversity. For example, it is pos-
sible that the low diversity of the cold desert soils is not directly
related to their very high pH levels, but rather due to their high
salinities, negligible plant-carbon inputs, or the extreme moisture
and temperature conditions encountered at those sites (29–31).
Although functional alpha diversity is less frequently mea-

sured, it is increasingly common for both macrobial ecologists
(32, 33) and microbial ecologists (15, 34) to consider the diversity
and distributions of functional traits (or functional genes) across
communities. Functional diversity (the richness of protein-cod-
ing gene categories identified out of 688,000 reads per meta-
genome, Fig. 1) was typically lowest in the cold desert soils,
intermediate in the hot desert soils, and highest in the nondesert
soils (a pattern unrelated to the percentage of reads that could
be annotated from each soil, Table S2). However, there was no-
table variation within these broadly defined categories. For exam-
ple, one of the cold desert soils (EB026) had far higher functional
diversity than the other cold desert soils. This is likely a result of
that soil having a broader array of genes associated with pho-
tosynthesis and carbon-fixation pathways than the other cold
desert soils, as evidenced from both the metagenomic data (Fig.
S3) and from the higher abundances of Cyanobacteria in that soil
compared with the other soils (Fig. S1).
There were significant correlations between functional diver-

sity and both the taxonomic (Fig. 1) and phylogenetic diversity
of the bacterial communities (P < 0.001 in both cases), with the
cold desert soils consistently harboring the lowest levels of di-
versity. This finding highlights that the overall diversity of func-
tional gene categories found in a given sample is, to some degree,
predictable from the taxonomic or phylogenetic diversity of the
microbial communities. A similar pattern has been observed in
other studies of microbial communities (16, 35, 36), demonstrat-
ing that functional redundancy at the genomic level is not so
pervasive as to obscure any relationship between these very
different metrics of diversity. However, the correlations between
functional diversity and taxonomic or phylogenetic diversity were
largely driven by the cold desert soils and were not significant

when the cold desert soils were omitted from the analyses (r2 <
0.2, P > 0.1 in both cases). This suggests that functional diversity
is not necessarily predictable from the taxonomic or phylogenetic
diversity of communities when comparing vegetated soils. Likewise,
it is worth noting that one of the samples with the highest levels
of metagenomic richness (the cold desert soil EB026) had nearly
the lowest level of taxonomic richness (Table S2), suggesting that
the types of taxa found in a community are also important to
consider when trying to predict functional diversity. Although it
is often observed that macrobial communities with lower taxo-
nomic or phylogenetic diversity have reduced functional diversity
(32, 33), this paradigm does not necessarily hold true for mi-
crobial communities.

Beta Diversity Patterns—Bacterial Community Composition. Biome-
specific differences between the 16 soil communities were evi-
dent from the 16S rRNA amplicon data (Fig. S1 and Fig. 2). The
desert soils harbored communities that clustered apart from the
nondesert communities when community differences were mea-
sured using either a taxonomic metric (Bray–Curtis distance,
Fig. 2) or a phylogenetic metric (unweighted Unifrac) with both
metrics yielding nearly identical patterns. The hot desert and cold
desert soils were taxonomically (Bray–Curtis analysis of similar-
ity, ANOSIM R = 0.91 and 0.89, respectively, P < 0.002 in both
cases) and phylogenetically (unweighted Unifrac ANOSIM R =

0.98 and 0.89, respectively, P < 0.005 in both cases) distinct from
those found in the nondesert soils. Also, whereas the cold and
hot desert soil communities were distinct (unweighted Unifrac
ANOSIM R = 0.65, P = 0.01), these differences were less than
the differences between the desert and nondesert soils. Although
different biomes clearly harbor distinct bacterial communities
(Fig. 2), the largest distinction was between the desert and
nondesert biomes with the cold and hot desert soils harboring
relatively similar bacterial communities.
The general taxonomic patterns evident in Fig. 2 are largely

driven by differences in the abundances of major taxonomic

Fig. 1. Differences in alpha diversity levels across 16 soils. X axis shows

taxonomic richness of the bacterial communities (number of phylotypes

out of 118,000 amplicon reads per sample). Y axis shows the functional gene

richness (number of functional gene categories identified from 688,000

annotated shotgun metagenomic reads per sample). See Table S2 for addi-

tional information on diversity levels across the 16 soils.
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groups. The Actinobacteria, Bacteroidetes, and Cyanobacteria phyla
were generally more abundant in the desert soils than in the non-
desert soils, whereas Verrucomicrobia and Acidobacteria showed
the opposite pattern (Fig. S1). Overall, the composition of the
desert soil communities surveyed here was similar to those
reported in other studies of cold and hot desert microbial com-
munities (30, 37). More generally, the results shown here confirm
the broad-scale patterns we would expect based on pH differ-
ences; high pH soils (such as those found in the desert soils in-
cluded in this study) typically have higher relative abundances of
Actinobacteria and Bacteroidetes with lower abundances of Acid-
obacteria compared with more acidic soils (6, 7). We note that the
cold desert soil EB017 has a high abundance of Acidobacteria but
these Acidobacteria belong to the class Chloracidobacteria that is
distinct from the acidobacterial group (Solibacteres), which domi-
nates in low pH soils; this is a pattern we would expect based on the
results reported in Jones et al. (38). Factors other than pH may
also be driving the bacterial community patterns evident in Fig.
S1 and Fig. 2. For example, taxa known to be tolerant of low
moisture conditions, including Actinobacteria (39), were more
abundant in the desert soils surveyed here, whereas those taxa
commonly associated with soils receiving higher rates of organic
carbon inputs (e.g., beta- and gammaproteobacteria (10), were
relatively less abundant in the desert soils.
Although Cyanobacteria and Proteobacteria were typically more

abundant in the hot desert soils than in the cold desert soils (Fig.
S1), the hot and cold deserts harbored relatively similar bacterial
communities (as noted above). Despite large differences in site
and edaphic characteristics, including the complete absence of
plants in the cold desert sites and very low mean annual tem-
peratures, cold and hot desert soil communities were relatively
similar. This suggests that other factors common across these
desert types (such as high soil pHs and low moisture levels) are
most important in structuring these communities.

Beta Diversity Patterns—Functional Genes. The beta diversity pat-
terns determined from the 16S rRNA gene analyses were nearly
identical to the patterns determined from a comparison of func-
tional gene abundances across the 16 soil metagenomes (Fig. 2).
The Bray–Curtis distances calculated from taxon abundances and
functional gene abundances were significantly correlated (Mantel
r = 0.76, P < 0.001). Likewise, there was a strong correlation
between unweighted Unifrac distances, a phylogenetic metric of
community similarity, and the Bray–Curtis distances in functional
gene abundances (Mantel r = 0.82, P < 0.001). Therefore, as with
the alpha diversity patterns, the concordance in beta diversity
patterns highlights that the overall functional differences between
the soil microbial communities were significantly correlated with
the differences in the composition of these communities. Our
findings are in line with comparable studies conducted in soil
(20) and other habitats that also found strong correlations
between metagenome composition and taxonomic composition
(34, 35, 40). Although individual functional genes may not
necessarily be correlated with community structure, the overall
functional attributes of soil microbial communities appear to be
predictable across broad gradients in soil and biome types if one
has information on the taxonomic or phylogenetic structure of
the communities.
Both the cold desert soils and hot desert soils had metagenomes

distinct in composition from those found in the nondesert soils
(ANOSIM R = 0.97 and 0.98 respectively, P < 0.005 in both
cases), a pattern clearly evident from the ordination plot (Fig. 2)
and the corresponding heatmap (Fig. S3). The large differences
between desert and nondesert soils were also evident from a
comparison of the relative abundances of functional genes clas-
sified at the lowest level of resolution (Fig. 3). After correction for
multiple comparisons, 13 of 28 major gene categories were signifi-
cantly different in abundance between desert and nondesert soils
(Fig. 3), patterns that were examined in more detail by identi-
fying the 35 specific gene categories (out of 417 in total) that
strongly differentiated the desert soil metagenomes from the

nondesert metagenomes (Fig. S4). The cold and hot desert mi-
crobial communities also had metagenomes that were distinct in
composition from one another (Fig. 2; ANOSIM R = 0.41, P =

0.03), but the differences between these desert soils were less
than the differences between the desert and nondesert soils.
Many of the gene categories that were more abundant in the

desert soils than in the nondesert soils were those related to core
metabolic functions (Fig. 3 and Figs. S3 and S4). Given that we
were determining relative abundances, the overrepresentation of
these gene categories in the desert soils may simply be a product
of the desert soils having reduced diversity; lower phylogenetic or
metagenomic diversity would presumably lead to an increase in
the relative abundances of those core genes that are shared by
nearly all cells and are required for cell survival and replication.
However, some of the observed differences in functional gene
abundances between the desert and nondesert soils may be more
directly related to the unique conditions found in deserts, in-
cluding lower moisture availability and reduced plant biomass.
For example, we would expect nutrient cycling rates to be lower
in desert systems than in more mesic systems due to moisture
constraints (41), a pattern that was confirmed by the higher
relative abundances of genes associated with nitrogen, potas-
sium, and sulfur metabolism in the nondesert soils (Fig. 3 and
Fig. S4). Likewise, exposure to frequent moisture stress may ex-
plain why the desert soils have higher relative abundances of
genes associated with dormancy/sporulation, stress proteins, and
amino acid metabolism (amino-acid–based solutes are commonly
used by bacteria for osmoregulation) (39). The desert soils had
lower relative abundances of genes associated with the degrada-
tion of complex organic compounds, including aromatics (Fig.
S4), a pattern likely related to the lower levels of plant biomass
found in the desert soils. Plants typically represent major sources
of organic carbon to soil and these pools of organic carbon are
often distinct (and more enriched in aromatics) (42) in soils
supporting more plant biomass than in soils where plants are less
abundant or nonexistent where we would expect microbe-derived
organic carbon pools to dominate.
One of the most striking differences between desert and non-

desert soil microbial communities was the differential abundance
of antibiotic resistance genes and other genes likely associated
with microbe–microbe competition. Genes associated with anti-
biotic resistance were far less abundant in the desert soils (aver-
aging 1.5% of the annotated reads) than in the nondesert soils
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Fig. 3. Relative abundances of major categories of functional genes in the

shotgun metagenomes obtained from the desert soils (both cold and hot

deserts) versus the other, nondesert, biomes. Asterisks and bold type in-

dicate those categories with significantly different relative abundances in

desert and nondesert soils (Bonferroni corrected P values <0.05, uncorrected

P values <0.002).
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(averaging 4.8% of the annotated reads, Fig. S4). Likewise, mu-
rein hydrolases, which cleave bacterial peptidoglycan and are
frequently associated with bacterial cell lysis (43), were consis-
tently more abundant in nondesert soils than in the desert soils
(Fig. S4). We hypothesize that these patterns reflect reduced mi-
crobial competition in the desert soils. The production of anti-
biotics and resistance to antibiotics are traits that are widespread
among soil bacteria and fungi (44, 45), with both models and ex-
perimental data suggesting that elevated microbe–microbe com-
petition should select for increased antibiotic production and
resistance (46–48). Likewise, murein hydrolase production has
been linked to antagonistic interactions between microbes and a
range of antimicrobial defenses (43). In the desert soils, where
conditions are less conducive to microbial growth, adaptations
that enhance microbial competition may be less important than
adaptations that allow for persistence of cells under adverse en-
vironmental conditions or the ability to respond rapidly to pulses
in moisture availability. Although additional work is required
to verify this hypothesis, our results do suggest that the intensity
of competitive interactions within microbial communities varies
as a function of environmental conditions, a phenomenon that has
frequently been observed in plant and animal communities (49, 50).
Only three major gene categories were significantly different

in abundance between the cold and hot desert communities (Fig.
S5): genes associated with the metabolism of carbohydrates and
aromatic compounds being relatively more abundant in the hot
desert soils. This pattern is further supported by the determina-
tion of functional gene abundances at a higher level of resolution
(Fig. S6) as we found genes associated with monosaccharide uti-
lization, carbohydrate transporters, and aromatic compound ca-
tabolism to be relatively more abundant in the hot desert soils. As
described above, these functional differences are likely linked
to differences in the quantity or quality of plant-carbon inputs,
because the hot desert soil microbial communities likely receive
far more plant-derived carbon than the cold deserts where plants
are absent.

Caveats. The shotgun metagenomic results presented above should
be considered carefully given that the technique has clear limi-
tations. First, with only 688,000 annotated metagenomic reads
per sample, we have not captured the full extent of the genomic
diversity contained within individual samples and deeper se-
quencing would have allowed us to describe changes in the rel-
ative abundances of rarer (yet potentially important) genes or
gene categories. Nevertheless, we were still able to detect clear
differences across biomes suggesting that, for certain questions,
shallower sequencing of many samples may be more useful than
deeper sequencing of fewer samples (51). Second, only 13–23%
of the sequence reads in this study could be annotated; the ge-
nomes of many important soil taxa have not been sequenced and
even fewer have been appropriately annotated. We are invariably
misannotating genes or ignoring genes that may have important
functions or may account for key differences across biomes, a
problem that plagues every study that uses shotgun metagenomic
analyses (52). Third, even though this study represents one of the
largest cross-site terrestrial metagenomic surveys conducted to
date, we recognize that the sites sampled here do not necessarily
represent each of the biomes in question and that even more
samples are required to adequately assess intrabiome variability.
However, given the strength of the patterns observed, particu-
larly the clear separation between desert and nondesert soils, we
suspect that more comprehensive analyses will further confirm
the general patterns observed here. Finally, we only examined
soils at a single time point per site, as it was not our goal to also
quantify the temporal variability in the soil metagenomes. Although
the metagenomes are unlikely to be static over time, previous
work has demonstrated that the temporal variability in the com-
position of soil bacterial communities is typically far lower than
the spatial variability (53–55) so we would expect the general
patterns observed here to persist across seasons.

Conclusions. This study represents one of the most comprehensive
analyses of soil metagenomes conducted to date with >1.2 Mbp
of 16S rRNA gene data and >390 Mbp shotgun metagenomic
data obtained from each of 16 soils (∼20 Mbp of 16S rRNA data,
and 6.2 Gbp of shotgun metagenomic data). However, even at
these sequencing depths, we have not surveyed the full extent of
microbial taxonomic, phylogenetic, or functional diversity found
within individual soil samples and, with only 16 soils, we have not
described the full range of soil microbial community types found
across the globe. Nevertheless, we were still able to detect strong
patterns in the datasets that highlight the predictability of soil
microbial community attributes across biomes. Like plant and
animal communities, the diversity and relative abundances of
major soil microbial taxa and functional gene categories can be
related to broad-scale gradients in biotic and abiotic character-
istics. Functional diversity was significantly correlated with phy-
logenetic and taxonomic diversity across the 16 soils, but these
patterns were driven by the very low levels of diversity observed
in the soils from the cold desert sites. The microbial metage-
nomes obtained from the cold and hot desert soils were relatively
similar to one another, suggesting that the composition and func-
tional attributes of the microbial communities in these two desert
types may be more comparable than often assumed (56). The
metagenomes recovered from the nondesert soils clustered together
apart from the desert soils even though they represented a wide
range of biomes that included tropical forests, tundra, and a prairie.
Microbial ecology continues to lag far behind plant and animal

ecology in our ability to resolve large-scale biogeographical pat-
terns in diversity, community composition, and functional attrib-
utes. However, this work highlights how coupling metagenomic
analyses with extensive cross-site sampling efforts can reduce this
disparity. As sequencing capacities continue to increase and tools
for analyzing the resulting data become more effective, we will
soon be able to expand upon the work presented here and gain a
more comprehensive understanding of how soil microbial com-
munities vary across time and space.

Materials and Methods
Additional information on sample collection and analytical methods is pro-

vided in SI Materials and Methods.

The cold desert soils were collected from various sites with the McMurdo

Dry Valleys region of Antarctica with the hot desert soils collected from sites

in the southwestern United States. The seven “nondesert” soils were col-

lected from tropical forests in Peru and Argentina, an arctic tundra in Alaska,

a native tallgrass prairie in Kansas, a temperate deciduous forest in South

Carolina, a temperate coniferous forest in North Carolina, and a boreal

forest in Alaska (Table S1). For both the 16S rRNA gene analyses and the

shotgun metagenomic analyses DNA was extracted from each soil sample

using the approach described in Fierer et al. (20). To determine the diversity

and composition of the bacterial communities in each of these soils, we

used the PCR-based protocol described in Caporaso et al. (24) that targets the

V4–V5 region of the 16S rRNAgene.Amplicon sequencingwas conductedonan

Illumina HiSeq2000 with processing of the reads conducted as described in

Caporaso et al. (57). For all downstream analyses, we rarefied to 118,000 ran-

domly selected reads per sample to correct for differences in sequencing depth.

Reads were assigned to phylotypes at the ≥97% sequence similarity level using

the open-reference phylotype picking protocol in QIIME (58). Shotgun meta-

genomic analyses were conducted on the soil DNA extracts following the Illu-

mina Paired-End Prep kit protocol with sequencing performed using a 2 ×

100 bp sequencing run on the Illumina GAIIx. Sequences were uploaded toMG-

RAST (59) for downstream analyses and data accession numbers are provided in

Table S2. Sequenceswere annotated to functional categories against theM5NR

database using BLASTX at an e-value cutoff of 1 × 10−2 and the SEED sub-

systems hierarchy. Downstream analyses were performed on the meta-

genomes evenly sampled at random to 688,000 annotated reads per sample.
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SI Materials and Methods

Sample Collection. The cold desert soils were collected from
various sites with the McMurdo Dry Valleys region of Antarctica
with the hot desert soils collected from sites in the southwestern
United States. The seven “nondesert” soils were collected from
tropical forests in Peru and Argentina, an arctic tundra in Alaska,
a native tallgrass prairie in Kansas, a temperate deciduous forest
in South Carolina, a temperate coniferous forest in North Car-
olina, and a boreal forest in Alaska (see Table S1 for additional
information on each of the collected soils). We did not analyze
replicate samples from individual sites as it was not our objective
to assess intrasite variability, but rather to assess the general pat-
terns structuring soil microbial communities across major biome
types. At each site, the upper 5 cm of mineral soil was collected
from 5 to 10 locations within a given plot of ∼100 m2 and com-
posited into a single bulk sample. For those sites with plants, soils
were collected during the peak of the plant growing season. All
soils were stored at −20 °C immediately after collection.

DNA Extractions. For both the 16S rRNA gene analyses and the
shotgun metagenomic analyses DNAwas extracted from each soil
sample using the approach described in Fierer et al. (1). Briefly,
10 g of soil from each sample was homogenized in a mortar and
pestle with liquid N2, and DNA was extracted from 0.25-g sub-
samples of each soil using the MoBio PowerSoil DNA extraction
kit modified with an additional incubation step at 65 °C for
10 min followed by 2 min of bead beating (2). To obtain suffi-
cient DNA for the shotgun metagenomic analyses, we conducted
4–12 replicate extractions per soil, with the replicates pooled
together using the approach described previously (1).

16S rRNA Gene Analyses via Amplicon Sequencing. To determine the
diversity and composition of the bacterial communities in each of
these soils, we used the protocol described in Caporaso et al. (3).
PCR amplifications were conducted in triplicate reactions for
each of the 16 soil samples with the 515f/806r primer set that
amplifies the V4–V5 region of the 16S rRNA gene. The primer
set was selected as it exhibits few biases against individual bac-
terial taxa and even the 100-bp Illumina reads should yield ac-
curate phylogenetic and taxonomic information (4). The primers
contain the appropriate Illumina adapters and the reverse primer
contains a 12-bp error-correcting barcode unique to each sample.
DNA was amplified in triplicate PCR reactions following the
protocol described previously (3), the triplicate reactions were
composited, and the amplicons from all samples were pooled to-
gether in equimolar concentrations. Sequencing was conducted on
an Illumina HiSeq2000 at the University of Colorado Genomics
Core Facility following the 2 × 100 bp paired-end protocol (3).
Quality filtering of reads and processing of the reads was con-
ducted as described in Caporaso et al. (5). After quality filtering,
we obtained 118,000–750,000 forward reads per sample; only the
forward reads were used for downstream analyses as it has been
shown that including the reverse read adds little additional in-
formation (6). For all downstream analyses, we rarefied to
118,000 randomly selected reads per sample to correct for dif-
ferences in sequencing depth. Reads were assigned to phylotypes
at the ≥97% sequence similarity level using the open-reference
phylotype picking protocol in QIIME (7). QIIME was used to
estimate both taxonomic and phylogenetic metrics of the pairwise
distances between communities (Bray–Curtis and unweighted
Unifrac distances, respectively). Alpha diversity was determined
using both taxonomic metrics (numbers of phylotypes and

Shannon index, H′) and a phylogenetic metric (Faith’s phyloge-
netic diversity).

Shotgun Metagenomic Analyses. Shotgun metagenomic analyses
were conducted on the same 16 DNA extracts used for the PCR-
based 16S rRNA gene analyses described. The laboratory pro-
tocol followed that described in the Illumina Paired-End Prep
kit protocol. Aliquots of each DNA sample were mechanically
sheared and products were size-selected to 170–180 bp and gel
purified. Sequencing was performed at Argonne National Lab-
oratory in the Institute for Genomics and Systems Biology Next
Generation Sequencing (IGSB-NGS) Core using a 2 × 100 bp
sequencing run on the Illumina GAIIx. Sequences were uploaded
to MG-RAST (Rapid Annotation using Subsystems Technology
for Metagenomes) (8) for downstream analyses. Data accession
numbers are provided in Table S2. Sequences were annotated to
functional categories against the M5NR database using BLASTX
at an e-value cutoff of 1 × 10−2 and the SEED subsystems hier-
archy. Reads that could not be annotated by MG-RAST were
discarded and subsequent analyses were performed on the met-
agenomes evenly sampled at random to 688,000 annotated reads
per sample. Pairwise distances between each of the 16 meta-
genomes were determined by calculating Bray–Curtis distances
from the relative abundances of reads in each of the level 2 gene
categories (of which there were a total of 417 across the 16 rar-
efied datasets). We used the level 2 abundances instead of the
abundances of individual annotated genes (of which there were
∼5,000) as this should yield a more conservative estimate of the
distances between metagenomes; individual genes should exhibit
less overlap between samples than analyses based on more broadly
defined functional categories. For taxonomic analyses of the small-
subunit (SSU) and large-subunit (LSU) rRNA reads, the shotgun
metagenomic data were compared with the Silva SSU and LSU
databases available through MG-RAST using a maximum e-value
of 1e−5, a minimum identity of 60%, and a minimum alignment
length of 15. For the more detailed analyses of the metagenomic
SSU (16S) rRNA reads obtained from bacteria and archaea, we
extracted 16S reads from these samples using QIIME by applying
a closed-reference phylotype picking process where we search
reads against the Greengenes database and discard reads that fail
to hit any sequences at greater than or equal to 90% identity. This
resulted in 83,486 16S reads across the 16 samples. The taxonomy
of each phylotype was assigned as the taxonomy of the best Green-
genes hit during the closed-reference phylotype picking process.

Statistical Analyses. We conducted principal coordinates analyses
in PRIMER (9), using as input the pairwise distances between
metagenomes (Bray–Curtis distances) or bacterial communities
(Bray–Curtis and UniFrac distances calculated from the 16S rRNA
gene amplicon data). To test whether sample categories harbored
significantly different metagenomes or microbial communities, we
used analysis of similarities (ANOSIM) tests as implemented in
PRIMER. Mantel tests were run to assess correlations between
metagenomic and bacterial community distance matrices. Mantel
tests were also used to compare the Bray–Curtis distances be-
tween taxonomic distributions determined via 16S rRNA am-
plicon sequencing versus shotgun metagenomic sequencing. To
determine whether the relative abundances of individual taxa or
functional gene categories were significantly different between
sample categories (or between the shotgunmetagenomic and PCR-
based analyses), we conducted pairwise t tests with P values cal-
culated using a Bonferroni correction for multiple comparisons.
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Fig. S1. Relative abundances of the major bacterial and archaeal taxa across the 16 soils examined here. Except for the crenarchaeal and euryarcheotal

groups, all phyla are bacterial. Numbers in cells indicate percentages, cells colored based on relative abundances (highest relative abundances in red).
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Fig. S2. Comparisons of the relative abundances (percentage of reads) of the dominant soil bacterial phyla determined using 16S rRNA gene data obtained

using the shotgun metagenomic approach (x axes) versus the 16S rRNA gene data obtained using the amplicon sequencing approach (y axes).

Fig. S3. The relative abundances of functional gene categories as determined from the shotgun metagenomic data with gene categories defined at the

lowest level of resolution. Values in each cell indicate percent abundance with the color of each cell indicating the z score for that particular gene category

(blue colors, negative z scores; red colors, positive z scores).
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Fig. S4. Specific gene categories that are relatively more or less abundant in desert soils than in soils from other, nondesert biome types. Only those gene

categories that are significantly different between the two categories of samples (Bonferroni corrected P values <0.05) are shown here; x axis shows the

relative percentage difference in abundance compared with the nondesert soils. Dark red symbols indicate cold desert soils; light red symbols indicate hot

desert soils.
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Fig. S6. Specific gene categories that are relatively less abundant in cold desert soils than in soils from the hot deserts. Only those gene categories that are

significantly different between the two categories of samples (Bonferroni corrected P values <0.05) are shown here. At this level of resolution, no individual

gene categories were significantly more abundant in the cold desert soils than in the hot desert soils.
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Table S2. Diversity metrics, MG-RAST IDs, and percent of metagenomic reads annotated

Biome type

Sample

ID

MG-RAST

ID

% of quality

reads

annotated

Metagenomic

richness (S)

Metagenomic

diversity (H′)

Bacterial 16S

richness (S)

Bacterial 16S

diversity (H′)

Bacterial 16S

phylogenetic

diversity (PD)

Polar desert EB017 4477900.3 14.5 1,535 6.39 4,527 5.31 300.0

Polar desert EB019 4477901.3 23.6 1,663 6.52 2,796 3.60 261.1

Polar desert EB020 4477902.3 17.3 1,376 6.33 4,936 5.79 305.6

Polar desert EB021 4477903.3 15.9 1,228 6.17 2,845 4.57 195.3

Polar desert EB024 4477904.3 17.2 1,386 6.34 4,124 5.56 270.0

Polar desert EB026 4477803.3 20.5 2,231 6.78 2,935 4.92 232.9

Hot desert MD3 4477805.3 16.4 1,948 6.60 8,895 6.72 485.8

Hot desert SF2 4477872.3 14.4 1,850 6.56 10,078 6.93 554.4

Hot desert SV1 4477873.3 17.3 1,981 6.68 9,929 7.14 527.4

Tropical forest AR3 4477875.3 13.3 1,814 6.51 9,264 5.72 537.1

Boreal forest BZ1 4477876.3 17.5 2,270 6.79 9,002 6.54 512.9

Temperate deciduous

forest

CL1 4477877.3 18.2 2,393 6.81 12,352 7.06 675.0

Temperate coniferous

forest

DF1 4477899.3 18.3 2,414 6.81 12,150 6.68 664.6

Temperate grassland KP1 4477804.3 17.2 2,193 6.72 10,253 6.60 557.4

Tropical forest PE6 4477807.3 15.6 2,317 6.70 8,772 6.66 476.8

Arctic tundra TL1 4477874.3 18.8 2,375 6.84 6,965 6.27 437.6

Percentages of quality-filtered shotgun metagenomic reads that could be annotated to functional gene categories and diversity indices calculated from

both the shotgun metagenomic data and the 16S rRNA gene amplicon data.

Table S3. Overall structure of the soil microbial communities

Cold desert Hot desert Other nondesert biomes

EB017 EB019 EB020 EB021 EB024 EB026 MD3 SF2 SV1 AR3 BZ1 CL1 DF1 KP1 PE6 TL1

SSU Archaea 0.30 0.04 0.20 0.16 0.31 0.09 1.85 3.06 3.08 3.37 0.14 0.00 0.00 1.28 0.53 0.00

Bacteria 80.24 94.34 94.80 96.60 95.24 95.30 90.62 85.47 87.97 85.56 73.64 76.63 76.99 86.84 87.76 89.81

Fungi (all) 7.54 0.15 0.85 0.21 1.09 1.21 2.36 3.93 3.26 2.56 11.21 10.33 9.32 3.54 3.63 3.53

Fungi (Basidiomycota) 0.30 0.00 0.12 0.05 0.07 0.09 0.32 1.02 0.28 0.54 6.45 5.48 3.01 0.10 0.30 0.71

Fungi (Ascomycota) 7.24 0.15 0.73 0.16 0.99 1.12 1.99 2.75 2.90 2.02 4.69 4.53 5.89 3.24 3.10 2.52

Streptophyta 1.48 4.46 1.30 0.63 1.06 1.52 1.15 1.78 0.89 2.83 1.83 1.27 2.05 3.63 1.89 1.51

Other eukaryotes 2.91 0.86 1.99 2.20 1.23 0.67 1.71 1.99 1.61 3.10 2.04 1.75 2.74 1.38 2.79 1.92

LSU Archaea 0.06 0.00 0.04 0.00 0.03 0.03 0.11 0.35 0.42 1.24 0.00 0.00 0.11 0.24 0.18 0.07

Bacteria 91.82 98.84 96.47 97.33 95.91 94.03 92.18 89.49 91.19 89.74 74.78 75.39 81.72 92.82 90.21 89.75

Fungi (all) 2.38 0.12 0.63 0.30 0.95 0.80 2.75 3.42 2.87 2.22 11.01 10.50 7.88 2.02 3.02 4.07

Fungi (Basidiomycota) 0.31 0.00 0.00 0.00 0.00 0.03 0.07 0.39 0.42 0.62 7.29 6.66 3.47 0.32 0.67 1.38

Fungi (Ascomycota) 1.53 0.12 0.60 0.30 0.66 0.62 2.28 2.86 2.38 1.48 3.41 3.42 3.68 1.37 1.51 2.69

Streptophyta 2.44 0.45 1.26 1.39 1.84 3.45 1.99 2.77 2.19 3.83 2.25 3.06 1.79 2.02 3.08 1.45

Other eukaryotes 1.47 0.47 1.00 0.69 0.60 1.05 0.62 0.74 0.53 0.87 1.26 0.96 1.37 1.21 1.33 0.58

Percentages of small-subunit (SSU) and large-subunit (LSU) rRNA gene reads from the shotgun metagenomic data that could be assigned to major

taxonomic groups. Category “Other eukaryotes” includes Mollusca, Nematoda, Arthropoda, Rotifera, and Annelida.
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