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Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography
(dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography
(EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from
both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed
pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds
was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and
EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the
dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed
to change on a scale of seconds.

1. Introduction

The methodologies to characterize neurovascular coupling
in humans [1] can be separated at least into two categories.
The first relies on two sequential measurements of the same
subject and infers coupling parameters, the second performs
multimodal synchronous measurements of neuronal and
vascular effects, and the coupling is observed directly. The
second methodology is technically more complicated, but
the effect of a subject’s performance changing between
two measurements is eliminated. Furthermore it allows
to study the coupling on continuous time series, that is,
without relying on epoch averages removing the variability
between individual epochs. Results from these approaches
complement the detailed findings for neurovascular coupling
obtained from invasive studies in animals [2].

One possibility to study neurovascular coupling by syn-
chronous measurements was described in [3–5] combining
dc-magnetoencephalography (dcMEG) with time-resolved
near-infrared spectroscopy (trNIRS) during intermittent
finger movements. These synchronous measurements were
so far limited to a bandwidth from DC to 0.4 Hz due
to the modulation technique used for the dcMEG [4].
With the possibility to obtain unmodulated dcMEG in a
magnetically extremely shielded room [6, 7] the bandwidth
of the synchronous measurements is considerably increased;
that is, slow signal changes close to DC and standard
neuronal responses above 1 Hz can be recorded at the same
time. To keep in line with earlier literature the term dcMEG
is maintained, but it denotes here a bandwidth of the signal
from 0.01 Hz to about 8 Hz. Oscillatory signals at higher
frequencies such as the γ-rhythm will not be considered here.



2 Computational Intelligence and Neuroscience

An alternative method [8] used trains of somatosensory
MEG responses at latencies between 20 and 100 milliseconds
and the related NIRS responses. These fast MEG responses
can be measured in standard shielded rooms, where the
lower MEG bandwidth limit is 0.1 Hz. The fast neuronal
responses are well suited to investigate the linearity of neu-
rovascular coupling, but to study temporal characteristics of
the coupling the dcMEG and related stimulation paradigms
seem more appropriate. Often neurovascular coupling is
studied through the combination of electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI)
[9]. This combination again allows to record only fast
neuronal responses and the EEG contains strong fMRI
induced artifacts.

An intermittent finger movement of 30-second dura-
tion was chosen as the paradigm to induce neurovascular
responses here. The finger movement was monitored by
recording the lower arm muscle EMG. This allows to employ
the well-known coupling between EEG or MEG signals of
the motor cortex and peripheral muscle activity [10] as a
control parameter. Using independent component analysis
(ICA) single unaveraged time series related to the finger
movements were extracted from the multichannel dcMEG
and trNIRS data. The frequently applied coherence cannot be
estimated here in a meaningful way as 30 event repetitions in
a 30-minute measurement session are not sufficient to obtain
reliable spectral statistics. Therefore the coupling between
the dcMEG, trNIRS, and EMG time series was analyzed using
the cross-correlation function (CCF). The suitability of this
approach for our experimental setting is assessed.

2. Material and Methods

2.1. Measurement Technique and Preprocessing. The mea-
surement setup is similar to the setup combining modulated
dcMEG with trNIRS as described in [4]. The trNIRS
instrument operates at the wavelengths 690 nm, 803 nm,
and 826 nm and is equipped with one source and four
detector optodes. The detector optodes are arranged in a
cross with the source in the center and a source-detector
separation of 3 cm. In the present study, the logarithm of
the relative count rate, that is, the change in attenuation
at each wavelength with respect to a baseline interval,
is used as NIRS parameter for the analysis. This allows
the application of ICA at the wavelength level, which is
not possible anymore after estimation of oxy- and deoxy-
hemoglobin changes from the attenuation. With respect
to the dcMEG, the present setup is improved employing
the stationary, unmodulated dcMEG technique [3] with a
sampling rate of 500 Hz. Both, dcMEG and trNIRS sensors,
were approximately centered above the motor cortex contra-
lateral to the finger movements. To control the subjects
performance, the peripheral signals EMG, heartbeat, and
respiration were measured in simultaneous recording tracks.
The data set presented here is a representative example from
a group study of six subjects.

A highly structured finger movement pattern of the right
hand was used as the stimulation paradigm. This movement

pattern requires some practice before the measurement and
ensures the attention of the subject during the experiment.
The paradigm consists of a continuous sequence of finger
contractions of the right hand: 2 ∗ thumb, 2 ∗ ring finger,
2 ∗ index finger, 2 ∗middle finger, and 2 ∗ little finger. The
two contractions of each finger should be performed within
a second and the full sequence lasted typically 5 seconds.
Naturally the individual speed was variable. Following an
auditory cue, which was the prerecorded word “fast” chosen
for its brevity and motivating appeal, the subjects had to
start this structured finger movement. After 30 seconds of
continuous movement another cue (“stop”) indicated the
start of the 30 seconds rest period. This cycle was repeated
30 times resulting in a measurement duration of 30 minutes.
The first and last two epochs (trials) from a measurement
session were discarded, in order to eliminate edge effects due
to highpass filtering of the raw dcMEG data at a frequency of
0.01 Hz, so that 26 of the 30 epochs remain (see Figure 1). In
the following both the on/off cycles, that is, the intermittent
finger movement and the rhythm of the finger movement
within each 30 seconds period will be important.

To obtain the response due to the intermittent finger
movement paradigm ICA was applied separately to dcMEG
and trNIRS as demonstrated before in [7]. The ICA algo-
rithm chosen was SOBI/TDSEP [11, 12], which is well suited
to extract signals with a clear spectral structure as expected
here due to the repetitive block design paradigm with 30
seconds of movement followed by 30 seconds of rest. The
actual calculation is performed in the time domain as cross-
covariances for a given delay τk between signal channels xi:
Ci j(τk) =

∑

xi(t)x j(t + τk). A group of matrices {C(τk)}
is then diagonalised and the approximate diagonalising
operator yields the independent components.

The groups of component time series resulting from the
ICA for the magnetic field B(t) and the attenuation ∆A(t)
are searched each for a single time series with the highest
correlation to the stimulation. These B(dcMEG-ICA)) and
∆A(trNIRS-ICA) time series and its associated component
maps are then taken as the neuronal and vascular response to
the finger movement. Only a single component was selected
as all other components had a weak correlation with the
stimulation sequence. Clearly it cannot be decided whether
the single ICA component accounts for the whole motor
response, but individual data sets with a good signal-to-
noise ratio indicate this through the similarity between the
ICA component and the standard average. At present the
search is not automated, but the epoch averages of the ICA
component time series are inspected manually. Although the
ICA calculation is performed on nonaveraged raw data, the
averaged ICA time series will be shown below.

Two parameter options have to be chosen for the
SOBI/TDSEP algorithm: the first is the bandwidth of the
signals and the second is the set of delays {τk}. Both
parameters have to be chosen heuristically due to the lack
of a theoretical foundation. In the MEG strong cortical
background signals can be found in the α- and β-band
starting around 8 Hz. It was found that ICA extracts a better
movement-related response if the signal bandwidth is limited
to 0.01–8 Hz excluding the background signals. The upper
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Figure 1: ICA components for B (dcMEG) and ∆A(trNIRS) due to finger movement. The component and its time series are characterized
by the ICA map (left, see text for details of trNIRS map), the ST plot of the time series (middle), and the epoch average of the time series
(right). In the averages the signal change between rest and move is clearly visible; in the ST plot it is more pronounced for B. The slower
onset of ∆A compared to B at the beginning of the move window is obvious.

limit of 8 Hz has the additional advantage that then dcMEG
and trNIRS have a similar upper band limit as the trNIRS
is sampled at 20 Hz. The lower limit of 0.01 Hz is chosen
to exclude monotonous signal drifts during the 30-minute
measurement. Such monotonous signals are nonstationary
and violate the ICA assumptions. Filtering as preprocessing
is often performed implicitly by analog filters in the signal
conditioning chain if ICA is applied to MEG data with a
bandwidth of, for example, 1 to 100 Hz.

The set of delays {τk} was optimized in a heuristic search
using all data sets from the group study; that is, for a new
set of delays SOBI/TDSEP was recalculated for all data sets
in the group. This search was possible through a parallel
implementation of the ICA algorithm running on a PC clus-
ter (http://www.rocksclusters.org/) using a parallel compu-
tation interface (http://www.open-mpi.org/) and optimized
linear algebra routines (http://math-atlas.sourceforge.net/).
The final set of delays chosen for SOBI/TDSEP was
{τk} = {0.2, 0.4, 0.6, . . . , 60.0, 60.012, 60.024, . . . , 120.0} sec-
onds. This set does not consist of evenly spaced delays, but it
has a higher number of cross-covariance matrices at delays τk
in the range of the 60 seconds stimulus repetition rate. This
turned out to extract a better movement-related response.

From the measured EMG a rate (EMGR) was calculated
by a process called amplitude demodulation. The full band-
width EMG (sampling frequency 500 Hz, lowpass 250 Hz)
was rectified and then input into a modified Paynter filter
(readily available in http://sourceforge.net/projects/biosig/)

with an 8 Hz lowpass characteristics. The resulting signal is
the envelope of the oscillatory EMG signal. With respect to
the subsequent cross-correlation analysis it was important
that all signals had the same bandwidth. Therefore the heart
rate derived from the ECG was filtered with the 8 Hz lowpass
too.

2.2. Cross-Correlation Analysis. The CCF (e.g., [13]) is a tool
to detect common periodicities between two time series,
if the length of the time series is large compared to the
oscillation period of interest. Given two time series ut and
vt with n points their cross-correlation as a function of lag τ
is given by

CCFuv(τ) =
1

n
√

VAR(ut)VAR(vt+τ)

tn
∑

t=t0

(ut − ut)(vt+τ − vt+τ),

(1)

where τ = 0, 1, . . . , (m− 1) up to a maximum lag m≪ n and
VAR(x) is the sample variance. Due to the shifting of vt by the
lag τ the absolute positions of the cross-correlation maxima
are related to phase shifts [13] for signals with similar basic
periodicity.

For the time series related to the intermittent finger
movements two types of CCFs were investigated. The
first was calculated using the complete unaveraged ICA
time series of 26 minutes duration covering all rest/move
sequences. This CCF probes for the coupling related to the
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Figure 2: ST plots and resulting averages over the epochs of EMG rate (top) and heart rate (bottom). The ST plots show that the changes
observed in the average are not due to outliers in a single epoch.

transition between the two states, that is, fingers moving
and at rest. The second was calculated for a new time
series created by concatenation of the move windows with
their mean values subtracted to minimize steps between the
windows. This second type of CCF probes the coupling due
to the rhythm of the finger movement. CCFs were calculated
pairwise for a “signal triangle” consisting of B, ∆A, and
EMGR.

3. Results

3.1. dcMEG, trNIRS, and EMGR Time Series. The contin-
uous dcMEG and trNIRS time series extracted by ICA,
B(dcMEG-ICA) and ∆A(trNIRS-ICA), are presented in
Figure 1 using single trial (ST) plots. In an ST plot the
continuous data are segmented into identical intervals and
aligned at the time of the auditory start instruction. Epochs
are presented in a stacked plot, where the amplitude value is
coded as a shade of grey. This results in a two-dimensional
grey-scale image of the complete continuous time series.
A baseline correction is calculated in the 5-second window
prior to finger movement onset. In Figures 1 and 2 the
zero of the time axis corresponds to the auditory start
instruction and the labels “rest” and “move” are added to
emphasize the different regions. The dashed vertical lines

in the average indicate the start and end of the “move”
window.

ICA-extracted maps, ST plots, and averages of the finger
movement-induced responses are shown for B and ∆A in
Figure 1. For ∆A a pseudomap is used, which has a vertically
elongated outline and dotted horizontal lines separating
three wavelengths zones. In each zone the geometrical
arrangement of the four detector optodes is indicated by
the large dots. The interpolation is performed across the
map and, therefore, the transitions across a dotted horizontal
line have no meaning and each zone should be considered
separately. The B-field map is a conventional field map
displaying multichannel (scalar) magnetic field data. The
motor cortex for right hand finger movements is typically
associated with the EEG position C3 in the international 10–
20 system for electrode placement and C3 is shown in the
B-field map and the 800 nm part of the ∆A pseudomap in
Figure 1. A source close to the center of the dcMEG sensor
can be deduced from the dipolar structure of the B-field
map. This is the expected result for position C3 and motor
activity. The four-detector trNIRS setup covering roughly an
area of 9 cm2 does not allow an accurate localization of the
cortical trNIRS response, but the different sign of ∆A at 690
and 830 nm is a typical signature of cortical activity. This
confirms that the positioning above the motor cortex was
successful.
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Figure 3: Pairwise CCFs of the measured modalities using the continuous time series, that is, including all rest/move cycles, for time lags
from τ = −15 to 15 seconds. Note the different y-axis of the bottom figure. The highest correlations are reached for CCF(B, EMGR) and
the curve is fairly symmetric with respect to zero lag (τ = 0 seconds). The correlations are slightly lower for CCF(B,∆A) and the peak of the
curve is shifted to positive τ. Low correlations result for CCF(∆A, EMGR) and the peak of the curve is shifted to negative τ.

For B almost all epochs show a response during finger
movement in the ST plots in Figure 1 and for ∆A the same
holds despite a larger variability. Note that the grey-scale
range in the ST plot for ∆A is five times larger than the
resulting average value. This is a consequence of the large
variability in the ∆A single responses, which is most likely
due to physiological noise. The overall stable responses in
the ST plots show that the time series extracted by ICA are
correctly attributed to the intermittent finger movements.
Most important is the immediate rise in the B signal
(neuronal response) at finger movement onset contrasting
with the much slower rise in the ∆A signal (vascular
response).

The ST plots and associated epoch averages of the
peripheral signals are shown in Figure 2. The sharp rise in the
EMGR after t = 0 seconds both in the ST plot and the average
shows the immediate start of finger movements. The heart
rate shows a rapid increase at the beginning of the finger

movement followed by oscillations around a constant value
and a slow decrease after the end of finger movements. In the
EMGR and the heart rate oscillations with a periodicity of
3 seconds to 4 seconds are visible in Figure 2. It is beyond
the scope of this work to investigate this effect in detail,
but preliminary cross-correlation results indicate coupling
between heart rate and EMGR.

3.2. Cross-Correlation. The pairwise CCFs of the full con-
tinuous time series covering all rest/move epochs are shown
in Figure 3 for the “signal triangle” consisting of B(dcMEG-
ICA), ∆A(trNIRS-ICA), and EMGR. For CCF(B, EMGR)
the maximum correlation is reached around τ = 0 seconds
with superimposed oscillations. For CCF(B,∆A) the peak
of the curve is shifted to (positive) τ ∼ 2 seconds, which
means that ∆A has a phase lag towards B as the order of
the arguments is relevant for CCF(t) (see equation (1)).
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This phase shift is consistent with the data in Figure 1. The
peak of the CCF(∆A, EMGR) curve is shifted to negative
τ, which is consistent with the immediate EMGR increase
following finger movement onset as can be seen in Figure 2
and the much slower signal change in ∆A in Figure 1. The
lower absolute correlation of CCF(∆A, EMGR) compared to
CCF(B, EMGR) shows that the overall signal shape differs
more for CCF(∆A, EMGR) again consistent with Figures 1
and 2. The peak shift to positive τ in CCF(B,∆A) was seen
before in a preliminary investigation [7].

In Figure 4 the CCFs of the time series consisting of
the concatenated move windows are shown for the “signal
triangle” for two different τ ranges. The CCF(B, EMGR)
function in Figure 4 (top) shows rapid oscillations around
τ = 0 seconds and slower oscillations with a period of 4
seconds throughout the τ range. Such clear oscillations are
observed neither in CCF(B,∆A) nor in CCF(∆A, EMGR).
The detailed plot of CCF(B, EMGR) around τ = 0 seconds
(right column) shows that the rapid oscillations have a
periodicity of 0.5 seconds. These rapid oscillations could
be attributed to the coupling between neuronal signal and
each individual finger contraction. This interpretation is
consistent with the disappearance of the fast oscillations
with increasing τ. The naturally somewhat irregular rhythm
of individual finger movements for the duration of the
30-second move windows implies that only short range
temporal correlations exist. For larger τ possibly the envelope
of the finger contraction sequence is reflected in the CCF
as the periodicity of 4 seconds is in the expected range. In
CCF(B,∆A) oscillations similar to the slow oscillations in
CCF(B, EMGR) are observed, which could be interpreted
as variations in vascular demand related to the envelope
of the finger movements. The 4-second periodicity of the
slow oscillations is not in contradiction to the time scale of
neurovascular coupling [1–3]. The indirect coupling from
EMGR to B and then to ∆A is apparently ineffective as
CCF(∆A, EMGR) is rather small and irregular.

4. Conclusions

The synchronous triple measurement of dcMEG, trNIRS,
and EMGR enabled a CCF analysis on continuous time series
related to intermittent finger movements. The well-known
difference in transition time for vascular and neuronal
responses is reflected in a peak shift to positive τ for
CCF(B(dcMEG-ICA), ∆A(trNIRS-ICA)). The value of the
peak shift might serve as a parameter [13] to quantify
the temporal characteristics of neurovascular coupling. A
coupling on the basis of individual finger movements is
likely between EMGR and B as their CCF shows oscillations
at the finger movement frequency. This means that the
unmodulated dcMEG with the increased bandwidth up to
8 Hz represents both slow and faster neuronal processes.
The absence of apparent coupling between ∆A and EMGR
indicates that the vascular response does not follow the
individual finger movements. This is in agreement with
the temporal characteristics of neurovascular coupling [1–
3], that is, the peak shift in CCF(B,∆A) here. The triple

measurement in combination with the signal extraction by
ICA and the CCF analysis allows a powerful coupling analysis
at several time scales. Future work will try to incorporate
spontaneous and induced fluctuations in the finger move-
ment intensity to characterize the temporal behavior and the
linearity of the coupling in a single experiment.
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