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Abstract

Background: In�ammation has been hypothesized to increase the risk of cancer development as an initiator or promoter, 

yet no large-scale study of inherited variation across cancer sites has been conducted.

Methods: We conducted a cross-cancer genomic analysis for the in�ammation pathway based on 48 genome-wide 

association studies within the National Cancer Institute GAME-ON Network across �ve common cancer sites, with a 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jn
c
i/a

rtic
le

/1
0
7
/1

1
/d

jv
2
4
6
/2

4
5
7
6
8
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://www.oxfordjournals.org/
mailto:rayjean.hung@lunenfeld.ca?subject=


R. J. Hung et al. | 2 of 10

A
R
T
IC

L
E

total of 64 591 cancer patients and 74 467 control patients. Subset-based meta-analysis was used to account for possible 

disease heterogeneity, and hierarchical modeling was employed to estimate the effect of the subcomponents within the 

in�ammation pathway. The network was visualized by enrichment map. All statistical tests were two-sided.

Results: We identi�ed three pleiotropic loci within the in�ammation pathway, including one novel locus in Ch12q24 

encoding SH2B3 (rs3184504), which reached GWAS signi�cance with a P value of 1.78 x 10–8, and it showed an association 

with lung cancer (P = 2.01 x 10–6), colorectal cancer (GECCO P = 6.72x10-6; CORECT P = 3.32x10-5), and breast cancer (P = .009). 

We also identi�ed �ve key subpathway components with genetic variants that are relevant for the risk of these �ve 

cancer sites: in�ammatory response for colorectal cancer (P = .006), in�ammation related cell cycle gene for lung cancer 

(P = 1.35x10-6), and activation of immune response for ovarian cancer (P = .009). In addition, sequence variations in immune 

system development played a role in breast cancer etiology (P = .001) and innate immune response was involved in the risk 

of both colorectal (P = .022) and ovarian cancer (P = .003).

Conclusions: Genetic variations in in�ammation and its related subpathway components are keys to the development of 

lung, colorectal, ovary, and breast cancer, including SH2B3, which is associated with lung, colorectal, and breast cancer.

In�ammation has been hypothesized to increase the risk of 

cancer development as an initiator or promoter through three 

primary processes: increased genetic mutations, anti-apoptotic 

signaling, and increased angiogenesis—all pivotal processes in 

tumor development and relevant for most of the cancer sites 

(1–3). Many studies have demonstrated that genomic variants 

in the in�ammation pathways are relevant to cancer suscep-

tibility (4–10), and The Pan-Cancer project coordinated by The 

Cancer Genome Atlas (TCGA) has demonstrated the importance 

and value of analyzing somatic data across tumor types (11–13). 

However, no large-scale study of inherited variation across can-

cer sites has been conducted. Therefore we investigated the 

potential pleiotropic impact of sequence variants in the in�am-

mation-related pathways across �ve cancer sites within the 

Genetic Associations and Mechanisms in Oncology (GAME-ON) 

Network established by the National Cancer Institute (NCI) and 

the Genetic and Epidemiology of Colorectal Cancer Consortium 

(GECCO) (14).

The GAME-ON Network was launched by NCI to capitalize 

on the extensive investment in cancer genome-wide associa-

tion studies (GWAS), with the overarching goal to integrate post-

GWAS research and to facilitate analyses that address research 

questions that are common across multiple cancer sites. The 

GAME-ON Network is focused on tumors that currently repre-

sent major public health burden, including cancer of the lung, 

ovary, breast, prostate, and colorectum, and has assembled 

extensive genomic data from these �ve cancer consortia, which 

constitute the basis of our cross-cancer analysis of in�amma-

tion pathway.

The goal of this investigation is not only to estimate the 

effect of single genetic variants in the in�ammation-related 

pathways, but also to estimate the contribution of the genetic 

variations in subcomponents within the in�ammation path-

way, such as immune response, cytokines, and in�ammatory 

response, among others. Standard pathway analysis approaches, 

such as gene-set enrichment analysis, have the limitations of 

potential gene size biases and typically rely on the most sig-

ni�cant single variants in a speci�c gene or pathway (15–17). On 

the other hand, hierarchical modeling (HM) based on Bayesian 

framework represents an alternative for addressing some of 

the shortcomings of standard pathway analysis by incorporat-

ing pathway information in the second-stage model, which 

accounts for the information from the full dataset, instead of 

the most signi�cant variants (4,18,19). It also has the advantage 

of providing effect size estimation in addition to the signi�-

cance level, which is lacking in most of the other pathway-based 

approaches. Therefore, we employed hierarchical modeling to 

estimate the effect of in�ammation-related pathways across 

�ve common cancer sites based on the genomic data available 

in the GAME-ON network.

Methods

Study Population

Within the GAME-ON Network (http://epi.grants.cancer.gov/

gameon/) and GECCO, forty-eight studies from North America 

and Europe participated in this investigation. All studies fre-

quency-matched case patients and control patients on at least 

age and sex, and all subjects were of European descent. The 

study characteristics are summarized in Supplementary Table 1 

(available online) (20–30). In total, 64 591 cancer patients and 

74 467 control patients were included in the current analysis. 

Table  1 summarizes the characteristics of the studies partici-

pating in this analysis, with the majority of the studies using 

Illumina genotyping platforms. All studies included have 

obtained approval from the institutional ethics review board, 

and informed consents were obtained from each study partici-

pant by the individual study coordinating center.

Gene and Variants Selection, Pathway Assignment

To identify relevant genes of interest we conducted keyword 

searches in pathway databases such as Gene Ontology (GO, 

including biological process, molecular function, and cellular 

component), Kyoto Encyclopedia of Genes and Genomes (KEGG), 

and The Pharmacogenomics Knowledge Base (PharmaGKB), as 

well as literature searches using keywords related to in�am-

mation, immune response, and cytokine. In addition, investi-

gators from the participating studies could nominate genetic 

variants in the in�ammation pathways based on preliminary 

results shown in their own cancer-speci�c study with P value 

of less than .01 and a minimum sample size of 500 case-control 

pairs. A total of 921 genes were identi�ed through the keyword 

searches and nomination. This list was then merged with the 

Illumina 550K BeadChip annotation database, resulting in a 

list of 12 370 genomic variants that are within 10 kb of a gene 

coding region and present on the Illumina 550K BeadChip for 

the subsequent statistical analysis. These 12 370 variants were 

categorized into 53 subcomponents related to the in�ammation 

pathway based on the Gene Ontology headings and KEGG key-

words (Supplementary Table 2, available online). Seventy-eight of 

the 921 genes that could not be assigned automatically through 

Gene Ontology and KEGG were then assigned to the most suit-

able category based on their biological function and literature 
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curation. In principle, there are three levels of the pathways for 

illustrative purposes. Note that genes can belong to multiple 

subpathway components depending on their biological func-

tions. In addition, a pathway component in a higher level can 

contain more genes than those included in its substructure, and 

the sublevel pathway components are not exclusively restricted 

to the genes in their Level 1 pathway. For example, IL6 is part 

of humoral immune response, immune system development, 

and regulation of immune response. These relationships are 

speci�ed through the second stage covariate matrix in the hier-

archical modeling. The distribution of the variants and genes 

of 12 370 markers in subpathway components are shown in 

Supplementary Table 2 (available online).

Quality Control Criteria of the Genomic Data

The main quality control (QC) criteria for each cancer con-

sortium are summarized in Supplementary Table  3 (available 

online). There are small variations across the cancer-speci�c 

consortium regarding the QC criteria, but in general, all cancer-

speci�c analysis has excluded subjects with sex discrepancy, 

high missing rate, non-European ancestry, unexpected dupli-

cates or relatedness, and excessive global heterozygosity. The 

variants with low call rates, low minor allele frequencies, and 

extreme departure from Hardy-Weinberg Equilibrium were 

excluded. The cutoffs used in each cancer-speci�c analysis are 

summarized in Supplementary Table 3 (available online).

Imputation

All imputation was conducted based on the 1000 Genome March 

2012 reference panel using either MACH or IMPUTE (31–33), with 

the exception of the lung cancer studies that were imputed to 

the HapMap2 reference panel. The difference in the imputation 

reference panel was not expected to have any meaningful effect 

on the results, as the variants included in our analysis are pre-

sent on Illumina 550K BeadChips. Therefore, they were either 

available as the directly genotyped data or can be reasonably 

captured by either 1000Genome or HapMap2 reference panels.

Statistical Analysis

The association between genetic variants and cancer risk was 

estimated with odds ratios (ORs) and 95% con�dence intervals 

(CIs) based on unconditional logistic regression. All effect esti-

mates from each study and pooled estimates were based on log-

additive models and represent per-allele odds ratios adjusted 

for age, principal components, and sex, if applicable. The study-

speci�c results were �rst combined within each cancer site by 

a �xed effects model. The methodology and the results of the 

cancer-speci�c results have been described previously (20,23,26–

30). The cancer-speci�c results were then combined using the 

association analysis based on subsets (ASSET) meta-analytic 

approach, which allows for disease heterogeneity and poten-

tial opposite directions of the same genetic variant on different 

cancer sites (34). It searches for the most parsimonious group-

ing based on the test statistics and the outcome variable can 

be any of the �ve cancers, not a single speci�c tumor type. In 

addition to overall cancer risk, we have also included major sub-

types of each tumor site, by lung cancer histology (adenocarci-

noma and squamous cell carcinoma) and ovary cancer histology 

(serous and endometrioid cancers), aggressiveness for prostate 

cancer, and estrogen receptor (ER) status for breast cancer. The T
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overlapping subjects amongst cancer subtypes (eg, overlap-

ping controls for lung adenocarcinoma and squamous cell car-

cinoma) and across cancer types (eg, UK ovary and UK breast 

GWAS both used control patients from Wellcome Trust Case 

Control Consortium, WTCCC) were accounted for in the covari-

ance matrix when estimating the standard errors. All statistical 

tests were two-sided.

LD Pruning

To avoid over-representation of pathways with high linkage dis-

equilibrium (LD), we pruned out those variants that were in LD 

(R2 > 0.7) before conducting the hierarchical modeling analysis. 

The variants with stronger statistical signi�cances in the LD 

pairs were retained. The LD pruning was done based on SNAP 

(Broad Institute) (35). After LD pruning at R-square threshold of 

0.7, 5066 markers remained for the pathway analysis.

Hierarchical Modeling (HM)

One of the major strengths of the HM approach is that prior 

knowledge of biological function and genomic properties can 

be incorporated into effect estimation for the genetic variants 

of interest. This information is incorporated via a second-stage 

covariate matrix, which was developed with gene-speci�c col-

umns to represent the pathway membership of speci�c genes.

Gene-speci�c columns were created based on the function 

of the genes using the biological process subontologies within 

the Gene Ontology (Supplementary Table  2, available online). 

Variables were created for each subcomponent related to the 

in�ammation pathway. The HM model was based on the meth-

odology described by Chen and Witte and others (4,18). It pro-

vides for a single distribution of effects of the variants and uses 

the second-stage covariate matrix to further emphasize those 

believed more strongly a priori to be causal. Complete statistical 

descriptions of the model have been published previously (18).

For variants with effects in opposite directions for different 

cancer types (such as TERT [36,37]), the magnitude of the asso-

ciations was estimated using the average of the absolute values 

of all regression coef�cients. The standard errors were esti-

mated based on folded normal distribution (38); the overlapping 

subjects were accounted for in the covariance using the equa-

tion described by Lin et al. (39), and the hierarchical modeling 

was conducted using R software.

Network Map

A Network Map was produced to visualize how each subpath-

way component is related to every other based on the size of the 

subcomponent (nodes), the overlapping coef�cient (edges), and 

statistical signi�cance of the subcomponents (40). The overlap-

ping coef�cient is estimated based on the number of overlap-

ping genes between subpathways divided by the minimum of 

the respective sizes of each subpathway. The subpathway com-

ponents that are more closely related would then be plotted in 

vicinity with edges connected. The Network map is produced by 

Cytoscape network visualization software (40).

Results

Figure  1 shows the associations between the genetic variants 

and cancer risk based on the ASSET single marker analysis in 

Manhattan plot. Sixteen variants representing �ve independ-

ent regions reached pathway-level signi�cance (P < 4x10-6): Four 

of them were accounted for by previously known cancer loci: 

CASP8, MAP3K1, TERT, HLA-BAT3 region (29,36,41–53). The results 

for the top 16 variants are shown in Supplementary Table  4 

(available online). Notably, one variant (rs3184504 in SH2B3) that 

was not previously known to be associated with cancer risk at 

chromosome 12q24 reached a GWAS signi�cance level P value of 

1.78 x 10–8, which accounted for the subset searches by ASSET. 

This variant was associated with risk of lung cancer (OR = 0.93, 

95% CI = 0.90 to 0.96, P = 2.01 x 10–6), colorectal cancer (GECCO 

OR = 0.91, 95% CI = 0.88 to 0.95, P = 6.72x10-6; CORECT OR = 0.88, 

95% CI = 0.84 to 0.94, P = 3.32x10-5), and breast cancer (OR = 0.95, 

95% CI = 0.92 to 0.99, P =  .009) (Figure 2A). It is not associated 

with prostate or ovarian cancer with odds ratios of 0.98 (95% 

CI = 0.94 to 1.02) and 1.00 (95% CI = 0.95 to 1.05), respectively.

In addition to SH2B3, the previously known cancer region 

TERT (as represented by rs2736100) demonstrated pleiotropic 

effects on lung adenocarcinoma (P = 1.66x 10–19), colorectal can-

cer (P = .015), and ovarian cancer serous subtype (P = .023), and 

Figure 1. Manhattan plot for the associations between 12 370 variants and cancer risk based on two-sided association analysis based on subsets (ASSET) analysis. The 

green line denotes the pathway-level signi�cance threshold at a P value of 4x10-6.
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CASP8 (represented by rs10931936) also had pleiotropic effect on 

breast cancer (P = 3.42x10-7), prostate cancer (P = 7.31x10-4), and 

lung squamous cell carcinoma (P = .01) (Figure 2, B and C).

The hierarchical model suggested �ve subpathway compo-

nents related to in�ammation having a more prominent role in 

carcinogenesis: immune system development (P = .025), activa-

tion of immune response (P  =  .028), innate immune response 

(P = .030), in�ammatory response (P = .008), and cell cycle genes 

that are relevant for in�ammation (P = .0001) (Table 2). To assess 

whether these associations were driven by a single cancer site 

or were common across cancer sites, we also estimated the 

pathway effect by cancer sites, and the results are reported 

in Table  2. The genes related to innate immune response 

were associated with colorectal (P  =  .022) and ovarian cancer 

(P = .003), while the rest of the statistically signi�cant pathways 

were mainly associated with one cancer site: The variants in the 

genes related to immune system development were shown to be 

associated with breast cancer (P = .001); the variants in cell cycle 

genes were only associated with lung cancer (P = 1.35x10-6); the 

genetic variants related to activation of immune response were 

only associated with ovarian cancer (P = .009), and the variants 

in in�ammatory response were only associated with colorectal 

cancer (P = .006). In general, the subcomponents of the in�am-

mation pathway are intricately related. The relation between 

the subcomponents is presented in the Network Map (Figure 3).

Discussion

Based on extensive genomic data from �ve common cancer sites, 

the current analysis identi�ed three loci in the in�ammatory 

Figure 2. Odds ratio and 95% con�dence interval for the following variants: (A) rs3184504 located in gene SH2B3 at Ch12q24 (the reference allele C; the effect allele T); 

(B) rs2736100 located in gene TERT at 5p15 (the reference allele A; the effect allele C); (C) rs10931936 located in gene CASP8 at 2q33 (the reference allele C, the effect 

allele T). CI = con�dence interval; CORECT = ColoRectal Transdisciplinary Study; GECCO = Genetics and Epidemiology of Colorectal Cancer Consortium; ER = estrogen 

receptor; OR = odds ratio;
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pathways associated with multiple cancers, including one novel 

pleiotropic locus at chromosome 12q24 associated with cancer 

of the lung, colorectum, and breast. The identi�cation of three 

pleiotropic loci in the in�ammation pathway is more than 

expected by chance under null hypothesis with pathway-level 

signi�cance level, and it provides encouraging evidence that 

common genetic mechanisms may underlie multiple cancers. 

The pathway analysis after accounting for correlated variants 

indicated that genes related to in�ammatory response, immune 

system development, activation of immune response, innate 

immune response, and cell cycle genes related to in�ammation 

have effects across different cancers.

The locus at chromosome 12q24 represented by rs3184504 

is mapped to a gene encoding SH2B adapter protein 3 (SH2B3), 

a key negative regulator of cytokine signaling (54,55). This mis-

sense variant results in an amino acid change from tryptophan 

to arginine at codon 262. This locus has been previously shown 

to be associated with several immunological characteristics 

(such as platelet counts [56,57), eosinophil counts [58], red blood 

cell counts [59]) and risk of chronic diseases such as rheumatoid 

arthritis (60), Type 1 diabetes (61), and coronary heart diseases 

(62). It was recently implicated in colorectal cancer risk (63). Our 

analysis showed a strong association between this locus and 

risk of lung, colorectal, and breast cancers, clearly demonstrat-

ing the pleiotropic effect of this new locus.

Pathway effects estimated by hierarchical modeling helped 

to identify the in�ammation subcomponents most relevant to 

cancer, speci�cally in�ammatory response, immune system 

development, activation of immune response, innate immune 

response, and cell cycle genes related to in�ammation. Our 

results suggest that although the genetic variations of in�am-

mation pathway are important for most of the tumor types, the 

driving subcomponents within in�ammation are different by 

cancer type with some degree of commonality across tumors. 

Each cancer site investigated is associated with multiple sub-

components of the in�ammation pathway, except for prostate 

cancer. Overall, genetic variation in innate immune response 

contributes to both colorectal and ovarian cancer, while genetic 

Figure 3. Network map for in�ammation pathways. Each node is a subcomponent, and the size of the node represents the number of the genes in that subcomponent. 

The edges are drawn if the overlapping coef�cient between the two nodes is greater than 0.3. The thickness of the edges represents the degree of similarity between the 

two subpathway components. The red node represents the subpathway component with statistical signi�cance level of less than .05 based on the hierarchical modeling.

Table 2. Number of genes and variants and signi�cance level of the �ve signi�cant in�ammation-related subpathways*

Cancer type

In�ammation- 

related cell cycle

In�ammatory  

response

Immune system  

development

Activation of  

immune response

Innate immune  

response

No. genes (no. variants) 14 (37) 83 (975) 324 (4910) 90 (1306) 197 (2411)

No. genes (No. variants) - After  

LD pruning at R2 of 0.7

11 (22) 66 (410) 302 (1979) 85 (528) 173 (925)

Overall P 1.23x10-4 .008 .025 .028 .030

Lung cancer P 1.35x10-6 .952 .239 .068 .054

Colorectal cancer P .333 .006 .518 .973 .022

Ovary cancer P .121 .594 .265 .009 .003

Breast cancer P .902 .058 .001 .114 .302

Prostate cancer P .810 .941 .566 .587 .194

* The pathway signi�cance levels were estimated based on the hierarchical modeling based on the method previously described in Chen et al. (18). LD = linkage 

disequilibrium.
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variants related to in�ammatory response are more relevant 

to colorectal cancer and those related to activation of immune 

response are particularly important for ovarian cancer. Genetic 

variants related to immune system development are mainly 

associated with breast cancer, and those related to cell cycle con-

trol genes are speci�cally related to lung cancer. Nevertheless, 

genetic variants related to in�ammation pathways did not seem 

to have an association with prostate cancer risk overall.

The role of in�ammatory response and colorectal cancer 

is an active research area, particularly because of its strong 

association with in�ammatory bowel disease and the use of 

nonsteroidal anti-in�ammatory drugs (64). In addition, the 

intestinal micro�ora are also important in maintaining the 

homeostatic immune function and regulation of in�ammatory 

response (8,65). Previous studies have shown that genetic vari-

ants and biomarkers (such as C-reactive protein, Interleukins, 

Serum Amyloid A) related to in�ammatory response are associ-

ated with colorectal cancer risk (2,64). Our results are consistent 

with these previous observations and suggest that the subcom-

ponent related to in�ammatory response is particularly impor-

tant for colorectal cancer development (3).

Innate immune response is a cell defense system (eg, neu-

trophils and macrophages) that does not involve recognition of 

a speci�c antigen, as opposed to the adaptive immune response 

(eg, B-cells and T-cells), which is a speci�c response to an anti-

gen (66,67). The innate immune cells are involved in tissue 

remodeling and repair, and the genes that are involved in this 

process include complement components (Cs), collectins, clus-

terins, killer cell lectins, mitogen-activated protein kinase (eg, 

MAP3K1), macrophage receptors, and toll-like receptors (TLRs), 

among others. Both innate and adaptive immune systems are 

crucial for the immune response to tumor cells, but it has been 

suggested that an environment with abundant innate immune 

cells as a result of chronic in�ammation can in turn promote 

angiogenesis and cell proliferation and lead to cancer progres-

sion (66–68). In addition, previous animal studies have shown 

that innate immune response to intestinal bacteria is suf�cient 

to promote colorectal carcinoma in mice (65,69–71). This is 

consistent with our �nding that genetic variants in the innate 

immune response appear to be associated with increased can-

cer risk, in particular for colorectal and ovarian cancer, while the 

genetic variants in adaptive immune response did not show an 

association as a whole (P = .67).

In addition to those related to innate immune response, 

our results indicated that genes related to the activation of the 

immune response also contribute to development of ovarian can-

cer. There is compelling evidence that factors related to immune 

response can alter the pathogenesis of ovarian cancers as well as 

the initiation of ovarian cancer through genetic and protein anal-

ysis (72–74). Our results are compatible with the previous reports 

that demonstrated the role of immune response in the initiation 

of ovarian cancer through genetic and protein analysis.

The immune system plays an instrumental role in main-

taining tissue homeostasis, cell regeneration, and prevention 

of infection and cell transformation. The development of the 

immune system is a fundamental process that occurs early in 

life but has profound effects on the ef�ciency of an individual’s 

immune response later on. The majority of the immune cells 

are derived from hematopoietic stem cells and then differen-

tiate into different cell lineages based on cell interactions and 

cytokines. The main genes that are involved in this develop-

mental process are interleukins (ILs), colony-stimulating fac-

tors (CSFs), genes related to Cluster of Differentiation (CDs), and 

SH2B3, among others. Our results indicated that those events 

that occur early in life are particularly important for breast 

cancer. Although there is a wealth of literature on immune 

response and the breast cancer prognosis (75,76), to our knowl-

edge this is the �rst study to indicate a role of immune system 

development in the initiation of breast cancer.

Our results based on hierarchical modeling suggest that 

cell cycle genes that are related to in�ammation response 

form a biologically important subcomponent for lung cancer. 

Speci�cally, TERT and BAG6/BAT3, both known cancer suscep-

tibility genes, are in this category: BAG6 (BAG Family Molecular 

Chaperone Regulator 6, previously known as BAT3) was �rst 

characterized as part of the human major histocompatibility 

complex class  III region and was also shown to be involved 

in DNA damage–induced apoptosis (77,78); telomeres, regu-

lated in part by TERT, are a center piece for anti-apoptosis, 

and cellular clock and telomere dysfunction was shown to be 

involved in chronic in�ammation in various different health 

conditions, including chronic obstructive pulmonary diseases 

(79–88). The results of our analysis are in line with the evidence 

established in previous studies and highlight the power of large 

sample sizes.

We applied hierarchical modeling to detect subpathway 

effects, as it has the advantages of not solely relying on the most 

signi�cant variant in the pathway; instead, it models the effect 

of all variants that belong to the same subcomponent through 

the second-stage prior matrix. One limitation of this approach 

is the possible violation of the exchangeability assumption. For 

example, some variants in the same subcomponent can have 

a larger effect and some can have a very modest effect. When 

the exchangeability assumption is violated, the effect estimates 

of truly causal variants may be shrunk toward the wrong prior 

mean. In most cases, this would be brought toward the null, 

underestimating the effect estimates. Nevertheless, previous 

simulation studies have demonstrated that hierarchical mod-

eling is relatively robust to the alteration of the priors, provided 

that the priors speci�ed are reasonable (4,89,90). In our analysis, 

we used the absolute value of the regression coef�cients from 

the �rst stage because the main research emphasis here is the 

size of the effect rather than its direction, which could vary from 

one variant to another and from one cancer site to another. 

Using the absolute value allows us to model the magnitude of 

the effect without concerns of heterogeneity of the directions 

across cancer sites and variants.

This study has notable strengths, including the large sample 

size and information derived from 48 genome-wide association 

studies across �ve cancer sites with a total of 139 058 individu-

als. It is the �rst large-scale genomic analysis for in�ammation 

pathways across major cancer types. We were not able to con-

duct another independent study with �ve cancer sites and an 

equal sample size for replication, given the uniqueness of this 

dataset. However, our results provided robust estimation based 

on ASSET and hierarchical modeling; both approaches aim to 

reduce the potential of false-positive results through multiple-

testing penalty or estimation shrinkage.

In summary, we have identi�ed novel regions with pleio-

tropic effects in the in�ammation pathways and identi�ed sev-

eral key subcomponents within the in�ammation pathway that 

are important for lung, colorectal, breast, and ovarian cancers. 

These results provide further insight into the etiology of these 

cancers and identify the differences and commonality related to 

the etiological role of in�ammation across tumor types.
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