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ABSTRACT In Internet of Things ecosystems, where various entities trade data and data analysis results,

public key infrastructure plays an important role in establishing trust relationships between these entities to

specify who trusts whose private keys. The owner of a private key is provided with a public key certificate

issued by a certificate authority (CA) representing a trusted third party. Although this certificate ensures

the reliability of the ecosystem by verifying the data source and preventing the denial of trading, it often

causes an overconcentration of trust in a particular CA. Consequently, if that CA is infringed, all the related

trust relationships become compromised. The paper proposes a distributed authentication infrastructure

called Meta-PKI that decentralizes such overconcentration via a cross-certification procedure performed

by multiple CAs. Although cross-certification is capable of establishing mutual trust relationships, it does

not evaluate the trustworthiness of other CAs in a standardized manner. Therefore, this paper also proposes

a new cross-certification method using a distributed ledger technology for building trust relationships based

on unified criteria. It also describes the implementation of a Meta-PKI system for Hyperledger Fabric as a

proof of concept. Once trust relationships have been established, it takes approximately 65.7 ms to validate

them using the proposed system, which is secure against CA takeover and spoofing by outsider attackers.

INDEX TERMS Blockchain, distributed authentication infrastructure, distributed ledger technology, Hyper-

ledger fabric, public key infrastructure.

I. INTRODUCTION

Data acquisition environments have evolved with the devel-

opment of Internet of Things (IoT) technologies. In the IoT

ecosystem [1], [2], data owners, data analysists, and data

consumers aim at coexistence and shared prosperity, and

when data are traded openly between various entities using a

certain platform, the shared prosperity is expected to facilitate

further data usage.

To ensure the reliability of data trading, it is necessary to

verify who trades what data, certify the data sources, and

prevent the denial of trading. Therefore, ensuring the identity

The associate editor coordinating the review of this manuscript and

approving it for publication was Luis Javier Garcia Villalba .

of a trading partner is a core task in developing a reliable data

trading platform.

Public Key Infrastructure (PKI) [3] is mainly used to guar-

antee identities. It is an infrastructure in which a certificate

authority (CA), which is a trusted third party, guarantees

the relationship between an entity and a public key. It also

contains a mechanism for verifying communication partners

by digital signatures. Each CA must be prepared for insider

and outsider threats by developing proper security measures

and training human resources. Nevertheless, some incidents

involving CA security breaches have occurred [4]–[6].

PKI trust relationships are often defined in accordancewith

a system’s architecture. A trust point essentially mediates

the trust relationship between two entities, which is extended
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when different trust points trust each other in any architecture

[7]–[9]. A trust relationship is established as follows: if entity

EA trusts a CA, and the CA identifies entity EB, then EA trusts

the identity of EB. Furthermore, if another entity EC is iden-

tified by the CA, the trust relationship with EA is extended

to EC . Meanwhile, if the CA builds a trust relationship with

another CA that identifies entity ED, the trust relationship

with EA is extended to ED across the trust point. Using this

method, the trust points of many entities are determined by

the CA.

In Internet server authentications, EA is a service user,

and EB, EC , and ED are service providers. The user trusts

the identities of the providers and uses their services. The

user can also trust other service providers without prior inter-

actions by trusting the related CA as a single trust point.

When a malicious service provider accesses a CA’s private

key illegally and creates a public key certificate, it is difficult

for the user to distinguish the malicious service provider from

valid service providers. As a result, all the trust relationships

established through this CA become compromised.

This paper proposes a distributed authentication infras-

tructure that decentralizes CA trust points so they are dis-

tributed among multiple service providers and connects them

via cross-certification. To illustrate the proposed approach,

a cross-certification method using a smart contract on Hyper-

ledger Fabric [10] is described. A smart contract is a function

that can read/write to a distributed ledger by following the

procedures defined in the source code. The proposed method

allows the creation of a unique framework that regulates

cross-certification in a unified manner.

The remainder of this paper is organized as follows.

Section II provides an overview of PKI and Hyperledger

Fabric. Section III discusses previous PKI-related work using

distributed ledger technology (DLT). Section IV presents

the principles and issues of CA trust point distribution and

describes the proposed distributed authentication infrastruc-

ture (Meta-PKI). Section V describes the Meta-PKI trans-

actions and management of the trust relationships. The

implementation of Meta-PKI is demonstrated in Section VI.

Section VII discusses the security of Meta-PKI, and the

conclusions and directions of future work are provided in

Section VIII. The abbreviations used in this paper are listed in

Table 1.

II. BACKGROUND

A. PKI

1) OVERVIEW

Internet PKI [3] is an infrastructure in which a CA validates

the relationship between an entity and a public key by issuing

a public key certificate that contains the distinguished names

(DNs) [11] of the entity. This certificate is mainly utilized to

verify the identity of a server via HTTPS.

The trust relationships established by a CA are shown

in Fig. 1. If the CA receives a certificate signing request

[12], it confirms the identity of the trustee and creates a

TABLE 1. List of abbreviations.

FIGURE 1. Trust relationships established by a CA.

corresponding certificate. The CA guarantees the identity by

signing the certificate with a CA private key. So that the

trustor may validate the identity of the trustee, the trustor

obtains the certificate and verifies its issuer. If the issuer is

confirmed to be a trusted CA by the trustor and the trustee

has a private key for that certificate, the trustor trusts the

identity of the trustee. Challenge–response authentication

protocols [13] are widely used methods for checking whether

the trustee has a private key corresponding to a public key

certificate.

Trust relationships are established by issuing certificates.

In a large-scale PKI system, one CA builds trust relationships

with another CA by issuing a certificate to its CA (this pro-

cess is called cross-certification). Huang and Nicol [14] used

first-order logic and presented the two main types of trust

semantics: trust in performance and trust in belief. Inspired

by Huang and Nicol [14], to represent the semantics of trust,

this paper uses the logical operators defined in Table 2 in its

formulas. Logical functors are also used and denoted as the

corresponding logical operator with a dot above it, e.g., ⊃̇ is

a function that mimics logical implication.

Trust in performance represents ‘‘trust in what the trustee

performs,’’ and can be denoted by trust_p(d, e, x, k). If infor-

mation x is produced by trustee e, then trustor d believes x in

VOLUME 8, 2020 135743



S. Kakei et al.: Cross-Certification Towards Distributed Authentication Infrastructure: A Case of Hyperledger Fabric

TABLE 2. List of logical operators for any formulas A, B.

the context of k . Formally,

trust_p(d, e, x, k)

≡ madeBy(x, e, k) ⊃ believe(d, k⊃̇x) (1)

Trust in belief represents ‘‘trust in what the trustee

believes,’’ and can be denoted by trust_b(d, e, x, k). If infor-

mation x is believed by trustee e, then trustor d believes x in

the context of k . Formally,

trust_b(d, e, x, k)

≡ believe
(

e, k⊃̇x
)

⊃ believe
(

d, k⊃̇x
)

. (2)

In definitions (1) and (2), information x is a concrete (rei-

fied) proposition representing either an assertion made by e

or a commitment made by e to perform (or not to perform) an

action. Further, context k is a reified proposition representing

the conjunction of a set of ‘‘propositions’’ that characterize

a context. For our purposes, a reified proposition represents

data, that is, x represents a public key certificate and k rep-

resents a set of issued and managed public key certificates.

Specifically, we use these definitions in the context of issuing

and managing public key certificates.

Uncertainty in trust, or distrust, is considered the negative

form of trust. According to the formal semantics described

in [14], distrust means that trustor d believes that x is false.

Formally, distrust in performance and distrust in belief are

defined as follows:

distrust_p(d, e, x, k)

≡ madeBy(x, e, k) ⊃ believe(d, k⊃̇¬̇x) (3)

distrust_b(d, e, x, k)

≡ believe(e, k⊃̇x) ⊃ believe(d, k⊃̇¬̇x) (4)

The trust relationships established among the end entities

(EEs), EEA and EEB, and CA are described using formal

semantics in Fig. 2. Here, CA issues a certificate for EEB’s

public key. EEA believes the certificate because EEA trusts

the performance of CA in the context of ‘‘issuing and main-

taining certificates.’’ In general, one PKI system consists of

multiple CAs, which can be arranged via either a hierarchical

model or a mesh model (Fig. 3) and build trust relationships

with each other. Even if a trustor cannot trust the CA that is

a trustee’s trust anchor, it can trust the CA’s performance by

inferring indirect trust propagated through trust in belief, as

follows:

trust_b(a, b, x, k) ∧ trust_p(b, c, x, k)

⊃ trust_p(a, c, x, k) (5)

FIGURE 2. Simplified representation of the semantics of trust in PKI (EEA
believes EEB’s public key x issued by CA).

FIGURE 3. Schematics of the hierarchical and mesh models.

trust_b(a, b, x, k) ∧ trust_b(b, c, x, k)

⊃ trust_b(a, c, x, k) (6)

With the above trust reasoning, an EE can trust other

CAs that its CA trusts in performance. Trust in belief is

transitive, but trust in performance by itself is not transitive.

For example, a patient trusts what his/her doctor believes

about healthcare and the doctor trusts the efficacy of drugs;

therefore, the patient indirectly trusts the efficacy of the

drugs. Moreover, friends of the patient may indirectly trust

the efficacy of the drugs.

2) COMPARISON BETWEEN THE HIERARCHICAL

AND MESH MODELS

Table 3 lists the comparative parameters of the hierarchical

and mesh models. First, the hierarchical model can expand

trust relationships to all CAs simply by establishing trust

relationships with the root CA because the root CA represents

a single trust point. In contrast, trust relationships must be

individually established in the mesh model because the mesh

model does not contain a single trust point. Second, because

the hierarchical model has a single trust point, its dependency

on this point is stronger than that of the mesh model. Conse-

quently, the hierarchical model can lower the reliability of the

entire system to a greater extent than the mesh model.

On the Internet, most CAs are created using the hier-

archical model because it enables trust relationships to be

easily expanded. Owing to vendor support, some public key

certificates of major root CAs are installed in primary Internet

browsers, and a server keeps a public key certificate that is
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TABLE 3. Parameters of the hierarchical and mesh models.

issued by a CA that comes under the major root CA that is at

the top of the hierarchy. Consequently, a client can establish

a trust relationship with the server.

B. HYPERLEDGER FABRIC

Hyperledger Fabric [10] is a platform for a distributed ledger

framework. The ledger conducts data operations in a key–

value format without a specific administrator and is managed

by multiple peers; the peers have ledgers with the same con-

tent and form a distributed ledger network. Data are written

to the ledger after an agreement that cannot be changed later

is reached among all peers.

The data written to the ledger are managed by a set of

units called a block. The block has a chain structure with

a hash value computed from the previous block using a

cryptographic hash function. For this reason, block tampering

is detected as a disruption in the chain structure due to the

mismatch of the subsequent hash value.

Fig. 4 shows the Hyperledger Fabric scheme. All peers in

the distributed ledger network are connected to each other.

Each peer has a distributed ledger with the same content

and multiple chaincodes CC , which are also known as smart

contracts. The distributed ledger consists of a blockchain and

a world state. The blockchain has a journal of transactions

that records read/write values (RW-set) to the ledger with a

key, and the world state is a key–value store with all values

versioned for each transaction.

The blockchain consists of multiple blocks arranged in a

particular order. Block Bn contains the hash value Hn−1 of

the previous block Bn−1 as well as that of block-data Dn and

signature Sn created by a block generator. Data Dn include

the transactions Tn = {T 1
n ,T 2

n , . . .} that connect the RW-set

to the world state. A read/write value in any given transaction

cannot be arbitrarily determined.

The client requests a peer to generate T by specifying

CC . The chaincode defines the operations performed on the

distributed ledger network and reads/writes to the ledger to

prevent writing arbitrary data.

Fig. 5 shows a flowchart of the Hyperledger Fabric trans-

action flow. The steps are as follows.

Step 1. The client requests the execution of a chain-

code. In the distributed ledger network, the peers

responsible for the execution of a chaincode (called

endorsers) are determined when the chaincode is reg-

istered in the network. During the execution request,

the client sends arguments and the chaincode name

to the endorsers.

FIGURE 4. Description of Hyperledger Fabric.

Step 2. The endorsers execute a chaincode. Each endorser

executes the chaincode specified by the client

with the arguments and creates an RW-set signed

with its private key. This signature serves as evi-

dence that the endorser has executed the chain-

code. Finally, the endorser sends the signature to the

client.

Step 3. The client collects the signatures. To create a trans-

action, the client must collect signatures from a suf-

ficient number of endorsers. The total number of

signatures is specified at the time of the chaincode

registration. For this reason, the client performs steps

1 and 2 for the endorsers. Finally, the client creates a

transaction with the RW-set and the signatures.

Step 4. The client sends the transaction to an orderer.

The client requests a peer called an orderer to

reflect the transaction in the ledger. The orderer col-

lects multiple transactions, arranges batches of the

submitted transactions into a well-defined sequence,

VOLUME 8, 2020 135745



S. Kakei et al.: Cross-Certification Towards Distributed Authentication Infrastructure: A Case of Hyperledger Fabric

FIGURE 5. Transaction flow in Hyperledger Fabric.

and packages them into a block. The number of

transactions in a block depends on either the block

size or block generation interval.

Step 5. The orderer distributes the block to all peers.

Transactions may conflict with each other because

the orderer receives requests from multiple clients

in parallel. The orderer checks all the RW-sets in

the transactions and stores the block to its ledger

while determining invalid transactions. The invalid

transactions are marked as invalid. After the block is

finalized, the orderer distributes the block to all peers.

Step 6. The peers store the block to the individual ledger.

To prevent unauthorized writing to the ledger,

the peers check whether the transactions have been

signed by the endorsers and the block has been signed

by the orderer. Invalid transactions are ignored and

valid transactions are stored in individual ledgers

whose contents are identical for all peers.

III. RELATED WORK

In the current PKI model, if the trusted third party fails, the

entire system will be affected. Hence, several DLT-based PKI

systems have been proposed to distribute this risk of failure.

These types of systems are divided into twomain groups: PKI

operated by DLT and PKI enhanced by DLT.

A. PKI OPERATED BY DLT

In this type of PKI system, the public key lifecycle is man-

aged by DLT. The public key lifecycle management process

(including registration, revocation, and validation stages) is

generally performed by either a trusted third party (the CA

model) or a public key owner (the pretty good privacy (PGP)

model) [15].

1) CA MODEL

In the CAmodel, a CA is the trusted third party that performs

the lifecycle management process. As described in Section II,

a CA issues a public key certificate, which confirms the

relationship between the public key owner’s domain and

the owner’s public key. In essence, the CA’s private key is

controlled by the CA. Under this condition, a certificate user

believes the certificate owner if the corresponding public key

certificate is signed by the CA. Thus, certificate users can

believe all certificate owners just by trusting the correspond-

ing CAs. Meanwhile, attackers can deceive all certificate

users by obtaining a CA private key, which is the main reason

why a CA is a single point of failure.

CAmodels that use DLT have been proposed. For instance,

Al-Bassam [16] proposed a smart contract-based PKI that is

a decentralized PKI and identity management system. In that

system, the owner is represented by an Ethereum address

with three data fields: Attribute, Signature, and Revocation.

Attribute stores the owner’s PGP key, and Signature has a

signature of Attribute signed by the owner. When revoking a

signature, the owner creates a Revocation field that contains

its identification.

In addition, Qin et al. [17] developed a distributed

blockchain-based PKI named Cecoin that is based on
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Bitcoin. Here, distributed nodes in a P2P network man-

age public key certificates with domain names using

a decentralized certificate library based on the Merkle

Patricia trie.

2) PGP MODEL

In the PGP model, a public key owner performs the life-

cycle management process. This model does not contain a

trusted third party such as CA, and each user in the system

manages key pairs by himself (herself). When building trust

relationships, a user takes the public key of another user and

verifies whether it is owned by a legitimate user because

a trusted third party does not certify the owner of a public

key. Validation methods for checking the owners of public

keys include reliable transportation measures and the Web-

of-Trust. Reliable transportation measures for receiving pub-

lic keys could include face-to-face contact, e-mail exchange,

or cloud storage. In contrast, if a user does not have reliable

transportation measures, he or she can obtain a valid public

key with the help of acquaintances (this method is called the

Web-of-Trust). As an illustration, we consider a situation in

which Alice is not acquainted with Carol but wants to verify

Carol’s public key. At the same time, Alice is acquainted with

Bob, who is acquainted with Carol. Hence, Bob signs Carol’s

public key with his private key. After Alice has successfully

verified the authenticity of Carol’s public key, she recognizes

it. The PGP model is a decentralized authentication model

because each user checks the validity of public keys without

depending on a trusted third party. Therefore, the costs of

key distribution in this model are higher than those in the CA

model. A PGP keyserver can be used to distribute public keys

and signatures; however, it may also become a single point of

failure.

Yakubov et al. [18] reported that a public key cannot be

obtained when the keyserver has failed, and a fake pub-

lic key can be returned instead during a man-in-the-middle

attack. The authors proposed a blockchain-based framework

(BlockPGP) to provide reliable management for OpenPGP

certificates and the keyserver infrastructure.

Hammi et al. [19] proposed a decentralized blockchain-

based authentication system for IoT. The key concept of their

system is a bubble, which consists of one Master node and

several Follower nodes. Each of these nodes corresponds to

an IoT device, which authenticates and communicates with

other devices in different bubbles.

B. PKI ENHANCED BY DLT

As described in Section II, the hierarchical PKI model is

widely used on the Internet. To take advantage of the exist-

ing PKI ecosystem, various methods have been proposed to

enhance the CA functionality using DLT instead of replacing

the CAs with DLT.

Conventionally, a CA only issues a public key certificate

according to the applicant’s request. Therefore, only the enti-

ties involved know that this certificate exists. This approach

can enable a fraudulent certificate to be issued for the follow-

ing reasons:

(1) A malicious applicant can request a certificate that

is similar to an actual certificate because the certificate is

identified by a DN. For example, a server (an applicant)

can apply for a public key certificate that has a confusing

Common Name in the DN (e.g., examp1e.com where the

letter ‘‘l’’ is replaced by the digit ‘‘1’’). This strategy can be

utilized in a homograph attack [20].

(2) A compromised CA can issue a certificate without

undergoing regular procedures. When an attacker obtains

a CA’s private key, he or she can create a certificate that

contains an impersonating DN.

If a fraudulent certificate is issued legitimately, it is dif-

ficult to identify it as a false certificate. For this reason,

certificate transparency (CT) [21] was proposed as a method

for increasing the transparency of issuing public key cer-

tificates. In CT, a log server guarantees the transparency of

issued certificates by creating publicly auditable logs. Public

key certificate owners and CA administrators can verify that

the certificates were not issued illegally by checking the logs.

However, the log server in this scheme is a single point

of failure. Hence, CT schemes based on DLT have been

proposed.

Madala et al. [22] proposed a CT using blockchain that

utilizes a private blockchain (Hyperledger Fabric). In their

method, a CA, which is a member of the blockchain network,

issues a public key certificate and stores it in a distributed

ledger along with a revocation state (revoked/not revoked).

The distributed ledger distributes the certificate to all peers

and guarantees that it cannot be tampered with.

Kubilay et al. [23] proposed CertLedger, which is a PKI

architecture with a CT based on a public blockchain. CT can

improve the transparency of certificates, but an adversary can

create a malicious log to provide evidence that unauthorized

certificates are contained in it (the split-world attack [24]).

Furthermore, CT only ensures the transparency of issuing

certificates, not the transparency of revocation. To resolve

these issues, CertLedger validates, stores, and revokes certifi-

cates using a public blockchain. During the issuance process,

a trusted CA manages the CertLedger certificates. In the

revocation process, the domain owner can revoke certificates

instead of CAs.

Yao et al. [25] developed a privacy-preserving blockchain-

based certificate status validation scheme (PBCert). It stores

certificate operations in a blockchain to support public audits

and efficient revocation checking, which uses the online cer-

tificate status protocol. A CA, which may be an honest-but-

curious entity, can track the server accessed by the user by

checking whether the server certificate has been revoked or

not. PBCert preserves a client’s privacy by impeding this

operation using a shortened hash value and bloom filters.

C. SUMMARY OF RELATED WORK

The conventional PKI models require a trusted third party

as a trust anchor to efficiently extend the trust relationships
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FIGURE 6. Scopes of various entities in the hierarchical PKI model.

established with others. In the PGP model, the user evaluates

the trustworthiness of other entities without relying on a

trusted third party, instead establishing trust relationships

with them directly. Although a trusted third party is not

required for building trust relationships, it is effectively

utilized for public key distribution and thus represents a single

point of failure. To eliminate such a point, decentralized PKI

models including PKI operated by DLT and PKI enhanced by

DLT have been proposed.

In contrast, this study proposes a new cross-certification

PKI system enhanced by DLT. In this model, each CA

evaluates the trustworthiness of other CAs to establish trust

relationships with them. The proposed system uses smart

contracts to write rules for trustworthiness evaluation and

formulates unified trustworthiness criteria without a single

point of trust.

IV. DISTRIBUTED AUTHENTICATION

INFRASTRUCTURE: META-PKI

A. MAIN PRINCIPLE

In the hierarchical PKI model, shown in Fig. 6, the root CA

issues certificates to subordinate CAs, and the subordinate

CAs issue certificates to EEs. Because CAs are trust points

responsible for issuing and managing certificates, the scope

of the responsibility expands in a chain as the hierarchy

deepens. Consequently, all trust points are concentrated at the

root CA. We call this the overconcentration of trust.

Matsumoto et al. [26] proposed two important properties:

scoped authority and global authentication. These properties

enable EEs who trust each other to communicate even if they

are located in separate domains. Every domain has a trust

anchor that is trusted by all the EEs in that domain, and

that trust anchor establishes a trust relationship with another

trust anchor in another domain. Thus, the authority of the

trust point can be limited within each domain while enabling

communication between domains.

In [26], the domains can represent groups of various scales,

such as companies, conglomerates, or countries, but overcon-

centration of trust will occur in groups where PKI systems are

built using the hierarchical model. To prevent the overconcen-

tration of trust, we build trust points at service levels such that

the trust points do not span multiple services. In the proposed

method, a root CA is operated by a service provider.

B. PROBLEM

If each service provider becomes a trust point and estab-

lishes mutual trust relationships with other service providers

by cross-certification, the concentration of trust points at a

certain root CA can be prevented. In cross-certification, a CA

evaluates the trustworthiness of other CAs and issues public

key certificates with the private key of the issuer. A verifier

can check the trust relationships established between various

CAs by verifying the public key certificate. Because the trust-

worthiness of cross-certification is based on the evaluation

process, the trustworthiness of all trust relationships cannot

be guaranteed just by cross-certification according to the

expert criteria of each service provider.

In this study, we construct a framework for the

cross-certification procedure and propose a suitable

cross-certification method without expert knowledge by

automating its main steps.

C. OVERVIEW OF META-PKI

Fig. 7 shows the Meta-PKI scheme, which consists of three

layers: an EE layer, a CA layer, and a Meta-CA (mCA) layer.

• The EE layer contains a group of EEswho request public

key certificates from the CAs.

• The CA layer consists of a group of CAs generated by

the Meta-CA. This layer guarantees the identities of the

EEs and includes their trust point.

• The mCA layer is connected to the distributed ledger

network and consists of a group of Meta-CAs that per-

form cross-certification using a chaincode. The Meta-

CA establishes a trust relationship with otherMeta-CAs,

and this layer includes a trust point for CAs. The founder

of the Meta-PKI system defines the operational policy

framework and chaincodes so that the trust relationship

is built at the policy level. Moreover, each Meta-CA sets

an operational policy according to the framework. The

policy level is represented by a decimal value in the

range from 0.0 to 1.0. The proposed method calls this

value a ‘‘score,’’ and the Meta-CA trusts another Meta-

CA that has a higher score.

As shown in Fig. 7, the public key certificate owned

by a Meta-CA and a policy specification are stored in the

distributed ledger. A Meta-CA owns one self-signed public

key certificate mCaCert , generates public key certificates

CaCert for subordinate CAs, and issues public key certifi-

cates CrossCert to other Meta-CAs for cross-certification.

The obtained certificates are stored in the world state of

the distributed ledger with the identity IDmCA of the mCA.

Moreover, the world state manages the policy of Meta-PKI

specifications using policy_spec as a key. The policy defines

scores for various Meta-PKI parameters such as types of the

cryptographic algorithm.
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FIGURE 7. Meta-PKI scheme.

If a CA can issue a certificate without restrictions, certifica-

tion paths may become more complex [27]. To automate the

cross-certification procedure, the certification paths should

be as simple as possible. In the proposed system, an mCA

performs cross-certification and issues certificates only to

the subordinate CAs that are located in the same domain,

as shown in Fig. 7.

V. SCORE BASED CROSS-CERTIFICATION USING

HYPERLEDGER FABRIC

A. META-PKI TRANSACTIONS

Meta-PKI defines eight transactions that primarily consist

of cross-certifications and trust relationship verifications.

Table 4 lists the data and keys stored in the ledger when a

transaction is performed. In the proposed method, the speci-

fications of the Meta-CA operational policy are stored using

policy_spec as a key, and the Meta-CA information is stored

under the identification name ID of the Meta-CA in a hierar-

chical format.

The entities in the following transaction descriptions

use the notations shown in Fig. 7. Let EX be an entity

E identified by X , and let VE be a variable V iden-

tified by E . In the entity representation, let mCA be a

Meta-CA, and in the variable representation, let Cert
EA
EB

be a public key certificate specifying that EA issues Cert

to EB.

TABLE 4. Keys and values stored in the distributed ledger.

1) INITIALIZATION TRANSACTION (INI-TX)

A Meta-CA initializes the Meta-PKI system with INI-Tx.

In this study, this Meta-CA is called the ‘‘initiator’’ to dis-

tinguish it from other Meta-CAs.

The founder defines the operational policy of all Meta-

CAs used in the Meta-PKI system, and the initiator stores the

policy in the ledger using policy_spec as a key. In Table 4,

the policy utilized for a public key certificate is defined in

the CERTIFICATE section. The public key certificate policies
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of the Meta-CA and CA are stored in the MCA_CERT and

CA_CERT subsections of the POLICY section, respectively,

using the IDmCA key.

The CERTIFICATE section consists of the signature algo-

rithm (SIGN_ALGO), key algorithm (KEY_ALGO), and valid-

ity period (VALIDITY_PERIOD) of the public key certificate.

The initiator assigns a score value to each policy in the range

from 0.0 to 1.0. The SPEC and SECTION sections are defined

depending on the Meta-PKI application.

2) PARTICIPATION TRANSACTION (PAR-TX)

The Meta-CA participates in the Meta-PKI system via PAR-

Tx. It sets PolicymCA and generates mCaCert represented by

CertmCAmCA. PolicymCA and CertmCAmCA are stored in the ledger

using IDmCA as a key (Table 4). If the same ID is used,

the transaction will fail.

3) DEPLOYMENT TRANSACTION (DEP-TX)

The Meta-CA deploys a CA via DEP-Tx. It generates a

key pair of the CA and CaCert represented by CertmCACA ,

and adds IDCA and CertmCACA in the CA_CERT section with

the key IDmCA to the ledger, as shown in Table 4. The

CA deployed by this transaction is a general CA that

issues a public key certificate to the EEs via the protocols

defined in [3].

4) ELIMINATION TRANSACTION (ELI-TX)

The Meta-CA eliminates a specified CA from the Meta-CA.

ELI-Tx does not delete CaCert and adds the date of the CA

elimination in the IDCA subsection of the CA_CERT section

with the key IDmCA to the ledger, as shown in Table 4.

5) CONSTRUCTION TRANSACTION (CON-TX)

The Meta-CA on the trustor side (mCAX ) builds a trust rela-

tionship with the Meta-CA on the trustee side (mCAY ) via

CON-Tx. First, mCAX computes scores of both Meta-CAs

(ScoremCAX , ScoremCAY ). If ScoremCAY is greater than or equal

to ScoremCAX , mCAX generates a cross-certificate CrossCert

represented by Cert
mCAX
mCAY

for mCAY . Subsequently, mCAX

executes CON-Tx to add Cert
mCAX
mCAY

to the ledger. In CON-

Tx, both scores are recomputed, and IDmCAY and Cert
mCAX
mCAY

are added to the CROSS_CERT section with the IDmCAX key

(see Table 4) after confirming that ScoremCAY is greater than

or equal to ScoremCAX in CON-Tx.

Here, Score is computed recursively from the weighted

average in the POLICY section using the IDmCA key. It is a

decimal value in the range from 0.0 to 1.0.

6) DESTRUCTION TRANSACTION (DES-TX)

DES-Tx uses mCAX to destroy the trust relationship estab-

lished with a specified mCA. DES-Tx does not delete the

CrossCert certificate and adds the date of the destruction

of the trust relationship in the IDmCA subsection of the

CROSS_CERT section with the key IDmCAX to the ledger,

as shown in Table 4.

7) UPDATE TRANSACTION (UPD-TX)

The administrator of Meta-CA executes UPD-Tx when

updating PolicymCA. UPD-Tx needs the new PolicymCA that

will replace the old PolicymCA and its signature. To avoid

unauthorized updates, the signature has to be signed with the

private key corresponding to CertmCAmCA.

8) VALIDATION TRANSACTION (VAL-TX)

VAL-Tx validates the trust relationship built between two EE

s. We describe our validation procedure using Fig. 8 as an

example. In other words, we explain how believe
(

EEX , k⊃̇p
)

is satisfied, where k is the context of ‘‘issuing and maintain-

ing certificates,’’ and p is the performance metric charac-

terizing the issuance and maintenance of EEY ’s certificate

by its trust anchor. Here, CAY2 is EEY ’s trust anchor, and

mCAY isCAY2’s trust anchor. In this case, the certificate chain

becomes mCAX−mCAY−CAY2.

FIGURE 8. Trust relationships established between various entities from
EEX to EEY in Meta-PKI.

The trust relationship between EEX and CAY2 can be

derived as follows:

trust_b(EEX ,mCAX , p, k)

∧ trust_b (mCAX ,mCAY , p, k)

⊃ trust_b(EEX ,mCAY , p, k) (7)

and

trust_b(EEX ,mCAY , p, k)

∧ trust_p (mCAY ,CAY2, p, k)

⊃ trust_p(EEX ,CAY2, p, k). (8)

As a result, the following trust relationship between EEX and

EEY is inferred.

madeBy (p,CAY2, k) ∧ trust_p(EEX ,CAY2, p, k)

⊃ believe(EEX , k⊃̇p) (9)

According to this reasoning, Cert
CAY2
EEY

is verified through

the certification path from EEX ’s root CA to EEY . This

work performs certificate verification via the formula

Verify_Cert(a, b), where a is the public key certificate to

be verified, and b is the public key certificate used in

the verification. It also verifies DEP-Tx via the function
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FIGURE 9. IoT ecosystem described in [1].

Verify_DepTx(CertAB), which checks that CertAB is stored in

the IDB subsection of the CA_CERT section with the key IDA.

First, the issuance of Cert
CAX1
EEX

by CAX1 is verified as

Verify_Cert
(

Cert
CAX1
EEX

,Cert
mCAX
CAX1

)

. (10)

Second, the addition of Cert
mCAX
CAX1

to the ledger by mCAX
through DEP-Tx is checked using

Verify_DepTx
(

Cert
mCAX
CAX1

)

. (11)

Third, the issuance of Cert
mCAX
CAX1

by mCAX is verified as

follows:

Verify_Cert(Cert
mCAX
CAX1

,Cert
mCAX
mCAX

). (12)

Fourth, the establishment of a trust relationship between

mCAX and mCAY through CON-Tx is verified as

Verify_Cert
(

Cert
mCAX
mCAY

,Cert
mCAX
mCAX

)

, (13)

Verify_Cert
(

Cert
mCAY
mCAY

,Cert
mCAX
mCAY

)

. (14)

Finally, the issuance of Cert
mCAY
CAY2

by mCAY is verified as

follows:

Verify_Cert
(

Cert
mCAY
CAY2

,Cert
mCAY
mCAY

)

(15)

and

Verify_DepTx
(

Cert
mCAY
CAY2

)

. (16)

As a result, the trust relationship can be derived by verifying

that Cert
CAY2
EEY

is issued by CAY2 as follows:

Verify_Cert
(

Cert
CAY2
EEY

,Cert
mCAY
CAY2

)

. (17)

VAL-Tx returns ‘‘success’’ if the entire verification pro-

cedure is successful. No data are stored in the ledger via

VAL-Tx.

B. SERVICE PROVIDERS AND TRUST RELATIONSHIPS

In the Meta-PKI system, a service provider that operates an

mCA can establish the trust relationship with another service

provider that has a higher score. If the score is lower, the trust

relationship is not established. This score acts as a barrier that

blocks trust relationships with unreliable service providers.

However, because a service provider is responsible for the

availability of a service, it is not possible to simply destroy

trust relationships even if the service provider’s score is no

longer sufficient. Depending on the type of service, it is

necessary to determine whether the trust relationships should

be destroyed.

As an example of service provider collaboration, we con-

sider IoT ecosystems for data trading. Some data trading

ecosystems, such as those of [28], [29], are incorporating

Blockchain and IoT. Fig. 9 shows an IoT ecosystem that

is based on [1]. The owner of the IoT devices is a data

owner (DO) who owns the data generated by its devices. The

DO sends the data to a data analyst (DA). TheDA analyses the

provided data and returns the results. Moreover, the DA sells

the new knowledge obtained from all the provided data to a

data consumer (DC). The DC develops new products using

this knowledge.

The DO, DA, and DC are considered domains and various

competitors deploy services in each domain. In this scenario,

the trust relationships are established from the DA to the DO

and from the DC to the DA. For instance, let us suppose

that the DA establishes trust relationships with many DOs to

collect large amounts of data, and the DC establishes trust

relationships with the selected DAs to obtain good quality

knowledge. Further, suppose that the DA’s operational policy

is being updated for security. Because the DA has estab-

lished trust relationships with many DOs, service availabil-

ity is ensured even if the DA automatically destroys trust

relationships with some DOs with lower scores. In contrast,

it may be difficult for the DC to destroy trust relationships,

even if the DA’s score is lower than that of the DC. In this

case, the administrator has to manually maintain the trust

relationships.

In both these situations, both the DA and DC need a mech-

anism for detecting score updates so they can react quickly.

In Hyperledger Fabric, such a mechanism, which is called an

Event [30], is available.

In addition to operational policy update, it is possible

to update the trust relationships by changing the service

architecture, which is split or merger. If one service is split

into multiple services, new trust relationships have to be

established depending on the services to be used. If multi-

ple services are merged into one service, unnecessary trust
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FIGURE 10. Meta-PKI system architecture.

relationships must be destroyed. These two cases should be

handled manually rather than automatically; service admin-

istrators should control the trust relationships using the

Meta-PKI transactions while taking relationships with other

services into account.

VI. IMPLEMENTATION

A. OVERVIEW

Fig. 10 shows the Meta-PKI system architecture. In this

study, it is implemented on a single machine running an

Alpine Linux v3.9.4 operating system [31] using the Docker

v18.09.6-ce platform [32]. This machine was installed on

VirtualBox v6.0 [33], which ran on a Windows 10 machine.

This system uses the sample implementation of Hyper-

ledger Fabric [34], which includes the ‘‘fabric tools,’’ ‘‘fabric

orderer,’’ and ‘‘fabric peer’’ containers. The roles of these

containers are as follows. ‘‘Fabric tools’’ is a utility that

controls the distributed ledger network and performs the

installation and execution of chaincodes. This container also

has the shell script ‘‘mpki.sh,’’ which generates public key

certificates with OpenSSL [35] for all Meta-CAs. ‘‘Fabric

orderer’’ performs an ordering service, and ‘‘fabric peer’’

performs a peer service. The Meta-CAs and CAs were imple-

mented using fabric peer containers.

The number of fabric peer containers can be changed by

varying the system configuration. Such containers are usu-

ally deployed on multiple machines operated by different

service providers. A user logs in directly to the guest oper-

ating system with the Almquist shell (ash) [36], which is the

default shell of Alpine Linux and controls the fabric tools

container.

The Meta-PKI chaincode was implemented using the Go

programming language [37]. It was implemented as a single

executable file, and its transactions are selected by arguments.

Because data are stored in the ledger in a hierarchical format,

this system uses the JSON format [38].

B. EVALUATION

1) CHAINCODE SECURITY

A chaincode can be written in a general-purpose programing

language, such as Golang, NodeJS, or Java. Such languages

contain a wide array of existing source code that allows

developers to implement chaincodes more easily. However,

these languages were not originally designed for writing

chaincodes, whichmay lead to some challenges. As described

in Section II, because each transaction originates from the

multiple RW-sets generated by endorsers, a chaincode must

be able to consistently produce the same RW-set. If different

RW-sets are generated, the transaction will fail.

Yamashita et al. [39] identified 14 potential risks resulting

from the nondeterminism of the Hyperledger Fabric chain-

code written in Golang. These risks are caused by the lan-

guage instructions, access outside the Blockchain, and other

reasons. Table 5 lists the potential risks and their effects on

the proposed system. They can be divided into four cate-

gories: 1) nondeterminism arising from the language instruc-

tions, 2) nondeterminism arising from the access outside the

blockchain, 3) state database specifications, and 4) fabric

specifications. The last two risks are caused by the spec-

ifications related to Hyperledger Fabric, whereas the first

two risks result from Golang specifications. Thus, developers

must be very careful when writing chaincodes in Golang. The

proposed system uses a random number generator for issuing

certificates in PAR-Tx, CON-Tx, and DEP-Tx. As described

in Section V-A, because the processing operations related to

certificate generation are executed outside the chaincode, risk

(5) does not influence the proposed system. Because of the

countermeasures outlined in Table 5, this implementation of

the Meta-PKI system is secure from the described threats.

2) COMPARISON WITH OTHER WORK

Table 6 compares the method proposed in the current study

with other work from the following perspectives:
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TABLE 5. Potential risks associated with using the Hyperledger Fabric chaincode and their effects on the Meta-PKI system.

TABLE 6. Comparison of the main parameters of the models developed in this and other work.

• Registration: the certificate owner registers a public key

certificate with an identity in order to declare the certifi-

cate ownership.

• Revocation: the certificate owner revokes a public key

certificate when it is no longer required.

• Identification: the certificate owner is identified and

authenticated by a trusted third party, who selects suit-

able identification methods based on the assurance

policy.

• Interoperability: As shown in Fig. 2, a trust relationship

is established through one CA corresponding to the

certificate issuer. It allows certification paths between

different certificate issuers to be validated.

• Transparency: this property describes the transparency

of issued certificates.

• Owner Privacy: The issued certificate contains informa-

tion about a certificate owner (such as his/her e-mail

address, name, and country). This information could be

leaked if someone obtains the certificate.

• False Certificate Request: a malicious certificate owner

requests a certificate registered by another certificate

owner.

• Misbehaving CAs: a malicious or compromised CA

issues fake certificates.

The proposed system contains basic functions because it

simply extends the traditional CA. Compared with related

methods, this system has two advantages: Interoperability

and Owner Privacy. The former is ensured by adding the

Meta-CA layer. Entities can trust other entities according

to the trust relationships established between various Meta-

CAs. BlockPGP also exhibits good interoperability proper-

ties, but its users must evaluate the trustworthiness of other

users by themselves. In addition, the proposed system guar-

antees owner privacy by not storing the entity certificate in the

distributed ledger, as shown in Table 4. As a result, the entity

certificate is not disclosed, and its content is concealed from

the public. However, fake certificates issued by the misbe-

having CAs of the CA layer cannot be detected because

of non-transparency. Meanwhile, the Meta-CAs meet the

transparency criteria by storing certificates in the distributed

ledger. Therefore, it is able to detect the issuance of fake

certificates by misbehaving Meta-CAs.

3) PROCESSING TIME

Smart contracts take time to synchronize the ledger across

all peers because they must reach a consensus regarding

the results of these contracts. Therefore, the processing

times of INI-Tx, PAR-Tx, CON-Tx, DEP-Tx, and VAL-Tx
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FIGURE 11. Average processing times required to execute various
transactions. The average time is calculated from the results of
10 measurements.

estimated for the proposed architecture are as shown

in Fig. 11. These transactions are selected to evaluate the

establishment of trust relationships. The average times were

calculated from the results of 10 measurements. The INI-Tx,

PAR-Tx, CON-Tx, and DEP-Tx transactions take approx-

imately 2,400 ms, which is much greater than the time

required for executing VAL-Tx (65.7 ms) because the dataset

described in Table 4 must be written to the ledger. Hence,

when building a system using Meta-PKI, these processing

times must be taken into account.

VII. SECURITY

A. ATTACKER

In this study, we consider a situation in which an attacker

CAattacker tries to participate in the Meta-PKI system to

establish a fake trust relationship with EE . Specifically, the

attacker, for the purpose of gaining trust from EEX , tries

to deceive mCAY in (8) using CAattacker . This would allow

an attacker to then launch a man-in-the-middle attack. First,

we examine a situation in which the attacker takes over

a Meta-CA and makes it issue a public key certificate to

CAattacker . Subsequently, we study a situation in which the

attacker prepares mCAattacker through participation in the

Meta-PKI system to spoof a valid mCA. As a prerequisite,

none of the entities participating in the Meta-PKI system

perform dishonest actions or collude with the attacker.

In these scenarios, the attack is successful if CAattacker is

not detected by the verifier via VAL-Tx because the purpose

of the attacker is to make EEX trust CAattacker .

B. TAKEOVER OF A META-CA

This section considers an attack in which the attacker takes

over a Meta-CA and adds Cert
mCAY
CAattacker

to the CA_CERT
section of the ledger.

In the first scenario, to keep the attack secret, the attacker

makes the valid Meta-CA issue Cert
mCAY
CAattacker

to CAattacker
without DEP-Tx. Because the Meta-CA deploys a CA by

storing CertmCACA in the ledger via DEP-Tx, the attacker has

to store Cert
mCAY
CAattacker

without DEP-Tx. However, this strategy

will ultimately fail because of the write restrictions in the

distributed ledger. Therefore, VAL-Tx fails to verify whether

Cert
mCAY
CAattacker

is stored in the ledger using (16).

In another scenario, the attacker, to perform VAL-Tx suc-

cessfully, gains accesses to a Meta-CA and performs DEP-Tx

to store Cert
mCAY
CAattacker

. In this case, the administrator of mCAY

can detect Cert
mCAY
CAattacker

by monitoring the ledger because the

public key certificates stored in the ledger are shared by all

peers.

EEX does not trust CAattacker because mCAY does not

believe the actions of CAattacker according to

distrust_p(mCAY ,CAattacker , p, k)

≡ madeBy
(

CAattacker , k⊃̇p
)

⊃ believe
(

mCAY , k⊃̇¬̇p
)

(18)

and

trust_b(EEX ,mCAY , p, k)

∧ distrust_p (mCAY ,CAattacker , p, k)

⊃ distrust_p(EEX ,CAattacker , p, k). (19)

Hence, the proposed system is secure against an attacker who

gains access to Meta-CAs.

C. SPOOFING OF META-CA

This section considers an attack during which CAattacker
obtains Cert

mCAY
CAattacker

illegally from mCAY by falsifying

mCA′
Y . The feature of this attack is that the attacker runs

mCA′
Y , which has IDmCAY . The attacker is able to obtain the

IDmCAY of the spoofing target because IDmCAY can be read

publicly from the ledger.

In the first scenario, the attacker prepares mCA′
Y without

PAR-Tx to attack secretly. In PAR-Tx, CertmCAmCA is stored in

the ledger and used in (15) to verify the trust relationship

between a CA and a Meta-CA. Because the attacker falsifies

only IDmCAY , mCA
′
Y has the same ID as mCAY correspond-

ing to IDmCAY , but the certificate owned bymCA
′ (Cert

mCA′
Y

mCA′
Y
)

is not identical to the certificate owned by mCA (Cert
mCAY
mCAY

)

because the private key of mCA′
Y is different from that

of mCAY . Consequently, because CAattacker possesses not

Cert
mCAY
CAattacker

but Cert
mCA′

Y

CAattacker
, VAL-Tx fails as follows:

Verify_Cert(Cert
mCA

′
Y

CAattacker
,Cert

mCAY
mCAY

). (20)

In another scenario, the attacker makes mCA′
Y partici-

pate in the Meta-PKI system by executing PAR-Tx. In this

transaction, ID is stored as a key of CertmCAmCA. Because PAR-

Tx is implemented to prevent the double registration of ID,

the attacker cannot make mCA′
Y participate in the Meta-PKI

system with IDmCAY .

EEX does not trustmCA′
Y becausemCAX does not believe

mCA′
Y according to

distrust_b(mCAX ,mCA′
Y , p, k)

≡ believe(mCA′
Y , k⊃̇p)

⊃ believe
(

mCAX , k⊃̇¬̇p
)

, (21)
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trust_b(EEX ,mCAX , p, k)

∧ distrust_b(mCAX ,mCA′
Y , p, k)

⊃ distrust_b(EEX ,mCA′
Y , p, k), (22)

and

distrust_b(EEX ,mCA′
Y , p, k)

∧ trust_p
(

mCA′
Y ,CAattacker , p, k

)

⊃ distrust_p(EEX ,CAattacker , p, k). (23)

Hence, the proposed system is secure against an attacker who

spoofs Meta-CAs.

D. DISCUSSION

As described in Table 6, Meta-PKI prevents false certificate

requests and CAs misbehaving against Meta-CAs. From the

perspective of securing Meta-CAs against spoofing, because

the double registration of ID is prevented by the data structure

in which the IDs are used as keys, false certificate requests are

prevented. To secure Meta-CAs against takeovers, because

Meta-CAs can detect the issuing of certificates because of

the transparency of the distributed ledger, Meta-CA adminis-

trators can detect misbehaving Meta-CAs. The ledger only

provides the transparency, so the administrators must still

check and revoke invalid certificates. If the ledger is checked

more frequently, the administrators can handle misbehaving

CAs quickly. Moreover, in Hyperledger Fabric, Event [30]

can be used to detect ledger updates.

For a man-in-the-middle attack in the proposed system

to be successful, the attacker must be trusted by its EEs.

To achieve this, the attacker must compromise the Meta-

CAs because the EEs only trust the CAs with certificates that

were issued by the Meta-CAs and stored in the distributed

ledger. However, as shown in Sections VII-B and VII-C,

the attacker considered in this work cannot take over or spoof

Meta-CAs. As a result, he or she cannot launch a man-in-

the-middle attack. Meanwhile, if the CA layer is formed in

the hierarchical model, the attacker may compromise one

of the CAs in the hierarchy. This represents an advantage

for the attacker, but we here focus on a simplified architecture

in this study and will consider this aspect in future research

work. Spoofing can be addressed, for instance, by chang-

ing the data structure in the distributed ledger described

in Table 4 to store certificates with IDCA.

The conventional drawbacks of issued certificates (such as

the homograph attack discussed earlier) must also be con-

sidered. Because these certificates are identified by DNs in

the proposed system, the homograph attack confuses the user

regarding the honesty of the certificate owner. Similar to the

CT, the proposed system records the certificates issued by

Meta-CAs publicly in the distributed ledger. Thus, an honest

certificate owner can check whether a certificate that has a

DN similar to his/her DN is stored in the distributed ledger.

Furthermore, because certificates are stored through a chain-

code, it is possible to combine the chaincode with various

detection mechanisms such as that described in [40].

VIII. CONCLUSION AND FUTURE WORK

To ensure the reliability of trading data, it is important to

determine who trades what data while verifying data sources

and preventing the denial of trading. Validating the identity

of a trading partner can be an important fundamental part of

supporting a trustworthy data trading platform. This research

focuses on the overconcentration of trust in CAs and aims to

decentralize trust points for each service provider by propos-

ing Meta-PKI.

Trust relationships between distributed CAs can be estab-

lished by performing cross-certification, in which a CA

evaluates the reliability of other CAs and issues a public

key certificate. However, simple cross-certification of var-

ious service providers is insufficient to build proper trust

relationships because the cross-certification procedure is not

standardized.

Hence, this study proposed a new cross-certification

method based on a smart contract that guarantees the

fulfillment of contracts without a central administrator.

In this method, cross-certification is automated using the

smart contract as a framework that computes a score

based on the operational policy of a CA. As a proof of

concept, it was demonstrated that establishing trust rela-

tionships and deploying a CA took approximately 2.4 s,

whereas validating the trust relationships took approximately

65.7 ms. Thus, practical applications based on the pro-

posed Meta-PKI system must consider these processing

times.

After conducting a security evaluation, it was found that

the Meta-PKI system was secure against attackers taking

over and spoofing Meta-CAs assuming that the participating

entities have not performed dishonest actions nor colluded

with the attacker.

The discussion of the results assumes that Meta-CAs are

very reliable. Although this assumption is very general con-

sidering that many incidents occur because of the incorrect

operation of CAs, the Meta-PKI system should incorporate a

mechanism that evaluates whether the Meta-CAs are operat-

ing according to the required policy. Furthermore, a method

of computing the score for small devices that uses metrics

other than encryption intensity indexes and the expiration

date of a public key certificate should be developed to reduce

power consumption.
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