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ABSTRACT

Color image reconstruction from noisy color Þlter array
(CFA) data is considered. A modiÞcation of the Block
Matching 3D (BM3D) [2] Þlter for CFA data denoising
utilizing cross-color correlations is proposed. Denoised
images are then demosaicked by algorithms developed for
noise-free data leading to state-of-the-art performance for
both Gaussian and Poissonian noise models.

1. INTRODUCTION

The common approach in single-chip digital cameras is
to use a color Þlter array (CFA) to sample different spec-
tral components. While various arrangements of the CFA
have been suggested, the classical Bayer pattern [1] is still
the mostly used nowadays. Full-resolution color compo-
nents are reconstructed through demosaicking, i.e. the in-
terpolation procedure estimating values of the twomissing
color components at each pixel. Independent interpola-
tion of color channels usually leads to drastic color distor-
tions, due to the aliasing introduced by subsampling. To
compensate aliasing, demosaicking algorithms mainly ex-
ploit the high correlation between the red, green, and blue
channels which is present in natural images. In particular,
this means that the three color channels are likely to have
similar texture and edge locations.
Most demosaicking algorithms have been developed

under the assumption of noise-free data. In the presence
of noise, the performance of the such algorithms degrades
drastically. Three main strategies to deal with noisy data
are possible: denoising after demosaicking, joint demosa-
icking-denoising (e.g., [5], [9], [10], [11]), and denoising
before demosaicking (e.g., [7]). Denoising after demo-
saicking is very challenging, because sophisticated adap-
tive interpolation procedures change the statistical model
of the noise in a complex and hardly computable form.
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Being deprived of an adequate noise model, the denois-
ing step is quite ineffective, because it can rely essentially
only on constraints reßecting the general a priori knowl-
edge about the image structure. An attempt to make in-
terpolation procedures robust against noise leads to the
so-called �joint denoising and demosaicking� algorithms.
Design of efÞcient joint algorithms is not an easy task be-
cause of the antagonistic nature of the denoising and inter-
polation procedures: denoising mainly performing some
sort of data smoothing, while interpolation aims at re-
constructing missing high-frequency details. The third
approach, denoise and then demosaick, while apparently
simple and straightforward, was long time considered to
be inefÞcient [10],[9]. Direct application of conventional
grayscale denoising Þlters to CFA is problematic due to
the underlying mosaic structure of the CFA, which vio-
lates the basic assumptions about local smoothness in nat-
ural images which these Þlters rely upon. The standard ap-
proach is to split the CFA into four sub-images (R, G1, G2,
B), Þlter these individually, and then recombine the Þl-
tered sub-images into a single denoised CFA image. The
drawback is that subsampled images are aliased and Þlter-
ing leads to the loss of many Þne details and origination of
artifacts when the denoised CFA image is demosaicked.
Nevertheless, modern denoising methods depart from

the conventional local-smoothness constraints and instead
they exploit non-local similarity of small image patches
[6]. This development installs new potential for the "de-
noising before demosaicking" approach.
In [12], Zhang et al. propose a CFA denoising method

based on the grayscale image Þltering algorithm by Mure-
san and Parks [8]. This algorithm exploits the principal
component analysis (PCA) for shrinkage on image blocks,
where the covariance matrix used by the PCA is estimated
from similar blocks found in a neighborhood.
In this paper, we develop and study the potential of

cross-color Þltering by applying the Block Matching 3-D
Þltering (BM3D) algorithm [2] directly in the CFA do-
main. This Þltering is followed by a demosaicking step
which assumes noiseless data. Extensive experiments with
additive white Gaussian noise, as well as with signal-de-
pendent Poissonian noise, demonstrate that our algorithm
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Figure 1. A simple example of grouping in an artiÞcial im-
age, where for each reference block (with thick borders)
there exist perfectly similar ones.

works very well. In particular, it achieves numerical re-
sults which are uniformly better than the best state-of-
the-art results reported in [12]. The visual quality of the
color images produced by our procedure is also very good,
without the artifacts that typically arise when conventional
Þltering algorithms are directly applied to CFA prior to
demosaicking. This ability of BM3D follows from the
special non-local modeling embedded in this algorithm in
order to reveal common features of similar image patches
at different locations [6].
The rest of the paper is organized as follows. In the

next section we discuss key principles of BM3D and in-
troduce the proposed algorithm. Experimental results are
given and discussed in the third section. Concluding re-
marks are made in the last section.

2. BLOCKMATCHING AND 3-D FILTERING

The general concept of the BM3D denoising algorithm is
the following.

1. Block-wise estimates. For each block in the noisy
image the Þlter performs:

(a) Grouping. Find blocks that are similar to the
currently processed one, and then stack them
together in a 3-D array (group).
The idea of the grouping is illustrated in Fig-
ure 1. Assuming that the stacked noisy blocks
are corresponding to the perfectly identical noi-
seless blocks, an element-wise average (i.e. av-
eraging between pixels at the same relative po-
sitions) will be an optimal estimator. In this
way, we achieve an accuracy that cannot be
obtained by processing the separate blocks in-
dependently. If the blocks stacked within the
same group are not identical, averaging is no
longer optimal. Therefore, a Þltering strategy
more effective than averaging should be em-
ployed.

(b) Collaborative Þltering. Apply a 3-D trans-
form to the formed group, attenuate the noise

Figure 2. Illustration of a group composed of blocks hav-
ing different color conÞgurations (left) vs. one composed
by blocks having the same color conÞguration (right).

by shrinkage (e.g., hard-thresholding) of the
transform coefÞcients, invert the 3-D transform
to produce estimates of all grouped blocks, and
return the estimates of the blocks to their orig-
inal place.
Due to the similarity between the grouped bl-
ocks, the transform can achieve a highly sparse
representation of the true signal so that the
noise can be well separated by shrinkage.

2. Aggregation. Compute the estimates of the output
images by weighted averaging all of the obtained
block-wise estimates that are overlapping.

A detailed description of the BM3D denoising algo-
rithm can be found in [2]. Here, we intentionally give
only general features of the BM3D algorithm referring to
the paper [2], where the algorithm is introduced, and to
the paper [6], where the evolution of the ideas exploited in
this algorithm is discussed. One of the principal features
of the BM3D algorithm is the so-called collaborative Þl-
tering enabled by the 3-D structure of groups formed from
similar blocks. A multiple-model interpretation of this Þl-
tering is presented in [6].

2.1. Color-constrained grouping

Applying the original BM3D algorithm to CFA images
can lead to severe checkerboard artefacts in regions with
small (but non zero) intercolor difference. This happens
when blocks with different color conÞguration are grouped
and thresholded together, leading to a faulty intercolor dif-
ference estimation (for example, when a block with a red
sample in its top-left corner is grouped with others hav-
ing in their top-left corner a green or blue sample). This
issue is easily and effectively resolved by restricting the
grouping to blocks having the same color conÞguration,
as illustrated in Figure 2. This is the only modiÞcation re-
quired in order to successfully apply the BM3D Þlter to
noisy CFA data.
We remark that our Þlter does indeed exploit all color

components simultaneously (hence the term cross-color
Þltering), because the shrinkage operates on the 3-D spec-
trum computed on a group which includes samples from
all color components.
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3. EXPERIMENTS AND DISCUSSION

We evaluate the performance of the proposed denoising
method by comparing it against the state-of-the-art PCA-
based method [12] over three sets of experiments. First,
assuming i.i.d. additive white Gaussian noise (AWGN)
model, we consider the quality of the CFA images de-
noised by the two methods. Second, the denoised CFA
images are demosaicked and compared. Third, we demon-
strate results of denoising and demosaicking of images
corrupted by the signal-dependent noise.
Throughout all experiments, four test images from the

Kodak dataset are used: Flower, Houses, Lighthouse, and
Parrots. Noise-free CFA images are obtained by subsam-
pling the test images according to the Bayer pattern. All
image intensities are assumed in the range [0, 1]. The 3-D
transform in the BM3D algorithm is realized as separable
composition of 2-D discrete cosine (DCT) and 1-D Haar
transforms.

3.1. Additive white Gaussian noise

First experiment. We compare the two denoising algo-
rithms in two setups: a) Þltering CFA as a single image
and b) splitting the CFA into four color components, Þlter-
ing them separately, and recombining back the denoised
CFA image. Three different noise levels are considered
σ = 5

255 ,
12
255 ,

25
255 . Numerical results (PSNR, dB) are

presented in Table 1. Both algorithms show better re-
sults in denoising the CFA as a single image than com-
ponentwise, demonstrating their ability to take advantage
of the cross-color Þltering. In both setups, our algorithm
achieves 0.8− 1.9 dB over [12].
Second experiment. We interpolate the denoised CFA

images from the Þrst setup of the Þrst experiment with one
of the best demosaicking algorithms, the Directional Lin-
ear Minimum Mean Square-Error (DLMSEE) algorithm
[13]. The numerical results summarized in Table 2 attest
that the superior performance of our algorithm is largely
maintained after demosaicking, with an advantage of about
1 dB over [12].
Visual inspection shows that CFA images denoised by

the algorithm [12] suffer from strong residual noise, which
also leads to color interpolation artefacts. Images denoised
by the proposed algorithm, while looking noise-free, con-
tain mild checkerboard artefacts in the areas with small
intercolor difference. Some small details are better re-
constructed by [12] thanks to the adaptivity of the PCA
basis, compared to the Þxed DCT transforms of BM3D.
Zoomed parts of the corresponding images of Lighthouse
are shown in Figures 3 and 4.

3.2. Signal-dependent noise

The noise in raw-data images from digital cameras is not
i.i.d. Gaussian. It can be accurately modeled by the sum
of a signal-dependent Poissonian component and a signal-
independent Gaussian component and by taking into ac-
count the clipping due to the limited range of signal repre-
sentation [3]. Let y be the noise-free image and x a pixel

coordinate. The raw-data image �z can be expressed as [3]
�z (x) = max {0,min {1, y (x) + σ (y (x)) ξ (x)}} , (1)
where ξ (·) is a random variable with zero mean and unit
variance and σ is a deterministic function of the form

σ2 (y (x)) = ay (x) + b (2)
with the constants a ∈ R+ and b ∈ R depending on the
sensor�s speciÞc characteristics and on the particular ac-
quisition settings.
Most grayscale Þlters, including BM3D, are designed

for i.i.d. Gaussian noise. Homomorphic nonlinear trans-
formations can be employed for variance stabilization and
for addressing the bias due to clipping [3], allowing us
to utilize the algorithms BM3D and [12], designed for
AWGN, for removal of the signal-dependent noise from
the raw-data (1). For our simulations we set the noise
parameters a = 0.004 and b = 0.022 (which reproduce
the noise in the raw-data of a Fuji FinePix S9600 cam-
era at ISO 1600), and rely on the variance-stabilizing and
declipping transformations implemented in the ClipPois-
Gaus toolbox1.
The numerical results, presented in Table 3, are con-

sistent with those for the AWGN case. The zoomed ex-
ample in Figure 5 shows how the residual noise affect the
quality of interpolation.

4. CONCLUSION

The recent development of powerful non-local denoising
techniques, relaxing the local-smoothness constraints, op-
ens possibilities to apply these techniques to CFA data di-
rectly. In this paper, we have shown how, after a slight
modiÞcation, one of the best grayscale denoising meth-
ods, namely BM3D [2], can be effectively applied for di-
rect CFA cross-color denoising. The denoised CFA can
be then accurately demosaicked by algorithms developed
for noiseless data. The experiments show a quite essen-
tial numerical and visual improvement pushing the state-
of-the-art to a higher level. We have also shown that com-
plementing this algorithm by variance-stabilization proce-
dures enables its successful use for data with non-Gaussian
signal-dependent noise.
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Proposed [12] Proposed [12] Proposed [12]
σ 5/255 12/255 25/255

(07) Cross-color
Componentwise

39.6
38.1

38.1
35.8

34.5
32.2

32.9
30.6

30.3
28.0

28.4
26.3

(09) Cross-color
Componentwise.

36.3
35.3

34.2
31.9

30.9
29.3

29.4
27.7

26.9
24.8

25.3
23.5

(19) Cross-color
Componentwise

37.5
36.6

36.3
34.6

32.6
31.0

31.6
30.1

29.3
27.6

27.9
26.4

(23) Cross-color
Componentwise

39.4
38.5

38.6
36.8

35.1
33.8

34.2
32.4

31.3
30.1

30.1
28.4

Table 1. PSNR (dB) results of the denoised CFA images of the Þrst experiment. Computed excluding a 35-pixel border.

Proposed [12] Proposed [12] Proposed [12]
σ 5/255 12/255 25/255

(07)
R
G
B

37.8
39.1
37.5

36.8
38.0
36.6

33.9
34.6
33.8

32.6
33.2
32.6

30.1
30.6
30.1

28.5
28.8
28.3

(08)
R
G
B

32.7
34.5
32.8

31.7
33.2
31.9

29.6
30.5
29.8

28.5
29.3
28.7

26.3
26.7
26.5

24.9
25.4
25.2

(19)
R
G
B

35.7
36.8
36.3

34.8
35.9
35.4

31.8
32.5
32.6

30.9
31.6
31.6

28.7
29.4
29.6

27.5
28.1
28.2

(23)
R
G
B

37.7
39.3
38.2

37.3
38.7
37.6

34.4
35.5
34.6

33.9
34.8
33.9

31.0
31.9
31.1

30.1
30.8
30.0

Table 2. PSNR (dB) of demosaicking results using DLMMSE method [13] on the denoised CFA images. Computed
excluding a 20-pixel border.

Figure 3. Lighthouse. From left to right: ground truth, denoised by proposed method, denoised by [12]. Gaussian noise
(σ = 12/255).

[5] Hirakawa, K., and T. W. Parks, �Joint demosaicking
and denoising,� IEEE Trans. Image Process., vol. 15,
no. 8, pp. 2146-2157, Aug. 2006.

[6] Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola,
�From local kernel to nonlocal multiple-model im-
age denoising�, Int. J. Computer Vision, July 2009.

[7] Koh, C.C., J. Mukherjee and S.K. Mitra, �New efÞ-
cient methods of image compression in digital cam-
eras with color Þlter array,� IEEE Trans. Consumer

Electronics, vol. 49, no. 4, pp. 1448-1456, Nov.
2003.

[8] Muresan, D.D., and T.W. Parks, �Adaptive principal
components and image denoising,� Proc. ICIP 2003,
vol. 1, pp 1101-1104, 14-17 Sep. 2003.

[9] Paliy, D., A.Foi, R. Bilcu, V. Katkovnik, �Denoising
and Interpolation of Noisy Bayer Data with Adaptive
Cross-Color Filters�, SPIE-IS&T Electronic Imag-

128



Figure 4. From left to right: ground truth, proposed denoising + interpolation [13], denoising [12] + interpolation [13].
Gaussian noise (σ = 12/255).

Figure 5. From left to right: ground truth, proposed denoising + interpolation [13], denoising [12] + interpolation [13].
Signal dependent noise (a = 0.004, b = 0.022).

Proposed [12]
σ (y) =

√
ay + b a = 0.004, b = 0.022

(07)
R
G
B

34.1
34.9
34.3

32.7
33.5
33.1

(08)
R
G
B

29.5
30.4
29.7

28.3
29.2
28.5

(19)
R
G
B

32.0
32.6
32.7

31.0
31.7
31.7

(23)
R
G
B

34.2
35.4
34.8

33.7
34.7
34.2

Table 3. PSNR (dB) of denoised and demosaicked images
corrupted by signal dependent noise. Computed excluding
a 20-pixel border.
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