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 ABSTRACT  High-risk neuroblastomas show a paucity of recurrent somatic mutations at diag-

nosis. As a result, the molecular basis for this aggressive phenotype remains elu-

sive. Recent progress in regulatory network analysis helped us elucidate disease-driving mechanisms 

downstream of genomic alterations, including recurrent chromosomal alterations. Our analysis identi-

fi ed three molecular subtypes of high-risk neuroblastomas, consistent with chromosomal alterations, 

and identifi ed subtype-specifi c master regulator proteins that were conserved across independent 

cohorts. A 10-protein transcriptional module—centered around a TEAD4–MYCN positive feedback 

loop—emerged as the regulatory driver of the high-risk subtype associated with  MYCN  amplifi cation. 

Silencing of either gene collapsed  MYCN -amplifi ed ( MYCN  Amp ) neuroblastoma transcriptional hall-

marks and abrogated viability  in vitro  and  in vivo . Consistently, TEAD4 emerged as a robust prognostic 

marker of poor survival, with activity independent of the canonical Hippo pathway transcriptional 

coactivators YAP and TAZ. These results suggest novel therapeutic strategies for the large subset of 

MYCN-deregulated neuroblastomas. 

  SIGNIFICANCE:  Despite progress in understanding of neuroblastoma genetics, little progress has been 

made toward personalized treatment. Here, we present a framework to determine the downstream 

effectors of the genetic alterations sustaining neuroblastoma subtypes, which can be easily extended 

to other tumor types. We show the critical effect of disrupting a 10-protein module centered around a 

YAP/TAZ-independent TEAD4–MYCN positive feedback loop in  MYCN  Amp  neuroblastomas, nominating 

TEAD4 as a novel candidate for therapeutic intervention.  Cancer Discov; 8(5); 582–99. ©2018 AACR.       
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  INTRODUCTION 

 Neuroblastoma is a malignancy arising from the developing 
sympathetic nervous system that typically affects very young 
children. About half of the cases present with widespread 
metastatic disease and/or extraordinarily focal amplifi cation 
of the  MYCN  gene, often with >100 copies. These high-risk 
patients have poor 5-year survival probability (<40%), despite 
intensive multimodal treatment regimens ( 1 ). Diagnostically, 
neuroblastomas show relatively few recurrent somatic point 
mutations ( 2–5 ). In contrast, it has been known for decades 
that high-risk neuroblastomas harbor complex and recurrent 
somatic structural copy-number alterations (CNA), affecting 
large chromosomal regions, as well as focal amplifi cation of 
the  MYCN  oncogene ( 6 ). Identifi cation of the causal driver 
genes associated within these CNAs remains a challenge. 
Despite signifi cant understanding of the genetic landscape 

of high-risk neuroblastoma, all newly diagnosed patients 
are empirically treated with intensive cytotoxic chemoradio-
therapy to achieve disease remission. Thus, further elucida-
tion of the molecular mechanisms responsible for high-risk 
neuroblastoma pathogenicity is required for guiding novel, 
more effective and less toxic precision-oncology strategies. 

 Following on recent results from the assembly and inter-
rogation of regulatory network models (interactomes) in 
human cancers, using systems biology approaches ( 7 ), we 
focused on the discovery of more universal tumor dependen-
cies in high-risk neuroblastomas. This approach has been 
highly successful in elucidating small regulatory modules, 
dubbed tumor checkpoints, comprising master regulator 
(MR) proteins that mechanistically regulate the transcrip-
tional state of the tumor. MR proteins have been shown to 
elicit either essentiality or synthetic lethality in several can-
cers ( 8–16 ). Critically, aberrant activity of tumor  checkpoint 
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MRs arises from one or more genetic alterations in their 
upstream pathways (14, 17), thus providing a rationale for 
the heterogeneous mutational landscape of tumors with 
highly similar transcriptional states (15). MR proteins have 
been shown to represent critical molecular tumor vulner-
abilities that can be effectively targeted pharmacologically 
in several human malignancies (10, 11, 16, 18, 19), thus 
providing novel therapeutic opportunities. Here, we sought 
to interrogate regulatory networks of high-risk neuroblasto-
mas to identify and validate MR proteins representing highly 
conserved, tumor-specific vulnerabilities for specific subtypes 
of this malignancy.

RESULTS

Our approach represents the integration of computational 
inference and experimental validation, both in vitro and in 
vivo, to characterize the tumor checkpoint MRs that mecha-
nistically control the transcriptional state of distinct, high-
risk neuroblastoma subtypes.

Characterization of Molecular Subtypes  
of High-Risk Neuroblastoma

We first dissected the heterogeneity of high-risk neuro-
blastoma gene expression profiles (GEP) to classify them 
into molecularly consistent tumor subtypes. Transcription-
ally distinct subtypes were identified using consensus clus-
tering (20) on GEPs of 219 high-risk tumors assembled by 
the NCI TARGET (Therapeutically Applicable Research to 
Generate Effective Treatments) initiative, excluding good-
prognosis samples (stage 1; refs. 2, 21). Optimal cluster 
selection identified three distinct high-risk subtypes (Sup-
plementary Table S1), as determined by the relative area 
under the cumulative distribution function (Supplementary 
Fig. S1A–S1C). This result was then validated in an inde-
pendent cohort comprising 97 high-risk samples assem-
bled by the European Neuroblastoma Research Consortium 
(NRC; Supplementary Fig. S1D–S1F). Cross-cohort analysis 
of differentially expressed genes in each subtype, compared 
with the respective low-risk stage 1 samples, revealed a 1:1 cor-
respondence between TARGET and NRC-derived high-risk 
subtypes (Fig. 1A and B).

Further clinical and biological characterization of these 
subtypes identified key distinguishing features (Supple-
mentary Tables S1 and S2, respectively). A first cluster 
cosegregated with MYCN amplification status and chromo-
some band 1p36 deletions (78% and 83% of TARGET and 
NRC samples, respectively; Fig. 1C; Supplementary Fig. 
S1G and S1H). This predominantly MYCNAmp (MYCNA) 

subtype showed a highly undifferentiated phenotype and 
high  mitosis–karyorrhexis index (MK; Supplementary Fig. 
S1I and S1J, respectively), potentially resulting from down-
regulation of differentiation programs and upregulation 
of cell proliferation and cell growth pathways, respectively 
(Fig. 1E and F). Although the majority of MYCNA-subtype 
samples harbored MYCN amplifications resulting in MYCN 
overexpression, a few samples appeared to compensate 
for low MYCN mRNA levels by significant c-MYC (MYC) 
overexpression. Consistent with previous findings, MYCN/
MYC deregulation in neuroblastoma may occur via tran-
scriptional deregulation mechanisms, independent of their 
genomic amplification status (22, 23). All samples in this 
subtype showed high MYCN/MYC-specific signature activ-
ity (ref. 24; Supplementary Fig. S1M and S1N). Although 
samples in other high-risk subtypes presented broad 2p 
gains, the MYCNA subtype is the only one showing highly 
focal amplification of the MYCN locus (Fig. 1C), consistent 
with the fact that nonfocal 2p gain is not associated with 
MYCN overexpression (25, 26).

A second cluster was characterized by hemizygous dele-
tions of 11q (90% and 89% of cases in TARGET and NRC, 
respectively) and was thus referred to as the 11qLOH sub-
type (Fig. 1C; Supplementary Fig. S1G and S1H). Overall, 
the clinical profile (Supplementary Fig. S1I and S1J) and 
pathway enrichment pattern were similar to the MYCNA 
subtype (Spearman correlation = 0.79; Fig. 1E), including 
enrichment of proliferation and cell-cycle categories and 
negative enrichment of differentiation pathways. Yet, this 
subtype exhibited inverse association with MYCN expres-
sion and activity (Supplementary Figs. S1M, S1N and S2I), 
as well as with activation of immune-related pathways 
(Fig. 1E).

In contrast, the third subtype did not appear to be strongly 
associated with specific genomic alterations (Fig. 1A and 
C; Supplementary Fig. S1G and S1H) and did not present 
with hyperproliferative program activation (Fig. 1F and G). 
Similar to the 11qLOH subtype, however, it displayed activa-
tion of immune-related pathways. Interestingly, this subtype 
presented a strong mesenchymal signature, highly similar to 
the one previously reported for high-grade glioma (Supple-
mentary Fig. S2E–S2H; ref. 27) and will thus be referred to as 
the mesenchymal (MES) subtype.

To further disentangle tumor-specific signatures from 
those of tumor-infiltrating compartments in 11qLOH and 
MES subtypes, we used the ESTIMATE algorithm, which 
allows inferring both the stromal and immune fractions in 
each sample (ref. 28; Supplementary Fig. S2A–S2D). Inte-
gration of immune and stromal components by ESTIMATE 

Figure 1.  High-risk neuroblastoma molecular subtypes classification and inference of master regulators. A, Unsupervised consensus clustering of 
high-risk neuroblastoma GEPs was performed to establish molecular subtypes. Three subgroups were identified according to robustness of clustering 
and consistency between two cohorts, TARGET and NRC. B, The overlap of top 500 upregulated (red) and downregulated (blue) genes for each subtype 
in the TARGET and NRC datasets using stage 1 GEPs as reference, with its corresponding odds ratios. C, Copy-number frequency per genomic location 
of individual molecular subtypes showing segregated pattern of 11q, 3p, and 1p loss. Gains are considered when the log2 ratio between tumor and blood 
>1.1, whereas losses are considered for log2 ratios <0.9. D, Top activated MRs (red) of high-risk subtypes are represented using VIPER inference of TF 
activity using stage 1 samples as a control group. E–G, REACTOME pathway enrichment analysis of MYCNA, 11q-LOH, and MES subtype gene expression 
signatures. Axis represents −log10 of the P value while retaining the directionality of the enrichment score. Also see Supplementary Fig. S1 and Supple-
mentary Experimental Procedures.
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suggested that the MES and a subset of the 11qLOH sub-
types are characterized by lower purity, likely due to either a 
larger Schwannian stromal and/or immune reactive cellular 
infiltrate (Supplementary Fig. S2A–S2D and S2I). This is 
consistent with the previous reports of a higher fraction 
of tumor-infiltrating lymphocytes in MYCNWT high-risk 
neuroblastomas (29). The stromal component enriched in 
these subtypes was confirmed by high fraction of stroma-
rich ganglioneuroblastomas (Supplementary Fig. S1K; ref. 
30). Conversely, MYCNA subtype samples showed mini-
mal immune signature contamination, confirming known 
MYCN-related mechanisms of tumor immune suppression 
(31–33).

To assess whether the signatures emerging from cluster 
analysis represent cell-autonomous or microenvironment-
related mechanisms, we tested whether they could be recapit-
ulated in a panel of high-risk human neuroblastoma-derived 
cell lines. Interestingly, the MES signature was strongly con-
served in cell lines (Supplementary Fig. S2F). Single sam-
ple gene set enrichment analysis (GSEA; ref. 34) identified 
SKNAS as the neuroblastoma cell line with strongest MES 
signature enrichment (NES = 4.54, P = 5.5E−6; Supplemen-
tary Fig. S2G and S2H). This confirms the tumor cell–auton-
omous mesenchymal nature of this subtype, because cell line 
cultures lack stromal or immune cell contamination.

In summary, MYCNA and 11qLOH subtypes displayed 
high activity of proliferative programs; the 11qLOH and 
MES subtypes showed high immune and stromal infiltra-
tion whereas the MES subtype showed cell-autonomous 
activation of mesenchymal programs (Supplementary Fig. 
S2I). Overall, all three subtypes were associated with poor 
survival in both TARGET and NRC datasets (Supplemen-
tary Fig. S1O and S1P), suggesting fundamentally different 
mechanisms leading to disease metastasis and ultimate 
therapy resistance.

Inference of Subtype-Specific Master Regulators 
of High-Risk Neuroblastoma

Next, we inferred subtype-specific candidate MR proteins 
by independent analysis of TARGET and NRC cohort data-
sets. We first assembled TARGET- and NRC-specific inter-
actomes from cohort-specific neuroblastoma GEPs, using 
ARACNe-AP (35), the latest version of ARACNe—an estab-
lished tool for the reverse engineering of transcriptional 
targets of regulatory proteins (36). The TARGET and NRC 
interactomes comprised 205,271 and 359,846 transcriptional 
interactions, respectively (Supplementary Table S3), 81,035 
of which were overlapping (P < 1E−16 by Fisher exact test, 
odds ratio = 65.02; Supplementary Fig. S3A).

Candidate MR proteins for each of the high-risk subtypes 
were then prioritized based on the enrichment of their 
transcriptional target genes in the subtype-specific signa-
ture, using the VIPER algorithm (19). Specifically, we used 
signatures representing the differential gene expression of 
each high-risk subtype compared with stage 1 samples (good 
prognosis), which showed significant overlap between the 
TARGET and NRC datasets (Supplementary Fig. S3B). Fur-
thermore, despite completely independent MR analysis in 
the TARGET and NRC cohorts, top-ranking MR proteins for 
each molecular subtype were remarkably consistent. Indeed, 

overlap computed by one-sided Fisher exact test of the 
first 50 MRs of each subtype was highly significant (PMES =  
5.18E−11; P11qLOH = 4.73E−35; PMYCNA = 4.34E−33; Supple-
mentary Fig. S3C and S3D). This confirms the robustness 
of the analysis, independent of cohort bias and composi-
tion. This was further confirmed by GSEA (ref. 37; |NES| 
> 4; P < 1E−4) for the MYCNA subtype (Fig. 2A). Given the 
exceedingly high congruence of the MRs identified from 
the two cohorts, we finalized candidate MR rank by Fisher 
integration of their cohort-specific P values (Fig. 1D; Sup-
plementary Table S4).

Experimental Validation of MYCNA  
Subtype-Specific Master Regulators

We then proceeded to experimentally validate candidate 
MRs of the MYCNA subtype. We focused on this subtype 
for several reasons: (i) It is strongly associated with the most 
recurrent neuroblastoma-specific genetic alteration (38); (ii) 
it is associated with aggressive disease and poor prognosis 
(39); (iii) it shows the highest purity in terms of immune and 
stromal infiltration (Supplementary Fig. S2), thus resulting 
in high-quality GEPs for MR predictions; and (iv) it has the 
largest number of established cell lines (as matched by both 
MR and genetic analysis) for validation purposes (Supple-
mentary Fig. S4). The 25 most significant candidate MRs of 
the MYCNA subtype were prioritized for experimental valida-
tion (Fig. 2B).

To identify optimal subtype representatives and appro-
priate negative controls for validation purposes, we ana-
lyzed a panel of 25 well-characterized neuroblastoma cell 
lines. Cell lines harboring MYCN amplifications as well 
as having high MYCN expression and signature activity 
(Supplementary Fig. S4A–S4D) were selected as candi-
date representatives of the MYCNA subtype and further 
refined based on the activity of the top 25 VIPER-inferred 
MRs selected for validation (Supplementary Fig. S4E; ref. 
19). Most MYCNA cell lines showed high activity of these 
proteins, with BE2 identified as the model with the most 
statistically significant MR-activity match by enrichment 
analysis (P = 3.7E−24; Supplementary Fig. S4E). Nega-
tive controls were prioritized based on low MYCN/MYC 
expression and low VIPER-inferred activity of selected 
MRs, including MYCN.

To validate MYCNA-subtype MRs, we performed loss-
of-function assays by silencing each candidate MR in both 
MYCNA and control cell lines. Multiple RNAi screenings 
were used to mitigate false discovery resulting from off- 
target effects and technology-specific biases. We tested a 
panel of MYCN-amplified and control cell lines for transduc-
tion efficiency, and only cells exhibiting high transduction 
efficiency were chosen for validation studies (Supplemen-
tary Fig. S4F).

Pooled, in vitro short hairpin (shRNA) screens were per-
formed in BE2 and IMR5 cells (MYCNA subtype) and NLF 
and SKNAS cells (negative controls). NLF was included as an 
informative negative control because, despite its MYCNAmp 
status, it showed both low MYCN expression (Z-score = 
−0.74) and MYCN activity (NES = −3.31; Supplementary Fig. 
S4D), as well as no enrichment of MYCNA MRs (Supplemen-
tary Fig. S4E).
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Figure 2.  RNAi screening identifies MYCNA subtype–specific MRs. A, Master regulator analysis of MYCNA versus stage 1 tumors performed indepen-
dently on both the TARGET and NRC datasets shows strong reciprocate reproducibility of both activated (red) and deactivated (blue) top 50 MRs (Supple-
mentary Table S4). B, The top 25 integrated MRs of MYCNA subtype selected for validation. The map shows distribution of positively (red) and negatively 
(blue) regulated targets of each MR ranked by differential expression between MYCNA subtype versus stage 1 patient samples. C, In vivo pooled shRNA 
screening in MYCNA (BE2) versus control cells (SKNAS) and D, In vitro pooled shRNA screening in MYCNA (BE2, IMR-5) versus control cells (NLF, SK-NAS), 
depicting average effect of putative MR silencing in MYCNA cells compared with control cells. For both (C, D), tumor-enriched shRNAs were amplified, 
sequenced, and counted to identify enrichment and dropouts. shRNA abundance for a gene was integrated into a score and calculated as a ratio of Tfinal 
to Tinitial. The MRs were first screened to include only the ones with P < 0.05 in the MYCNA group (red) and average fold change between MYCNA cells 
versus control cells was calculated. The gray dashed line shows the cutoff for −2.0 fold change. E, Scatter plot of average relative cell viability of MYCNA 
cells (BE2, IMR5, IMR32, NB1, and LAN1) versus control cells (SY5Y, SKNAS, and SKNFI) upon transduction with 2 shRNAs per MR, normalized to control 
shRNA, measured 72 to 96 hours after transduction. F, Scatter plot of average cell viability of MYCNA cells (BE2, IMR5, and SKNDZ) versus control 
cells (SY5Y and SKNAS) upon transfection with ON-Target smartpool siRNA against each MR normalized to control siRNA, measured 96 hours after 
transfection. For both (E, F), the red dashed lines show the cutoff of a < 0.8 (cell viability reduction) for MYCNA cells and b − a > 0.2 (cell type specific-
ity). Experiments were run in triplicate. Representative experiments are shown. G, Venn diagram depicting potential MYCNA subtype–specific MRs from 
MRs common to both in vitro– and in vivo–negative selection pooled shRNA screening (C, D), individual shRNA screening (E), and siRNA screening (F). 
Additional data in Supplementary Fig. S5 and Supplementary Table S5.
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MRs representing critical MYCNA subtype–specific 
dependencies were assessed by evaluating the depletion of 
shRNA hairpin representation at 28 days after infection. We 
then further confirmed the results from these assays in vivo, 
to ensure a more physiologic environment for MR validation, 
using BE2 and SK-N-AS xenografts, based on their known 
tumorigenicity in immune-deficient mice (Supplementary 
Experimental Procedures). Overall, genes were prioritized as 
bona fide MRs if (i) >2-fold decrease in hairpin representation 
was observed in MYCNA cells (P < 0.05, z score < −1.96) and 
(ii) the ratio between MYCNA and control group hairpin 
representation was >2-fold, in both the in vitro and the in vivo 
screens (Supplementary Table S5). Using this very conserva-
tive criterion, we identified MYCNA-specific MR dependen-
cies, common to both in vitro and in vivo screens, including 
MYCN, TEAD4, HNRNPAB, HMGB2, PRDM8, E2F3, and ECSIT 
(Fig. 2C and D).

To further validate key MRs, we next performed lentivirus-
mediated shRNA silencing of each candidate MR in an 
extended panel of cell lines, using the two shRNA hairpins 
with the highest silencing efficiency (Supplementary Fig. S5A; 
Supplementary Table S5), and assessed their cell viability 
(Supplementary Table S5; Supplementary Experimental Pro-
cedures). These shorter-term assays (at 72–96 hours after 
transduction) show that MYCNA cells were more sensitive to 
TEAD4, TAF1D, HNRNPAB, and ECSIT silencing compared 
with control cell lines (Fig. 2E; Supplementary Table S5). We 
did not detect MYCN as a significant hit in this screen at the 
selected time point, likely due to the very high MYCN copy 
number in MYCNA cells and technical difficulty to achieve 
sustained silencing. However, we confirmed that MYCN silenc-
ing in BE2 cells induced differentiation and viability reduc-
tion at 7 days after transduction (Supplementary Fig. S5B 
and S5C). We reasoned that shorter-time assays (<96 hours) 
are better suited for detecting MRs producing direct effect on 
proliferation, whereas longer-term assays (>96 hours) are opti-
mally suited for elucidating multifunctional dependencies. 
Consistently, additional MYCNA-specific MR dependencies 
were detected in long-term (28-day) pooled shRNA screening 
(Fig. 2C and D).

To reduce the effect of potential off-target shRNA effects, 
we used an orthogonal silencing mechanism with ON- 
TARGETplus siRNA pools containing a mix of four siRNAs 
against each of the 25 MRs (Supplementary Experimental 
Procedures). By comparing the average relative cell viability 
upon siRNA-mediated MR silencing in MYCNA cell lines 
and control cell lines at 96 hours after transfection (Supple-
mentary Fig. S5D; Supplementary Table S5), we confirmed 
TFAP4, HNRNPAB, MYBL2, TEAD4, and ZNF219 as MYCNA-
specific dependencies (Fig. 2F; Supplementary Table S5).

Taken together, comparative analysis of the three screens 
identified eleven potential MYCNA-specific MR dependencies 
(Fig. 2G), which included both novel and previously reported 
transcription factors (TF) associated with the MYCNA 
tumors, including MYCN (40), MYBL2 (41), and E2F3 (42).

TEAD4 and MYCN Control the MYCNA Subtype 
Master Regulatory Module

We have proposed that the stability of tumor-related phe-
notypes is controlled by tightly autoregulated MR protein 

modules (tumor checkpoints) that mechanistically regu-
late the transcriptional state of the cancer cell (9, 15). To 
test this hypothesis, we assessed the ability of MYCNA-
specific MRs to mechanistically regulate each other, as 
well as the MYCNA-subtype transcriptional signature. To 
elucidate the causal control architecture of the correspond-
ing tumor checkpoint, we performed lentiviral-mediated 
shRNA silencing of each of the 11 MYCNA-specific MRs 
that emerged from the in vitro and in vivo RNAi screens (Fig. 
2G), followed by qRT-PCR analysis of all other MRs (Sup-
plementary Fig. S6A).

To select the most likely transcriptional interactions, 
we focused on MRs whose transcripts were strongly down-
regulated (≥1.5-fold) following silencing of another MR 
(Fig. 3A). This analysis revealed a highly modular and 
hierarchical 10-MR tumor checkpoint architecture (Fig. 
3B). Note that the ECSIT protein was eliminated because 
it was neither significantly regulating nor was regulated 
by any other MR. TEAD4 emerged as the most critical 
MYCN effector, strongly regulating 5 of the remaining 8 
MYCNA tumor checkpoint MRs. Taken together, MYCN 
and TEAD4 emerged at the top of the regulatory hier-
archy and were jointly responsible for regulating all but 
one (HNRNPAB) of the other MRs, whereas the latter was 
regulated indirectly by both MYCN and TEAD4 via MYBL2. 
MYCN and TEAD4 thus emerged as the core control unit 
of the MYCNA tumor checkpoint and thus bona fide MRs of 
the MYCNA subtype.

Immunoblotting assays confirmed that MYCN silencing 
in BE2 cells downregulated TEAD4 at the protein level (Sup-
plementary Fig. S5E). Furthermore, chromatin immunopre-
cipitation (ChIP) assays in BE2 cells, using an MYCN-specific 
antibody, confirmed MYCN binding to the promoter region 
of 3 of 4 predicted targets, including TFAP4, MYBL2, and 
TEAD4 (Supplementary Fig. S5F).

To gain further insights into the regulatory role of TEAD4, 
we performed ChIP with a TEAD4-specific antibody, followed 
by next-generation sequencing (ChIP-seq) in BE2 cells. Phan-
tom peak quality assessment (43) of the libraries confirmed 
a strong signal-to-noise ratio in the experiment (Supplemen-
tary Fig. S6B and S6C). Additional quality checks after peak 
calling indicated a high TF-binding sequence motif affinity 
(Supplementary Fig. S6D), as well as cell-type specificity 
(Supplementary Fig. S6E and S6F). A remarkable similarity 
of BE2 and SKNSH (both neuroblastoma-derived cell lines) 
was observed, compared with other cell types, supporting the 
consistency of ChIP-assay results with tissue of origin.

Significant TEAD4 peaks were identified in the promoters 
or enhancers of 2 of 5 predicted target MRs from the pertur-
bational analysis (Fig. 3B), including HMGB2 and PRDM8, as 
well as of MYCN (Supplementary Table S6), further support-
ing the mechanistic nature of the tumor checkpoint architec-
ture predicted by our perturbational analysis and suggesting 
a possible TEAD4–MYCN autoregulatory loop. Consistently, 
the strong effect of TEAD4 silencing on the remaining three 
genes (ZNF219, TFAP4, and MYBL2) can be explained as being 
mediated by indirect interactions via HMGB2 and PRDM8 
(Fig. 3B).

Taken together, this analysis suggests a highly intercon-
nected tumor checkpoint module, rich in autoregulatory 
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Figure 3.  TEAD4 is the master regulator of MYCNA subtype. A, Heat map representing gene expression changes of MYCNA subtype–specific MRs from 
Fig. 2G, upon transduction of BE2 cells with control or respective shRNAs against each MR, measured by qRT-PCR, 48 hours after transduction. The genes 
showing >1.5-fold downregulation of transcript upon treatment with the shMR was considered to be a target and are displayed in the map. Samples were run 
in triplicate and representative experiments are shown. B, The interregulatory network derived from the results in A. Red asterisks, MYCN binds to the pro-
moter of the genes by ChIP assay (Supplementary Fig. S5F); green asterisks, TEAD4 binds to proximal region of these genes by ChIP-seq experiment (Sup-
plementary Table S6). C, TEAD4 (x-axis) and MYCN (y-axis) knockdown signatures compared with MYCNA versus stage 1 signature (red–blue heat colors). 
D, Venn diagram showing proportion of MYCNA subtype signature upregulated (red) and downregulated (blue) genes by MYCN, TEAD4, or both knockdown 
signatures. E, REACTOME and F, GO pathway enrichment analysis performed on TEAD4 (x-axis) and MYCN (y-axis) knockdown signatures. Red circles repre-
sent positive TEAD4 target genes (downregulated upon knockdown) whereas blue circle represents negative targets (upregulated after knockdown). Fisher 
exact test was used to calculate the statistical significance of both overlaps using a background list of 18,179 genes included in the RNA-seq signature.  
G, Overlap between differentially expressed genes after TEAD4 knockdown, peak targeted genes from TEAD4-Ab ChIP-seq, and MYCNA subtype signature 
upregulated genes, with the corresponding KEGG pathway enrichment analysis on the overlapping genes. See also Supplementary Fig. S6 and Supplementary 
Tables S6 and S7.
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loops, with TEAD4 representing the key effector of aberrant 
MYCN activity and the two proteins jointly regulating all 
other tumor checkpoint MRs, either physically or indirectly 
via another MR.

TEAD4 and MYCN Drive MYCNA Subtype Gene 
Expression Signature

To further validate the functional role of the TEAD4–
MYCN feedback loop as the core regulatory element of 
the MYCNA tumor checkpoint, we assessed the global 
effect of TEAD4 and MYCN silencing on the MYCNA 
signature. Lentiviral-mediated shRNA silencing of TEAD4 
and MYCN was performed independently in BE2 cells, fol-
lowed by RNA-sequencing (RNA-seq) profiling. To enrich 
for direct targets, we analyzed the results at 48 hours 
after transduction and confirmed that their silencing was 
not yet affecting the other protein levels (Supplementary 
Fig. S6G). MYCN and TEAD4 silencing both significantly 
reversed the MYCNA signature toward a stage 1 tumor sig-
nature (Fig. 3C) as confirmed by GSEA (PshMYCN = 1.87E−5, 
Supplementary Fig. S6H; PshTEAD4 = 1.81E−6; Supplemen-
tary Fig. S6I). Taken together, MYCN and TEAD4 differen-
tially expressed genes comprise ∼70% of MYCNA subtype 
differentially expressed genes (Fig. 3C and D). However, 
individually, MYCN and TEAD4 regulated a highly com-
plementary set of targets, with only a small fraction of 
common targets, thus suggesting a complementary role 
(Fig. 3D).

Next, to evaluate the biological programs controlled by 
these two TFs, we performed REACTOME pathway and 
gene ontology (GO) biological processes enrichment analy-
sis of the overlap between genes differentially expressed 
following their silencing and the MYCNA gene expres-
sion signatures. MYCN silencing significantly reversed key 
activated (cell growth and proliferation) and inactivated 
(differentiation) programs in the MYCNA signature (Fig. 
3E and F; Supplementary Table S7). In contrast, TEAD4 
silencing specifically reversed key activated programs in 
the MYCNA signature (proliferation and DNA damage 
response; Fig. 3E and F; Supplementary Table S7). Con-
sistent with previous reports, this suggests that whereas 
MYCN acts as both an activator and a repressor (44, 45), 
TEAD4 acts mainly as a transcriptional activator (46). This 
was confirmed by the dramatic difference in the overlap 
of TEAD4 ChIP-seq binding sites and TEAD4-activated 
targets (P = 4.05E−42) versus repressed targets (P = 1.9E−2; 
Supplementary Fig. S6J). Consistently, the ARACNe-AP–
inferred MYCN regulon had an equivalent number of posi-
tively regulated and repressed targets, whereas the TEAD4 
regulon consisted mostly of positively regulated targets 
(Supplementary Fig. S6K and S6L); GSEAs confirmed that 
their ARACNe-AP–inferred regulons were highly enriched 
in genes differentially expressed following their RNAi-
mediated silencing (Supplementary Fig. S6M and S6N), 
thus confirming the overall validity of the regulatory 
model.

Consistent with its established role, MYCN-specific acti-
vated genes were highly enriched in cell-growth/metabo-
lism programs, including protein biosynthesis, ribosomal 
biogenesis, rRNA processing, RNA processing and splicing, 

as well as cell proliferation programs (Supplementary Table 
S7). In contrast, genes repressed by MYCN were enriched 
in neuronal differentiation, actin cytoskeleton organiza-
tion, axon guidance, and cell adhesion molecules, possibly 
mediated by miR-17-92 cluster activation (47) or by MIZ1-
mediated repression (ref. 48; Supplementary Table S7). In 
line with these findings, we observed neurite outgrowth 
and neuronal differentiation upon MYCN silencing in 
these cells (Supplementary Fig. S5C). On the other hand, 
TEAD4 induced highly significant activation of prolif-
erative and DNA damage response (DDR) programs but 
only in cells where MYCN was also active (Supplementary 
Table S7). Remarkably, both proliferative and DDR-related 
genes were strongly enriched in a subset of 125 genes 
that were directly activated by TEAD4 in the MYCNA 
subtype upregulated signature (Fig. 3G; Supplementary 
Tables S6 and S7). Potential involvement of TEAD4 in 
regulating DDR-related genes was especially intriguing 
as it was not previously associated with its canonical role 
as transcriptional effector of the Hippo pathway, suggest-
ing an aberrant role in neuroblastoma; specifically, we 
observed activation of genes involved in ATR-mediated 
response to replication stress (Supplementary Fig. S7A), 
whose inhibition has been shown to reduce MYCN-driven 
neuroblastoma viability (49, 50). Consistently, we observed 
an increase in γ-H2Ax following TEAD4 silencing in the 
MYCNA cell lines BE2 and LAN1 (Supplementary Fig. S7B 
and S7C). Functional validation of regulation of prolifera-
tion by TEAD4 will be discussed in the following sections. 
Finally, we assessed the regulatory mechanism between 
TEAD4 and other TEAD proteins and between MYCN and 
TEAD family proteins. TEAD4 silencing induced signifi-
cant TEAD1 and TEAD2 downregulation (Supplementary 
Table S7), suggesting that, within this subtype, TEAD4 is 
the dominant driver. In addition, the regulation of TEAD 
family members by MYCN and TEAD4 varied (Supplemen-
tary Table S7), suggesting complex regulatory mechanisms 
between these proteins.

TEAD4 Positively Regulates MYCN, Both 
Transcriptionally and by Inhibiting Its Proteasomal 
Degradation, Resulting in a Positive Feedback 
Loop Structure

Next, following up on the ChIP assays showing bind-
ing of MYCN in the TEAD4 proximal region and vice-versa 
(Supplementary Fig. S5F; Supplementary Table S6; Fig. 3B), 
we proceeded to further elucidate the regulatory interac-
tion between these two proteins. Specifically, we performed 
time-dependent assessment of MYCN expression and protein 
abundance following TEAD4 silencing in BE2 cells. This 
study showed small but significant MYCN mRNA down-
regulation following TEAD4 silencing (Fig. 4B), supporting 
TEAD4-mediated MYCN transcriptional regulation and con-
firming the functional nature of the ChIP-seq findings. Yet, 
downregulation of MYCN at the protein level was far more 
prominent (Fig. 4A), suggesting a strong posttranslational 
regulatory interaction.

No evidence of direct TEAD4–MYCN protein–protein 
interaction could be detected by coimmunoprecipitation 
assay. Thus, to identify additional proteins that may  mediate 
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Figure 4.  TEAD4 promotes MYCN protein stabilization. A, Immunoblot of TEAD4, MYCN, CDK1, and AURKA proteins in BE2 cells transduced with 
control or two different TEAD4 shRNAs in a time course experiment. B, qPCR analysis showing transcript levels of the corresponding genes, 2 days  
after transduction. C, Regulatory hierarchical model showing a TEAD4–MYCN positive feedback loop controlling the master regulatory module. D, Immu-
noblot of TEAD4 and MYCN proteins in BE2 cells transduced with control and TEAD4 shRNA, and treated with cycloheximide (CHX) for indicated times.  
E, Quantification of MYCN protein stability from results shown in D, where MYCN levels were normalized to GAPDH. F, Immunoblot of TEAD4 and MYCN 
72 hours after transduction from cells treated with DMSO or MG-132, 4 hours before harvesting. G, Densitometry analysis of MYCN proteins from 
results shown in F, where MYCN levels were normalized to GAPDH. Representative experiments are shown.
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the interaction, we assessed gene expression changes of 
established modulators of MYCN protein turnover, such 
as AURKA, FBXW7, HUWE1, TRPC4AP, and CDK1 com-
plex (51–55), following TEAD4 silencing. Both AURKA and 
CDK1 emerged as significantly downregulated (AURKA: 
2-fold; P = 2.48E−07; CDK1: 2-fold; P = 1.38E−07; Sup-
plementary Table S7). We further confirmed that TEAD4 
regulates AURKA and CDK1 both at the protein and at the 
gene expression levels (Fig. 4A and B), with TEAD4 bound 
to CDK1’s proximal region by ChIP-seq (Supplementary 
Table S6), thus confirming TEAD4-mediated regulation of 
established MYCN modulators. These interactions were con-
firmed in an additional MYCNA cell line, LAN1, albeit to 
a lesser degree (Supplementary Fig. S7D and S7E), in line 
with its lower enrichment in MYCNA MR signature proteins 
(Supplementary Fig. S4E). Consistent with these findings, 
treatment with cycloheximide increased MYCN turnover by 
2-fold following TEAD4  silencing, compared with control 
cells (Fig. 4D and E), which was rescued by the proteasome 
inhibitor MG-132 (Fig. 4F and G).

Stabilization and degradation of both MYCN and MYC 
proteins require sequential phosphorylation at serine 62 
and threonine 58, and the sequence around this region is 
conserved in both (53, 56). It has been reported that the 
expression of MYCN and MYC occurs in a mutually exclusive 
fashion by repressing each other in neuroblastoma cells (57). 
Therefore, we examined regulation of MYC by TEAD4 in 
MYCNWT cells (SY5Y). Our data confirmed that TEAD4 also 
regulates MYC (Supplementary Fig. S7F and S7G). Although 
there are conflicting data in the literature regarding regula-
tion of MYC by AURKA (52, 58, 59), CDK1 has been shown to 
regulate both MYCN and MYC (60). Furthermore, it has been 
reported that TEAD4 binds to the enhancer region of MYC 
(61), indicating transcriptional regulation as well.

To gain further insight into the interplay between TEAD4 
and MYCN/MYC, we assessed their correlation in neuroblas-
toma patient GEPs. We observed that both TEAD4 expres-
sion and activity were increased only in MYCNA tumors or 
in tumors presenting overexpression of either MYCN or MYC 
(Fig. 5A; Supplementary Fig. S7H). This pattern is consist-
ent across tumors from multiple histologies where TEAD4 
positively correlates with MYC target hallmark activity (Sup-
plementary Fig. S7I). TEAD4 expression correlates positively 
with MYCN in tumors of neuronal origin (Supplementary 
Fig. S7J) whereas in most other histologies TEAD4 positively 
correlates with MYC (Supplementary Fig. S7K).

Taken together, these data show the existence of a strong 
TEAD4–MYCN positive feedback loop in MYCNA subtype 
samples. This loop is mediated by both transcriptional and 
posttranslational interactions and decouples these proteins 
from their physiologic regulatory controls, thus inducing 
aberrant activity of a 10-protein tumor checkpoint identified 
by our analysis (Fig. 4C). Thus, aberrant TEAD4 activity is 
necessary to stabilize and complement the tumorigenic role 
of MYCN and MYC in neuroblastoma.

TEAD4 Promotes Cellular Proliferation

The observation that TEAD4 regulates MYCN/MYC and 
cell cycle–related programs implicates an aberrant, context-
specific role of TEAD4 in high-risk neuroblastoma. To evalu-

ate the phenotypic consequences of TEAD4 silencing in 
MYCNAmp and MYCNWT cell lines, we chose cell lines with 
varying degree of expression of MYCN or MYC, yet express-
ing comparable levels of TEAD4 protein (Supplementary Fig. 
S8A). TEAD4 silencing led to decrease in tumorigenic poten-
tial of MYCNA cell lines BE2 and LAN1, as shown by dra-
matic colony count reduction in long-term colony formation 
assays (Fig. 5B and C). In contrast, there was no change in 
colony formation in the low-MYCN-activity cell line SKNFI 
and only a modest decrease in SKNAS cell lines (Fig. 5B and 
C), which despite low MYCN levels present with higher MYC 
levels than SKNFI (Supplementary Fig. S8A).

To further elucidate the role of TEAD4 in regulating 
cell proliferation, we performed GSEA of differentially 
expressed genes following TEAD4 silencing in BE2 cells and 
observed significant enrichment of cell cycle–specific genes 
(P = 6.7E−05; Fig. 5D). The most downregulated genes (i.e., 
in the GSEA leading edge) contained almost half (49/128) 
of the KEGG cell-cycle pathway genes. In particular, we 
observed repression of several genes involved in cell-cycle 
progression and DNA replication. Several of these genes 
have a reported role in high-risk neuroblastoma pathol-
ogy, often associated with MYCNA tumors. These include 
cyclin-dependent kinases (CDK2, CDK1, and CDC25B; refs. 
53, 62, 63), cyclins (CCND1; ref. 64), E2Fs (E2F1, E2F2, and 
E2F3; ref. 42), DNA replication factors (PCNA, MCM7, and 
CDC6; refs. 65–67), checkpoint kinases (CHEK1, CHEK2, 
and WEE1; refs. 2, 49, 68) and components of the ubiquitin-
proteasome system (SKP2; ref. 69). In addition, 19 of the 49 
cell-cycle genes were shown to bind TEAD4 in their proximal 
region (Fig. 5D; Supplementary Table S6), suggesting direct 
transcriptional regulation. Further investigation of the phe-
notypic influence of TEAD4 on the cell cycle and prolifera-
tion of MYCNA cells showed that TEAD4 silencing induced 
significant accumulation of cells in G0–G1 with concomitant 
decrease of cells in S phase (Fig. 5E). Consistent with this, 
we observed a decrease in proliferating cells by EdUrd stain-
ing (Fig. 5F). We did not observe induction of apoptosis 
by Annexin V staining and only a modest increase in PARP 
cleavage upon TEAD4 silencing (Supplementary Fig. S8B 
and S8C). Collectively, these findings suggest TEAD4 as a 
critical component driving cellular proliferation of MYCNA 
cells and a novel MYC/MYCN-mediated tumor dependency 
in neuroblastoma.

TEAD4 Activity in Neuroblastoma Is Independent 
of YAP/TAZ Modulation

YAP and TAZ are established TEAD4 cotranscriptional 
activators in the Hippo pathway. They are known to bind 
TEAD family proteins, including TEAD4, to promote cell 
proliferation, growth, and survival (70). We thus explored 
the potential role of YAP/TAZ in TEAD4-mediated regula-
tion of MYCNA signature genes. First, we assessed whether 
differential activity of YAP/TAZ could be detected in 
neuroblastoma samples. Surprisingly, YAP and TAZ activ-
ity, as defined by the expression of their target genes—based 
on REACTOME (71) and perturbation assays (72)—was 
not correlated with the TEAD4 expression or MYCNA sta-
tus in neuroblastoma samples (Supplementary Fig. S9A). 
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Similarly, we observed that the active form of YAP/TAZ, 
as indicated by their nuclear localization, was not cor-
related with TEAD4 protein expression or MYCNA status 
in a panel of neuroblastoma cell lines (Supplementary  
Fig. S9B).

To further validate these findings, we performed lentiviral-
mediated shRNA silencing of TAZ in YAP-null cells, BE2 
(Supplementary Fig. S9C), and compared the gene expression 

signature of TAZ and TEAD4. First, we observed only mini-
mal overlap in genes differentially expressed following their 
silencing, supporting independent transcriptional regulatory 
activity in MYCNA cells (Supplementary Fig. S9D–S9F). Fur-
thermore, ARACNe-inferred TEAD4 transcriptional targets, 
which displayed strong enrichment in the TEAD4 knockdown 
signature (Supplementary Fig. S6N), showed no significant 
enrichment in the TAZ silencing gene expression signature 

Figure 5.  TEAD4 is required for cell-cycle progression and cell growth of MYCNA cell lines. A, Scatter plot representing MYCN and MYC expres-
sion in MYCNA and non-MYCNA samples from TARGET cohort. Single sample activity of TEAD4 is represented as normalized enrichment score (NES). 
NRC cohort results provided in Supplementary Fig. S7H. B, The effect of TEAD4 on anchorage-independent growth in MYCNA and control cell lines was 
evaluated by soft-agar colony assays, 21 days after transduction. C, Immunoblot analysis confirming silencing of TEAD4 in the corresponding cell lines. 
D, GSEA plot evaluating enrichment for KEGG cell-cycle gene set in shTEAD4 signature (upper) and leading-edge cell-cycle genes (lower) colored by their 
signature t score; yellow and red asterisks indicate genes with assigned anti-TEAD4 ChIP-seq peaks by proximity and overlap criterion, respectively 
(Supplementary Experimental Procedures). E, Cell-cycle profile assessed by propidium iodide (PI) staining and (F) cellular proliferation, assessed upon 
treatment of BE2 cells with control or TEAD4 shRNA, 48 hours after transduction by flow cytometry. Representative experiments are shown. See also 
Supplementary Fig. S8.
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(Supplementary Fig. S9G). We also confirmed that bona fide 
targets of YAP/TAZ such as CTGF and CYR61 (71) were sig-
nificantly downregulated following TAZ silencing (Limma test, 
PCTGF = 5.28E−5; PCYR61 = 2.1E−4; Supplementary Table S7), 
and yet the same genes were significantly upregulated following 
TEAD4 silencing (Limma test, PCTGF = 4.5E−5; PCYR61 = 9.5E−6, 
Supplementary Table S7), suggesting orthogonal TAZ and 
TEAD4 regulatory programs. Finally, TAZ silencing in BE2 
and LAN1 cells showed minimal effect on cell viability com-
pared with TEAD4 (Supplementary Fig. S9H and S9I). Taken 
together, our results show that aberrant TEAD4 activity in 
MYCNA neuroblastoma is largely independent of YAP/TAZ 
expression and nuclear localization.

TEAD4 Expression Is Prognostically Relevant  
in Patients with Neuroblastoma

To further investigate the clinical relevance of TEAD4 in 
neuroblastoma tumors, we assessed whether its expression 
was associated with neuroblastoma tumor progression and 
outcome. Indeed, TEAD4 expression and VIPER-inferred 
activity were both higher in the MYCNA subtype compared 
with other high-risk neuroblastoma subtypes, whereas stage 
1 samples exhibited the lowest levels (Kruskal–Wallis test, 
P  = 3.05E−11; Fig. 6A and B). Similarly, TEAD4 protein 
staining in tumor microarrays (TMA) from 116 neuro-

blastoma cases showed that the high-risk group expressed 
significantly higher levels of the protein compared with 
low-risk and normal tissues. This was assessed by comput-
ing the final score [intensity of staining (0–3) by percentage 
of cells stained (0–100; Supplementary Table S8; Fig. 6C]. 
Among the high-risk group, MYCNA tumors had higher 
expression of TEAD4 protein compared with non-MYCNA 
tumors (Fig. 6D).

We then performed Cox proportional hazards analysis 
on NRC-cohort samples and the SEQC 498NB independ-
ent cohort (73). Both unbiased cohorts comprise all tumor 
risk groups and stages. We observed that TEAD4 expression 
alone was a strong predictor of patient survival (PNRC = 
5.64E−11; PSEQC = 8.99E−15; Supplementary Fig. S10A and 
S10B). Multivariate Cox regression analysis concluded that 
TEAD4 is a predictor of survival independent of currently 
used clinical and biological variables for risk stratification 
(74), stage (PNRC = 8.97E−06, HRNRC = 5.36; PSEQC = 1.14E−06, 
HRSEQC = 2.11), MYCN amplification (PNRC = 9.05E−04, 
HRNRC = 4.54; PSEQC = 1.35E−06, HRSEQC = 1.65), age (PNRC =  
1.87e−08, HRNRC = 9.73; PSEQC = 1.67E−06, HRSEQC = 2.43) 
and a combination of all three covariates in NRC (PNRC = 
3.69E−03, HRNRC = 3.69) but not in SEQC (Supplementary 
Fig. S10C). We further confirmed TEAD4 as a predictor 
of survival independently of a meta-PCNA proliferation 
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signature (ref. 75; PNRC = 6.26E−3, HRNRC = 3.3; PSEQC = 
1.10E−06, HRSEQC = 1.54), and at least in the NRC cohort 
TEAD4 expression predicts survival independently of an 
MYCN functional signature capturing the combined activ-
ity of MYCN and MYC in neuroblastomas (ref. 24; PNRC = 
6.26E−03, HRNRC = 3.3; Supplementary Fig. S10D).

DISCUSSION

Greater understanding of the molecular mechanisms 
downstream of the genetic alterations that drive high-risk 
neuroblastoma subtypes is critically required to facilitate 
development of novel therapeutic strategies and to improve 
overall patient survival. Consistent with the recently pro-
posed tumor checkpoint model (15), we elucidated a modular  
and hierarchical 10-protein architecture, responsible for 
the implementation of an aggressive neuroblastoma sub-
type (MYCNA) associated with aberrant activity of MYCN/
MYC proteins. Experimental validation of these MR pro-
teins confirmed their enrichment in MYCNA subtype–
specific essential genes and their ability to regulate each 
other, as well as MYCNA-signature genes, through mul-
tiple autoregulatory loops, thus establishing their role as 
bona fide master regulators. A novel TEAD4–MYCN posi-
tive feedback loop, mediated by both transcriptional and 
posttranslational interactions, emerged as the dominant 
regulatory structure at the top of the tumor checkpoint 
hierarchy and was shown to represent a critical tumor 
dependency.

Critically, these MR proteins were conserved in inde-
pendent neuroblastoma cohorts, and aberrant activation 
of the tumor checkpoint they comprise was found to be 
consistent across the entire MYCNA subtype, independent 
of MYCN amplification status. This is significant in light 
of recent findings suggesting that progression of malig-
nant neuroblastoma with the most aggressive phenotype 
is driven by aberrant MYCN or MYC activity (22, 23). We 
show that aberrant interaction between TEAD4 and MYCN/
MYC allows cells to undergo rapid proliferation and replica-
tion stress, while simultaneously activating complementary 
DDR pathways, thus providing mechanistic support for this 
observation. Consistently, inhibition of CHK1 and WEE1, 
both of which emerged as TEAD4 regulated, was previously 
shown to exhibit strong synthetic lethality in MYC-driven 
tumors—including neuroblastomas with high MYCN/MYC 
activity—by inducing potent cytotoxic response (49, 50, 
68). As MYC proteins are capable of mediating oncogene-
induced replication stress and genomic instability (76), the 
positive feedback loop between TEAD4 and MYCN, and 
possibly MYC, further supports this tumor initiation and 
maintenance mechanism.

Surprisingly, our data show that TEAD4 activity in MYCNA- 
subtype neuroblastoma is not mediated by its canonical 
cotranscriptional effectors in the Hippo pathway, YAP and 
TAZ (71, 77). This is likely because the positive feedback 
loop with MYCN decouples it from its normal physiologic 
control mechanisms by inducing saturation of its expres-
sion. Although prior studies have indicated TEAD4 driving 
previously identified YAP/TEAD targets in neuroblastoma 
cells (61, 78), these studies were performed in MYCNWT cells, 

further confirming that different regulatory mechanisms are 
at play in MYCNAmp versus MYCNWT cells. Interestingly, stud-
ies in mammary tumors have shown that MYC represses 
YAP/TAZ activity, while also showing that MYC induction 
decreases binding of YAP/TAZ to its bona fide targets, CTGF 
and CYR61, but not of TEAD4 (79); additional studies have 
shown YAP/TAZ-independent regulatory activity of TEAD4 
(80). In contrast to the canonical view that TEAD4 lacks 
independent transcriptional activation (81), TEAD4 was also 
recently reported to have a transcriptional activation domain, 
supporting transcriptional regulation independent of the 
YAP/TAZ DNA binding domain (82). This is consistent with 
the regulatory activity detected by our studies when aberrant 
TEAD4 protein expression is achieved due to its interaction 
with MYCN and MYC.

Although validation was restricted to the MYCNA sub-
type, our analysis identified identically conserved MR 
protein architectures for two additional subtypes, which 
largely overlapped with previous classification based on 
genetic alterations in neuroblastomas (83), including a 
subtype presenting a strong mesenchymal signature but 
lacking hallmark genomic alterations. MR proteins for 
this subtype were found to be highly overlapping with 
those previously reported for the mesenchymal subtype 
of high-grade glioma (8). Additionally, conservation of 
these proteins in cell lines implies their role as subtype 
MRs independent of stromal/immune infiltration. How-
ever, high rates of stromal and immune cell infiltration 
in a subset of these tumors suggests that single-cell analy-
sis may be required to further elucidate the interaction 
between tumor cells and stroma, including  the presence 
of mesenchymal cells within neuroblastoma tumors high-
lighted by recent studies (84). Perhaps most importantly, 
identification of master regulator proteins responsible for 
the implementation and stability of high-risk neuroblas-
toma subtypes, which are conserved in cell-line models, 
provides the opportunity for the systematic identification 
of subtype-specific therapeutic vulnerabilities using meth-
odologies such as OncoTreat, which were recently vali-
dated in neuroendocrine tumors (16). Because OncoTreat 
is NYS CLIA certified, this may further support the design 
of clinical trials enriched for patients representative of 
specific molecular subtypes.

Taking these results together, TEAD4 emerged as a highly 
conserved, mutation-independent tumor vulnerability for 
the MYCNA subtype of high-risk neuroblastoma, as well as 
a highly significant prognostic factor. As such, it may repre-
sent an ideal novel target for therapeutic intervention in this 
high-risk subtype. The results of this study are also highly 
consistent with our proposed model of a recurrent tumor 
architecture responsible for canalizing the effect of multiple 
genomic alterations to implement critical programs neces-
sary for tumor initiation and stability (15). Although MR 
proteins were discovered in multiple prior studies (8–10, 
13), their modular regulatory architecture and the exist-
ence of core autoregulatory loops had not been previously 
reported. These findings, combined with previous MR pro-
tein studies, suggest that similar regulatory architectures 
may be responsible for the implementation and stability of 
other cancers.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
a
n
c
e
rd

is
c
o
v
e
ry

/a
rtic

le
-p

d
f/8

/5
/5

8
2
/1

8
4
0
6
2
0
/5

8
2
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g
u
s
t 2

0
2
2



Rajbhandari et al.RESEARCH ARTICLE

596 | CANCER DISCOVERY MAY  2018 www.aacrjournals.org

METHODS

Subtype Identification, Neuroblastoma Interactome 
Assembly, and MR Analyses

Expression profile datasets on neuroblastoma from TARGET and 
NRC cohorts are described in Supplementary Table S1. Further 
characterization of the subtypes by pathway enrichment analyses 
(Supplementary Experimental Procedures) are provided in Supple-
mentary Table S2. Detailed description of the approach, clustering 
analyses (20), and master regulator analyses (19) is provided in Sup-
plementary Experimental Procedures. Details of the subtypes are 
provided in Supplementary Table S1, neuroblastoma interactomes 
in Supplementary Table S3, and subtype-specific MRs in Supplemen-
tary Table S4.

Cell Lines and Cell Culture

All neuroblastoma cell lines were obtained from the Children’s 
Hospital of Philadelphia (CHOP) cell line bank, the Children’s 
Oncology Group, or ATCC. They were maintained in DMEM or 
RPMI-1640 supplemented with 10% FBS, 2 mmol/L L-glutamine, 
and antibiotics. The 293FT cells were maintained in DMEM sup-
plemented with 10% FBS and antibiotics. We received the cell lines 
in 2012 and the experiments were performed between 2012 and 
2017. The genomic identity of each line was routinely tested and 
last confirmed in 2015 using the AmpFISTR Identifier Kit (Applied 
Biosystems). In addition, lines were routinely tested to confirm lack 
of Mycoplasma contamination.

Functional Validation of MRs

Experimental validation of top-ranked MRs of MYCNA subtype 
was performed in neuroblastoma cell lines by lentivirus-mediated 
pooled shRNA and individual shRNA screening (Sigma) and siRNA 
screening (Dharmacon), using cell viability as a readout (Sup-
plementary Experimental Procedures). For the respective shRNA 
and siRNA sequences, see Supplementary Table S5. RNA-based 
analyses were performed by RT-PCR (see Supplementary Table S9 
for oligonucleotide sequences) or RNA-seq analyses; ChIP assays 
using kits from Millipore and ChIP-seq analyses were performed 
as described previously (Supplementary Experimental Procedures). 
Details of ChIP-seq and RNA-seq analyses are provided in Supple-
mentary Tables S6 and S7, respectively. Details of other molecular, 
biochemical, and cellular assays are provided in Supplementary 
Experimental Procedures.

Clinical Validation of TEAD4

Analyses of TEAD4 protein expression in neuroblastoma tumors 
were performed using TMAs from CHOP (Supplementary Experi-
mental Procedures). Available histopathologic features are summa-
rized in Supplementary Table S8. Kaplan–Meier curve analyses and 
Cox proportional hazards regression analyses were performed using 
the R “survival” package (http://cran.r-project.org/web/packages/
survival/index.html; Supplementary Experimental Procedures).

High-Throughput Data Availability

The tumor genomics data from the TARGET cohort are available 
through the data matrix portal (https://ocg.cancer.gov/programs/
target/data-matrix). The NRC expression data are available in Gene 
Expression Omnibus with accession codes GSE85047. Data gener-
ated through the ENCODE project, including TEAD4 ChIP-seq data, 
were obtained from http://genome.ucsc.edu/ENCODE/downloads.
html. Additional data generated in this study, including RNA-seq 
profiles from BE2 cells and ChIP-seq data in BE2 cells using TEAD4 
antibody, are available in Gene Expression Omnibus with accession 
code GSE84389.

In Vivo Mouse Models

Mice were housed in a pathogen-free animal facility. All animal 
studies were approved by the Institutional Animal Care and Use 
Committee at Columbia University (#AAAQ2459). Mice used for 
subcutaneous xenograft experiments were 4- to 6-week-old male and 
female athymic nude (Nu/Nu, Charles River Laboratories).
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