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Cross-diffusion, the phenomenon in which a gradient in the concentration of one species induces

a flux of another chemical species, has generally been neglected in the study of reaction–diffusion

systems. We summarize experiments that demonstrate that cross-diffusion coefficients can be quite

significant, even exceeding ‘‘normal,’’ diagonal diffusion coefficients in magnitude in systems that

involve ions, micelles, complex formation, excluded volume effects (e.g., surface or polymer

reactions) and other phenomena commonly encountered in situations of interest to chemists. We

then demonstrate with a series of model calculations that cross-diffusion can lead to spatial and

spatiotemporal pattern formation, even in relatively simple systems. We also show that, in the

absence of cross-diffusion among the reacting species, introduction of a nonreactive species that

induces appropriate cross-diffusive fluxes with reactive species can lead to pattern formation.

1. Introduction

Reaction–diffusion (RD) systems have attracted increasing

attention from the scientific community in recent years as

investigators have begun to seek insights into the fascinating

patterns that occur in living organisms, in ecological systems, in

geochemistry and in physicochemical systems. The rapid

growth of the field of systems biology has further contributed

to interest in RD systems. Thermodynamically stable spatial

structures,1 like crystals (for example, snowflakes2), micelles,

membranes and other aggregates are said to arise via self-

assembly.Another class of structures, of which Turing patterns3

are perhaps the best known example, occur only far from

equilibrium. They are said to involve self-organization and

result from mechanisms that may be called kinetic or dissipa-

tive. Introduced theoretically by Turing,3 extensively studied by

Prigogine and collaborators,4 and then realized experimentally

in Bordeaux,5 Austin,6 and Brandeis7 among other places, these

routes to pattern formation couple nonlinear chemical kinetics

and diffusion. These dissipative or nonequilibrium patterns

include spiral waves,8 Turing patterns,5,7 standing waves7,9

and other spatiotemporal phenomena that require an input of

energy and/or matter.

Diffusion processes play a role in both self-assembly and self-

organization, while chemical kinetics is important only in the

latter case. Detailed understanding of self-assembly requires

knowledge of the explicit form of the interaction potential

between particles or molecules, which allows us to calculate

such thermodynamic functions as energy and entropy. In

chemical kinetics, the mechanisms of chemical and physical

interaction between species are hidden in the reaction rate

constants, which significantly simplifies the description of

chemical processes. When analyzing RD mechanisms, one
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usually assumes that chemical and diffusion processes can be

separated without any harm, at least for relatively slow reac-

tions. Note, however, that there is a well known and venerable

example in which a diffusion process directly determines the

rate of a chemical process, namely a diffusion-controlled

bimolecular reaction, whose rate, kd[A][B], is characterized

by10–13

kd = 4pfrDNA (1)

where kd is the diffusion-controlled reaction rate constant, r is

the encounter diameter of the molecules A and B,D=DA+DB

is the diffusion coefficient of their relative motion and NA is

Avogadro’s number. The factor f takes into account the

charges on species A and B. If their charges have the same

(opposite) signs, then f o (4) 1, and fD 1 for neutral A or B.

Nearly all efforts to explain the patterns found experimentally in

RD systems, such as the CIMA (chlorite–iodide–malonic acid)

reaction,5,6 the BZ-AOT (Belousov–Zhabotinsky in aerosol OT

microemulsion) system7,14 or the FIS (ferrocyanide–iodide–sulfite)

reaction,15–17 employ only the diagonal elements of the diffusion

matrix. That is, they assume that the diffusion of species A

depends only upon gradients in the concentration of A, and not

on the spatial distribution of any other species. In this case, an RD

system can be written in the following general form

qui/qt = Ri(u) + Diir2u, i = 1,2,. . ., N (2)

where the vector u consists of the concentrations uj (j= 1,2,. . .,N)

of the N species, the Ri(u) give the reaction kinetics, and Dii is

the diffusion coefficient of the ith species. Patterns found in

such RD systems generally arise via either Turing instability or

wave instability.3 These instabilities can lead to patterns in

spatially extended systems if the homogeneous steady state is

subjected to an infinitesimal perturbation.5,7 In some cases,

patterns can emerge only if a sufficiently large perturbation

with a suitable spatial structure is applied.18–20 This latter

(subcritical) group of mechanisms can also produce localized

patterns.21

The Turing instability, which leads to patterns that are sta-

tionary in time and periodic in space, can be characterized as

arising from ‘‘long range inhibition and short range activation’’,

at least for two-variable models. Translating these biologically-

oriented terms into physicochemical ones, we may say that the

autocatalytic species (activator) must have a diffusion coefficient

smaller (often much smaller) than that of the other (inhibitor)

species. The conditions for wave instability, which can occur only

in systems with three or more variables, and which leads to

patterns periodic in both time and space, are more complex.

Typically, a third species coupled to the activator must have a

diffusion coefficient that differs significantly from the diffusion

coefficients of both the activator and the inhibitor.

Chemical and physical interaction between species can be

concealed not only in the reaction rate constants, as mentioned

above, but also in the parameters used to describe the diffusion

process, especially when cross-diffusion is present. Cross-diffusion

refers to the phenomenon in which a flux of species A is induced

by a gradient of species B. Such processes can be characterized by

the Fickian diffusivity matrix D or by the Maxwell–Stefan

diffusion matrix D, where the diffusion coefficient Dij has the

physical meaning of an inverse drag coefficient in the

Maxwell–Stefan equations,22 rather than by a vector of coeffi-

cientsDii. Examples of systems that exhibit cross-diffusion include

strong electrolytes,23–25 micelles,26,27 or microemulsions,28 and

systems containing molecules of significantly different sizes, for

example protein-salt.29–31 Similar phenomena also occur in bio-

logical systems, but since the transport process is driven by an

input of energy, as, for example, in bacterial chemotaxis32–34 or in

predator–prey systems,35–38 these are not true diffusion processes.

Nonetheless, the mathematical description of biological or ecolo-

gical cross-diffusion is the same as in physicochemical systems, as

we discuss below.

Following the Fickian interpretation of the diffusion process,

the general RD equations with cross-diffusion terms take

the form:

@ui=@t ¼ RiðuÞ þDiir2ui þ
X

jai

divðDijrujÞ;
i; j ¼ 1; 2; . . . ;N ð3Þ

where the new term, Sdiv(Dijruj), takes into account the flux of

ui, Dijruj, induced by the gradient of species uj. Note that

eqn (3) can include nonreactive species for which the reactive

term Ri(u) equals zero. These species may be crucial for pattern

formation, since cross-diffusion between reactive and non-

reactive species can induce significant fluxes of reactive species.

In this Perspective, we first describe several processes that can

give rise to cross-diffusion, like chemotaxis,39 weak nonbonding

solute–solute interactions,40,41 electrostatic42,43 or excluded

volume effects.30,42,44–49 Methods of measurement of cross-

diffusion constants are briefly described. We present our own

theoretical results that predict patterns in very simple chemical

systems (described by eqn (3)), patterns that do not require the

usual condition of activator–inhibitor species having signifi-

cantly different diffusion coefficients.

2. Cross-diffusion without reaction

At first glance, diffusion might seem to be a simple process, but

in multi-component systems this is rarely the case. The complex

range of possibilities becomes apparent if we simply consider the

various terms used to characterize diffusive processes. Indeed,

such expressions as self-diffusion, tracer diffusion, intradiffusion

and interdiffusion, mutual diffusion, cross-diffusion, uphill

diffusion50,51 and incongruent or negative diffusion52,53 require

careful definition. If we look back at the history of diffusion, we

find that its experimental investigation in binary liquid mixtures

began in 1850,54 and its theoretical description started in 1855

with Fick.55 The possibility of cross-terms in multi-component

systems was suggested only in 1932.56 In 1955, Gosting and

collaborators undertook the experimental verification of the

existence of cross-diffusion.57,58 They used optical interfero-

metry, Gouy and Rayleigh methods.59,60 Other approaches, like

the diaphragm-cell technique61–63 and the Taylor method64–67

have also been adapted to measure cross-diffusion coefficients.

The Taylor method, which we discuss below, is probably the

most widely employed technique at present.

The term ‘‘mutual diffusion coefficients’’ is used as a synonym

for interdiffusion coefficients. These are the coefficients used

in eqn (3), both the diagonal and off-diagonal elements of

898 | Phys. Chem. Chem. Phys., 2009, 11, 897–912 This journal is �c the Owner Societies 2009



matrix D. For a binary solution, only a single coefficient is

necessary to describe diffusion, while for a ternary solution, we

already need four diffusion coefficients, and nine are required for

quaternary systems. These diffusion coefficients, including the

diagonal elements of the matrix D. are dependent on both

concentration and temperature. Negative diffusion provides a

striking example of the dependence of Dii on concentration.52,53

The term intradiffusion was probably first introduced by

Albright and Mills.68,69 Following these authors, in the book

by Tyrrell and Harris,70 self-diffusion is considered as a special

case of intradiffusion in a system which contains only two

distinguishable (by isotopic labeling, for example) forms of

the same chemical species. Self-diffusion can be measured at

low concentrations when the interaction between particles is

negligible. As concentrations approach zero, the diagonal

elements of D tend to the self-diffusion coefficients.

The self-diffusion coefficient of any component a in a system

can be defined as71

Da ¼
1

3Na

X

Na

i¼1

Z 1

0

hu!iðtÞu!ii dt ð4Þ

where hu!iðtÞu!ii is the velocity autocorrelation function of an

individual particle and Na is the number of these particles.72

From this definition, it was noted73 that, unlike mutual diffu-

sion coefficients, self-diffusion coefficients are independent of

reference frame and of the chemical potential derivatives.

Relations between self-diffusion and mutual (interdiffusion)

diffusion coefficients can be established,73,74 for example, as

Darken’s equation75,76 or the Hartley–Crank relation.77,78

Since diffusion coefficients characterize the motion of parti-

cles, and the velocity of any motion is measured in some

reference frame, the choice of reference frame is very important

for determining diffusion coefficients.53 The diffusion flows (or

fluxes) in some arbitrary reference frame R can be written as

Jj
R = cj(uj � uR) (5)

where cj is the concentration of component j, and uj and uR are

the local velocities of j and the reference frame R, respectively.

Any one component flow (for n components) can be elimi-

nated by the definition of the reference frame via the relation

X

n

j¼1

aRj J
R
j ¼ 0 ð6Þ

where aj
R is an appropriate weighting factor. Usually, it is the

solvent that is eliminated. The final form of Fick’s equations

(analogous to eqn (3) without reaction terms) contains diffu-

sion coefficients Dij that depend on the reference frame.

There are three important reference frames, the solvent-fixed

reference frame, the mass-fixed (or barycentric) reference frame,

and the volume-fixed reference frame. For these frames, the

coefficients aj
R are as follows: all aj

0 = 0 except an
0 = 1 for

the solvent-fixed frame, where n corresponds to solvent molecules

and the superscript 0 denotes the solvent-fixed frame; aj
M = Mj

for the mass-fixed frame, where Mj is the molecular mass; and

ai
V= �Vi for the volume fixed frame, where �Vi is the partial molar

volume of component i. For most laboratory diffusion experi-

ments, the volume-fixed reference frame is most appropriate.

There are well-established rules for transformations of diffusion

coefficients from one reference frame to another.53,79

Independent of the reference frame, the matrix of diffusion

coefficients must obey constraints that follow from the second

law of thermodynamics.53,80–85 The most important of these is

that all eigenvalues of the matrixDmust be real and positive. As

a consequence, det(D) 4 0 and tr(D) 4 0. One mathematical

proof of this statement is based on the fact that the matrixD can

be related to the symmetric matrix L consisting of the well-

known Onsager coefficients,56 for which Lij = Lji. The pheno-

menological coefficients Lkj link the generalized forces Fj, for

example, the gradient of chemical potential mj, to the generalized

fluxes Jk, for example, the diffusion flux.86,87 D can be decom-

posed into the product of two positive definite matrixes, one of

which is L.53 Since all the eigenvalues of a positive definite

matrix, by definition, are real and positive, the matrix D, which

is the product of two positive definite matrices, must also have

only real, positive eigenvalues.81 Physically, a complex eigen-

value of D would result in oscillatory relaxation of any small

perturbation to the equilibrium state, even in the absence of

reaction.

In some works, in which the effect of cross-diffusion on

pattern formation or wave propagation was investigated with

the aid of eqn (3), this fundamental restriction on the diffusion

matrix D has been ignored.35,36,88,89 As a result, surprising and

probably physically unrealistic dynamic behaviors of the model

RD systems were obtained. However, in biological, ecological

and even social systems that can be described by eqn (3), the

matrix D need not follow this thermodynamic restriction,

since the diffusion processes, chemical or not, in these systems

are driven by a source of external energy. The fundamental

theoretical question that we pose, and address further below, is

whether, in chemical systems far from equilibrium, the thermo-

dynamic restriction on mutual diffusion coefficients, which

derives from the linear phenomenological laws that hold close

to equilibrium, can be violated due to interaction between

chemical reactions and diffusion processes. This issue does

not appear to have been considered in the theoretical literature,

and measurements of diffusion coefficients in chemical systems

far from equilibrium are lacking.

There are many methods for measuring diffusion coefficients

in physicochemical systems.70 Three approaches, the optical

interferometry technique,59 the diaphragm-cell technique,61

and the Taylor dispersion technique64–66 have been adapted

for measuring cross-diffusion coefficients. Such powerful

methods as dynamic light scattering (DLS) and pulsed NMR

have not thus far been utilized to determine cross-diffusion

coefficients. Pulsed NMR is used to measure self-diffusion

coefficients, while DLS probably measures the smallest eigen-

value of the matrix D.90 In ternary systems [particular in

glycerol(0)–acetone(1)–water(2)] it is found that the diffusion

coefficient Dm obtained from DLS experiments is not related

to any of the diffusion coefficients Dij in the Fick’s diffusion

coefficient matrix D,90 but it does coincide with the lowest

eigenvalue of D. This result may be general, at least for

molecules of similar size.

One of the most widely employed techniques for measuring

diffusion coefficients is the Taylor dispersion method. Although

it dates back over half a century, it is only in the past two decades
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that this technique has been adapted for measuring cross-

diffusion in three- and even four-component systems.65,91–93

The Taylor method is based on the diffusive spreading of a drop

of solution injected into a laminarly flowing stream of a mixture

of the same components but with slightly different concentrations

(see Fig. 1). A small volume of the perturbing solution is injected

into the flowing eluent at the entrance of a long capillary tube. As

it moves along the tube, the injected sample is deformed by the

flow, the rate of which has a parabolic shape across the capillary,

and by radial diffusion. The drop spreads out into a shape that

can be fitted by a combination of n Gaussian functions for an

(n + 1)-component system. The eluted peak, sometimes called

the Taylor peak, is monitored by a suitable detector such as a

flow-through spectrophotometer, refractive index detector (RID)

or Raman spectrometer.93,94 The diffusion coefficients are calcu-

lated from the parameters of the Gaussian functions that fit the

eluted peak. A typical peak is shown in Fig. 2.

In general, the cross-diffusion coefficients or off-diagonal

elements of matrix D can be either positive or negative and can

be quite large in certain cases. Three important mechanisms

responsible for cross-diffusion are electrostatic interactions,

excluded volume effects, and ‘‘complexation’’.

Cross diffusion for charged particles at very low concentrations

(infinitely dilute solutions) can be described with the Nernst–

Hartley equations,70,95–97 valid when the off-diagonal Onsager

coefficients are zero. These equations are often used, even at large

concentrations of charged species, to provide at least a qualitative

description of diffusion processes.27,29,98,99 The Nernst–Hartley

equations are based on the hypothesis of electroneutrality:

charged particles cannot move independently, since each volume

element in the solution must be neutral. For a binary mixture with

a univalent single electrolyte, for example, the Nernst–Hartley

equation takes the form

DN

� = 2DN

+DN

� /(DN

+ + DN

� ) (7)

where the superscript N denotes the limit of infinite dilution,

and DN

� is the diffusion coefficient of an entire electrolyte

molecule.

For ternary mixtures in which one component is a large

molecule (e.g., a protein) and the other is salt, the Nernst–

Hartley equations are96

D11 = Dp[1 + zp
2C1(Dc � Dp)/Q] (8)

D12 = DpzpzMC1(Dc � DM)/Q (9)

D21 = DMzpzMC2(Dc � Dp)/Q (10)

D22 = DM[1 + zM
2C2(Dc � DM)/Q] (11)

where Dp, DM, and Dc are the (tracer) diffusion coefficients of

the macromolecule (cation or anion), the co-ion (e.g., Na+,

zM = 1; Cl–, zM = �1; Mg2+, zM = 2, where zM is the charge

of the ion), and the common ion (e.g. chloride), respectively;

and zp is the charge, which depends on pH and on the

macromolecule (zp and zM have the same sign); C1 is the

concentration of macromolecule, C2 is the concentration of

co-ion, and Q = zpC1(Dpzp + Dc) + zMC2(DMzM + Dc).

Eqn (8)–(11) are valid only for zpC1 oo zMC2.

The excluded volume effect can be explained in terms of the

effective concentration of component i, ci*, given by

ci* = ci/(1 � fk), i a k (12)

Here fk is the volume fraction of component k, fk = Vkck,

where Vk is the partial molar volume of k. Using mostly

intuitive relations and assuming that, in the absence of inter-

actions, the flux of component i generated by the gradient rck
should be the same of the flux of i produced by its own

concentration gradient rci*:

Dikrck = Diirci* (13)

the following relation between Dik and Dii was obtained:
43,45

Dik = DiiVkci/(1 � Vkck)
2 (i a k) (14)

from which we see that Dik should be positive (assuming that

Dii is positive).

Cross-diffusion can arise via complexation through a variety

of physical interactions between species, like the entropic

interaction in micelles or the weak interaction between enzyme

and substrate or host–guest complexes. Suppose that two

species X and P interact rapidly and reversibly so as to

Fig. 1 Schematic drawing of an experimental setup for Taylor

dispersion measurements: 1, reservoir containing the eluent; ‘‘pump’’,

isocratic pump; 2, injector; the long (30 m) coiled Teflon tubing is

connected to the outlet of the injector; 3, spectrophotometer; 4,

refractive index detector (RID); 5, personal computer.

Fig. 2 Taylor dispersion peak for 4-component system water/AOT/

MA/octane. Injected samples contain an excess of MA (malonic acid).

Dotted line is the experimental Taylor peak (signal) and solid line is

the fitted curve. Inset shows the contribution of each component to the

fitted (analytical) curve (solid line): curves 1, 2, and 3 correspond to the

signals of H2O, AOT (Aerosol OT, surfactant), and MA, respectively.

From ref. 93.

900 | Phys. Chem. Chem. Phys., 2009, 11, 897–912 This journal is �c the Owner Societies 2009



maintain local reaction equilibrium due to formation of the

transient complex XP:

X + P 2 XP (15)

Then the mutual diffusion coefficients for species 1 = X+XP

(total X) and species 2 = P + XP (total P) are given by100–104

D11 = DX + f2(DXP – DX) (16)

D12 = f1(DXP � DX) (17)

D21 = f2(DXP � DP) (18)

D22 = DP + f1(DXP � DP) (19)

where DA is the diffusion coefficient of species A (=X, P, or

XP) without any interaction and

f1 = cXcXP/(cXPcP + cXPcX + cPcX) (20)

f2 = cPcXP/(cXPcP + cXPcX + cPcX) (21)

If for example P is a very large molecule (e.g., a polymer or

starch bound to a gel), we can assume that DP = DXP = 0 and

eqn (16)–(19) give

D11 = (1 � f2)DX (22)

D12 = –f1DX (23)

D21 = D22 = 0 (24)

The cross-diffusion coefficients D12 and D21 are always nega-

tive or zero, since DXP o DX and DXP o DP, for example, D12

takes values between 0 and �DX. The negative sign of D12

indicates that X is attracted toward higher concentrations of P

as a result of the complexation reaction (15).

In an actual experimental system, any of these mechanisms

is likely to interact with one or more other processes. In the

following we summarize several results that illustrate different

cases of cross-diffusion in physical–chemical systems without

reaction. These experiments were performed either with the

highly accurate Gouy or Rayleigh optical interferometry

technique using a unique Gosting diffusiometer105 or by the

Taylor method. We will see that cross-diffusion coefficients

can be quite significant, even in apparently simple systems.

Salt–salt. Very careful investigation of cross-diffusion co-

efficients has been carried out in aqueous solutions of NaCl

(c1) and MgCl2 (c2), as well as in solutions of NaCl (c1) and

Na2SO4 (c2).
40,106–109 For the NaCl–MgCl2 system, at molar

ratios c1/c2 4 1 (e.g., c1/c2 = 3),40,107 the positive cross-term

D12 becomes quite large at moderate and high concentrations,

and it can even exceed the diagonal coefficients D11 and D22.

D ¼
1:156 1:284

0:131 0:751

 !

� 10�5 cm2 s�1

at c1 ¼ 2:845 M; c2 ¼ 0:948 M

However, when c1/c2 r 1,108,109 both of the cross-diffusion

coefficients D12 and D21 remain small. For the NaCl–Na2SO4

system at a constant total molarity of 0.5 M,106 D21, the cross

diffusion coefficient of Na2SO4 due to a concentration gradient

of NaCl, was found to be negative, while D12 is positive, in

agreement with the ternary Nernst–Hartley eqn (8)–(11) for

electrolytes.

Polymer–salt. A very large positive cross-diffusion coefficient

D21 was obtained for the aqueous ternary system lysozyme

(c1)-MgCl2 (c2) at c1 = 0.5987 mM, and c2 = 0.9304 M

(pH = 4.5, 25 1C) with an almost linear dependence of D21

on c2.
29 In units of 10�5 cm2 s�1, the authors found

D ¼ 0:0833 0:000145
12:3 1:080

� �

In that work, the diffusion of charged macromolecules in the

presence of an electrolyte solution was discussed in terms of two

models: (a) the Nernst–Hartley equations,96 applicable to an

ideal dilute ternary solution with two ionic components, and;

(b) the Stokes–Einstein equation,110 which describes the tracer

diffusion coefficient (or mobility) of macromolecules in the limit

of c1 - 0. For both models, the diffusion coefficients are

independent of the reference frame, because they apply at

infinite dilution. The Nernst–Hartley equations are able to

qualitatively describe the observed concentration dependences

of the coefficients Dij. A partial explanation of these Dij can be

obtained with an excluded volume model, which we discuss in

the next paragraph. Analogous results were obtained for a

lysozyme chloride–NaCl system.87

Investigation of transport of electrolytes in poly(ethylene

glycol) (PEG) revealed strong cross-diffusion due to excluded

volume effects.42 For a PEG2000 (c1)–NaCl (c2)–H2O ternary

system, at c1 = 0.1250 M and c2 = 1.2485 M, it was found

that (in units 10�5 cm2 s�1)

D ¼ 0:23 0:0132
3:49 0:654

� �

with an almost linear dependence of D21 on c2. This behaviour

is consistent with that observed in other PEG–NaCl–H2O

systems.47,48 The excluded-volume mechanism applied to the

PEG–NaCl system assumes that the volume occupied by the large

PEG molecules is unavailable to the salt ions, thus increasing the

effective concentration of NaCl: c2*= c2/(1� f1)� c2/(1� V1c1),

where V1 is the effective hydrodynamic volume of a PEG

molecule.45,47

Polymer–salt_1–salt_2. A more complex variant of the

lysozyme-NaCl system consists of H3PO4 (c1 = 0.1 M)–KH2PO4

(c2=0.1M)–BSA (c3=0.1 mM)–water(0), where BSA=bovine

serum albumin. At 25 1C and pH 2.2, where the average

charge on the BSA species is +92, the matrix of diffusion

coefficients is found to be111

D ¼
1:26 �0:55 �104

�0:42 1:32 60

�0:00013 0:00004 0:07

0

@

1

A� 10�5 cm2 s�1

A related system,111 which illustrates the strong dependence of the

cross-diffusion coefficients on the polymer charge, consists of

KH2citrate(c1=0.1 M)–K2Hcitrate(c2=0.1 M)–BSA(c3=0.1 mM).

The isoelectric point for BSA is BpH 5.4.112 At 25 1C and

pH 4.5, where BSA has an average charge of +40

D ¼
0:66 0:08 �12

0:07 0:81 11

�0:00002 0 0:061

0

@

1

A� 10�5 cm2 s�1
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while at pH 5.9, where the BSA charge is negative,

D ¼
0:67 0:06 36

0:14 0:87 �23

0:00006 0:0001 0:064

0

@

1

A� 10�5 cm2 s�1

Note the change in sign of the elements Di3.

Leaist and Hao111 develop a simple procedure to estimate the

multicomponent Fick diffusion coefficients (Dik) from the diffu-

sion coefficients Ds of the species that appear in the Nernst-

Planck equation113

js = –Dsqcs/qx + (F/RT)DscszsE (25)

where js is the molar flux of species s in the x-direction, andDs,

cs, and zs are the diffusion coefficient, concentration and

charge of that species; F is the Faraday constant, R the gas

constant and T the temperature. The diffusion of the ionic

species is coupled to the electric field E, which slows down the

more mobile ions and speeds up the slower ones, so that all

parts of the solution remain electrically neutral. Linking the

two sets of equations, Fick and Nernst–Planck, allows the

better features of both treatments to be exploited.

Micelle–salt. A large negative cross diffusion coefficient was

found in a micelle system with salt: DSDMAOH (distearyldi-

methylammonium hydroxide) (c1)–NaCl (c2) at pH 7.5 with

c1 = 40 mM, and c2 = 5 mM or 15 mM.27

D ¼
0:349 0:006

�7:2 1:5

 !

ðc2 ¼ 5 mMÞ;

D ¼
0:349 0:014

�2:5 1:54

 !

ðc2 ¼ 15 mMÞ

in units of 10�5 cm2 s�1

Another experiment with a micelle–salt system, SDS (sodium

dodecyl sulfate) (c1 = 0.1 M)–NaCl (c2 = 0.1 M)114 gives

negative D12.

Polymer–micelle. Large positive cross-diffusion coefficients

were observed in a mixture of aqueous solutions of the

polymer PEG3400 [poly(ethyleneglycol) with average mole-

cular weight 3400 g mol�1] (c1) with micelles of SDS (c2).
43 For

example, at c1 = 0.00296 M and c2 = 0.2501 M, the following

coefficients (in units of 10�5 cm2 s�1) were obtained

D ¼ 0:17 0:01
5:87 0:74

� �

The large coefficient D21 is almost linearly proportional to c2.

Analogous results (large positive D21) were obtained with aqu-

eous solutions of poly(vinylpyrrolidone) (PVP, 24000 g mol�1)

and sodium octyl sulfonate.115 The large cross-diffusion

(D21 44 D22, D11) was interpreted as a result of electrostatic

coupling, which prevents ionic species from moving indepen-

dently due to electroneutrality.

Reverse micelles. Very large positive and negative cross-

diffusion coefficients have been found in three-component

water-in-oil AOT microemulsions consisting of water(l)–

AOT(2)–heptane28,116,117 and water(l)–AOT(2)–octane, and in

the analogous four-component systems water(l)–AOT(2)–

ferroin(3)–octane and water(l)–AOT(2)–malonic acid(3)–octane.93

The large positive D12 grows almost linearly with the radius of the

water nanodroplets, which is proportional to the ratio o = c1/c2,

and can be approximately expressed as28,116

Dkl = ck(qDk*/qcl), (l a k) (26)

where Dk* is the intradiffusion coefficient, approximately

equal in this case to the diffusion coefficient Dd of an entire

droplet, and consequently all Dk* are equal.

The quaternary diffusion coefficients (in 10�6 cm2 s�1) for the

water(1)/AOT(2)/MA(3)/octane system at o= 11.84, jd = 0.18,

[MA] = 0.032 M, and T = 23 1C are93

D ¼
0:57 6 8

�0:012 1:6 1:8
�0:0006 �0:08 0:56

0

@

1

A

In the water(1)–AOT(2)–ferroin(3)–octane system at o = 11.84,

jd = 0.18, [ferroin] = 1.61 � 10�5 M, and T = 23 1C93

D ¼
0:5 5:2 �45

�0:012 1:2 �12

0:00022 0:0032 0:4

0

@

1

A� 10�6 cm2 s�1

The change in sign of the coefficients D13 and D23 when MA is

replaced by ferroin can be explained by combining eqn (26) with

data from dynamic light scattering experiments that reveal that

the radius of water nanodroplets decreases slightly if we addMA

and increases (because of cluster formation) if we add ferroin to

pure reverse micelles. These changes in the radius and corres-

ponding changes in the diffusion coefficients of the droplets

(Dk*) result in qDk*/qcl being positive for MA and negative for

ferroin, yielding the observed signs of Di3.

Cross-diffusion on surfaces and in porous materials

There is no direct method to measure cross-diffusion coefficients

on surfaces, where many patterns in reaction–diffusion systems

have been found.118–124 Experimental results on cross-diffusion

in porous materials or in gels are scarce. For example, Sasaki

and Maeda found that cross-diffusion between NaNO3 (1) and

NaCl (2) in porous silica spheres was quite small: D21 = 0 and

D12/D22 = –0.022. The negative D12 was attributed to electro-

static effects (Nernst–Hartley equation). In general, all diffusion

coefficients in a porous material are smaller than in the corres-

ponding aqueous solution. There are several studies of self-

diffusion coefficients in gels using pulsed NMR. Some of them,

for example the diffusion of SDS in a cross-linked gel of

ethyl(hydroxyethyl) cellulose, reveal anomalous (non-Gaussian)

diffusion, probably due to inhomogeneities in the gel.126 There

is also considerable evidence that the pore size has a significant

effect on diffusion coefficients.125,127–129

Theoretical considerations suggest that there should be

large cross-diffusion coefficients as a result of excluded volume

effects. For example, if we have two species A and B adsorbed

on a surface and the coverage (fraction of the surface occu-

pied) by A, fA, is significant, it is clear that the diffusion of B

must decrease with fA. An analogous situation must occur in

porous materials, for example in the case when the size of the

larger species is close to the diameter of the pores. Blocking of

the pores by the larger particles will hinder the diffusion of the

smaller ones. This effect was recently demonstrated by Shaw

et al.130 in experiments and simulations with a mixture of small
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and large spherical particles in a chamber divided by a

membrane with asymmetric pores.

Recently, Stojanovic and coworkers have shown that com-

plex molecules containing ribozymes can diffuse along a path

covered with immobilized oligonucleotide substrates.131 These

‘‘walkers’’ do a remarkable job of ‘‘keeping to the path’’ as a

result of cross-diffusion due to transient formation of a

substrate–enzyme complex.

3. Cross-diffusion in reaction–diffusion systems

A number of theoretical papers discuss pattern formation in

reaction–diffusion (RD) systems with cross-diffusion.132–142

Almost all these works include nonlinear kinetic terms

describing autocatalysis and/or negative feedback in their

models. A single study finds that with appropriate cross-

diffusion coefficients, linear reaction terms are sufficient to

produce pattern formation.143 Before analyzing the role of

cross-diffusion in actual RD systems, we consider several

examples of related systems that can be described by analo-

gous models.

3A ‘‘Cross-diffusion’’ in living systems: chemotaxis and

ecology

While the notion that the spatial distribution of one species

may affect the motion of other species may seem less than

intuitive in chemical systems, such behaviour would appear to

be the norm in living systems. Phenomena of this type have

been more thoroughly studied in the biological than in the

chemical literature, and we mention here a few examples.

Chemotaxis, the phenomenon in which cells direct their

motion toward or away from higher concentrations of chemi-

cal species, sometimes referred to as chemoattractants or

chemorepellants, is perhaps the clearest example of ‘‘cross-

diffusion’’ in biology. Bacteria like E. coli alternately swim in

straight lines and ‘‘tumble,’’ changing their direction in pre-

paration for their next straight-line excursion. The motion

resembles a diffusive random walk, and in the absence of

chemical gradients, a bacterium obeys the same laws as a

diffusing particle. The mechanism of tumbling involves a

change in the direction of rotation of the bacterial flagella.

When gradients of attractants or repellants are present, the

bacterium adjusts its frequency of tumbling, changing direc-

tion less often if it senses that it is swimming toward higher

attractant or lower repellant concentrations.144 The result is a

net motion, chemotaxis, up a gradient of attractant, for

example. Viewed as a form of cross-diffusion, the phenomenon

is characterized by a negative Dbacterium–attractant and a positive

Dbacterium–repellant. Chemotaxis of E. coli gives rise to striking

patterns like the ones shown in Fig. 3.32 A number of models

have been developed and analyzed that describe chemotaxis in

terms of diffusion, including cross-diffusion, of cells and

chemoattractants.145,146

Ecology provides many examples of pattern formation

arising from the motion of one species in response to gradients

in the abundance of other species. Meron and coworkers147–150

have modeled the development of vegetation patterns in

water-limited regions by taking into account cross-diffusive

terms between the biomass density and the groundwater

density, where water plays the role of a ‘‘chemoattractant’’

for plants.

As a final example, we observe that predator–prey systems,

the inspiration for Lotka’s early model151 of autocatalysis and

chemical oscillation, are naturally described in terms of cross-

diffusion. Clearly, predators will tend to gravitate toward

higher concentrations of prey, while prey will preferentially

move toward regions where predators are rare. Models of

predator–prey systems with cross-diffusion have been exten-

sively analyzed in the literature, though often with respect to

their mathematical properties rather than to provide insight

into the kinds of patterns that can emerge.

del-Castillo-Negrete et al.135,152 examined a two-variable

model with cross-diffusion relevant to both plasma physics

and predator–prey population dynamics,

qe/qt = e – e2 – s2e + r(d + De)re (27)

qs/qt = –ms + ase + r(d + De)rs + rDsre (28)

They showed that positive cross-diffusion (D 4 0) induces

instability in one of four homogeneous steady states and can

give rise to front propagation between two of the steady states.

Two fronts can collide to produce a stationary kink-state.

Segregated states, the analog of Turing patterns in chemical

systems, were also obtained in this model due to cross-diffusion.

3B ‘‘Cross-diffusion’’ in social systems

Certain interactions between human beings also appear to be

determined by behaviours that resemble cross-diffusion. People

may prefer to live, for example, near others of the same ethnic

group or social class or to avoid members of certain groups.

The phenomenon of ‘‘white flight,’’ in which members of

the white middle or working classes moved away from

Fig. 3 Patterns generated by chemotactic E. coli bacteria in the

presence of succinate, a chemoattractant. (a) swarm ring in 1 mM

succinate; (b) spots on a pseudo-rectangular lattice in 2 mM succinate;

(c) spots on a pseudo-hexagonal lattice in 3 mM succinate; (d) spots

with tails on a pseudo-hexagonal lattice in 3 mM succinate with a

mutant strain. From ref. 32.
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neighborhoods that became racially desegregated in the United

Sates after World War II, causing resegregation, is one example

of such behaviour.

Epstein153 has examined the illicit drug trade by introducing

cross-diffusion terms into a standard model from epide-

miology. Defining S as ‘‘susceptibles’’ (ordinary citizens), I

as ‘‘infectives’’ (drug users/dealers) and L as law enforcement

personnel, he describes the evolution of these three subgroups

on a one-dimensional ‘‘street’’ by the set of equations

qS/qt = �bSI + mS + DSS q2S/qx2 (29)

qI/qt = bSI � gIL+DIS q2S/qx2 + DIL q2L/qx2

+ DII q
2I/qx2 (30)

qL/qt = xSIL � bL + DLI q
2I/qx2 + DLL q2L/qx2 (31)

DIS and DLI are taken to be negative to capture the fact that

infectives gravitate toward susceptibles and police move toward

higher concentrations of law-breakers, while DIL is positive,

meaning that criminals seek to avoid law enforcement personnel.

The model, dubbed ‘‘crimo-taxis’’ by its creator, predicts various

kinds of pattern formation, with potential implications for

policy makers.

3C Cross-diffusion in physicochemical systems

There at least three classes of patterns found in physico-

chemical RD systems that may arise from cross-diffusion.

The first group involves phase-separating mixtures of two

polymers A and B with which undergo a photoinduced

reversible reaction between them.154–162 Since phase separa-

tion shares key characteristics with cross-diffusion, we will

examine these experiments below when we analyze patterns in

simple systems.

The second category consists of patterns found in catalytic

surface reactions.163–169 In general, the competition of

species for adsorbed surface sites gives rise to cross-diffusion

effects, which have been largely neglected in the literature to

date. More specifically, adsorption of non-reactive potassium

atoms on a catalytic Rh(110) surface promotes Turing-like

patterns in the reaction between adsorbed O2 and H2.
163

Though the authors do not invoke cross-diffusion to explain

their patterns, it seems likely that cross-diffusion due to

excluded volume effects and/or interactions between K and

O atoms plays a major role in generating these patterns. This

effect of nonreactive potassium atoms provides an experi-

mental example of the idea we introduce later that nonreactive

species can affect the diffusion fluxes of reactive species

through cross-diffusion, thereby inducing Turing or wave

instabilities.

The third group of patterns occurs in the BZ-AOT

system.170–172We recently found that cross-diffusion in BZ–AOT

microemulsions is quite significant and may therefore be

responsible for many of the wealth of patterns observed in this

system.93 A sampling of BZ-AOT patterns is shown in

Fig. 4, where we have grouped the most important classes of

patterns: wave patterns (upper row and right column), Turing

patterns (three left snapshots in the second row), patterns

originating from a wave instability (third row), and localized

patterns (three left snapshots in the last row). We will use

models of the BZ-AOT system when we analyze the possible

role of cross-diffusion in pattern formation in the following

sections.

4. Theoretical analysis of cross-diffusion with

reactions

We consider a general RD model with the following structure
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ð32Þ

which is an extended form of eqn (3). The concentrations

ci and sn+j denote reactive and nonreactive species, respec-

tively. All elements of the matrix D may depend on the ci and

the sn+j and on the reaction rate constants included in the

reaction terms Ri. The dependence of the off-diagonal

elements Dij on concentrations was discussed in section 2. In

particular, if ci tends to 0, then Dij - 0, since there cannot

be a flux of species i if ci = 0 regardless of the gradient of

species j. Often, Dij depends linearly, or nearly linearly,

on ci.

The notion that Dij may depend on the rate constants is

not intuitively obvious, but it does follow from thermo-

dynamic considerations about the chemical potential and the

chemical affinity A.86,173 As was shown by Lefever et al.,173

the Duhem–Jouget theorem implies that A determines both

the diffusion flux and the chemical reaction rate, so that these

quantities cannot be independent of each other. We show in

the next section that if we assume that Dij and the rate

constants ki in the reversible reaction (33)

A 2 B (33)

can be set independently, then an apparent violation of the

second law of thermodynamics can occur. It was also shown

theoretically, using a stochastic model of a reactive Lorentz gas,

that reaction (33) with a catalyst can induce cross-diffusion

between species A and B.174 This result characterizes exactly

how a chemical reaction can affect cross-diffusion. Note that

eqn (1) demonstrates the opposite effect, i.e., how diffusion

affects rate constants.

4A Simple linear systems

Consider eqn (32) in its simplest form obtained from

reaction (33) with rate constants k1 and k2 for the forward

and reverse reactions, respectively. The matrix D of
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diffusion coefficients has elements Dij, where 1 corresponds to

A and 2 to B. No nonreactive species are present. First,

suppose that k1 = k2 = 0. If we apply a small d-function

perturbation of A at x = x0 in a system with one spatial

dimension (1D), then the root mean square displacement of A,

hxA2i1/2 with D12 = D21 = 0 is determined by

hx2Ai ¼
Z 1

�1
ðx� x0Þ2

1

2
ffiffiffiffiffiffiffiffiffiffiffiffi

pD11t
p exp �ðx� x0Þ2

4D11t

 !

dx

¼ 2D11t ð34Þ

There is no displacement of B, hxB2i = 0.

If we allow D12 and/or D21 to be non-zero, then the solution

of the coupled diffusion equations

@c1
@t

¼ D11

@2c1

@x2
þD12

@2c2

@x2
ð35Þ

@c2
@t

¼ D21

@2c1

@x2
þD22

@2c2

@x2
ð36Þ

is93

c1 = A11G1 + A12G2 (37)

c2 = A21G1 + A22G2 (38)

where

Gi ¼
1

2
ffiffiffiffiffiffiffiffiffi

psit
p exp �ðx0 � xÞ2

4sit

 !

ð39Þ

s1 and s2 are the eigenvalues of the matrix D and

A11 = [P1(D11 � s2) + P2D12]/(s1 � s2) (40)

A12 = [P1(s1 � D11) – P2D12]/(s1 � s2) (41)

A21 = [P2(s2 � D22) – P1D21]/(s2 � s1) (42)

A22 = [P2(D22 � s1) + P1D21]/(s2 � s1) (43)

with initial conditions (at t = 0 and x = x0) A11+A12 = P1

and A21+A22 = P2. Consider the case of P2 = 0, i.e.,

Fig. 4 Several types of patterns found in the BZ-AOT system. Jumping waves are shown as a snapshot (a) and a space-time plot (b) across the

white line shown in (a). Turing patterns are represented by three different types of structures: ‘‘black spots’’, ‘‘labyrinth’’, and ‘‘white spots’’.

Standing waves are exhibited as two anti-phase snapshots. Localized structures are ‘‘oscillon’’, ‘‘chemical memory’’, and ‘‘localized waves’’ (arrows

show direction of wave propagation).
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a d-function perturbation of A. The mean square displace-

ments of A (=c1) and B (=c2) are now given by

hx2Ai ¼
Z 1

�1
ðx� x0Þ2ðA11G1 þ A12G2Þdx ¼ 2P1D11t ð44Þ

hx2Bi ¼
Z 1

�1
ðx� x0Þ2ðA21G1 þ A22G2Þdx ¼ 2P1D21t ð45Þ

We see that species B has a displacement proportional toD21
1/2,

while the displacement of A is the same as in the previous case

without cross-diffusion (for P1 = 1). Thus, if P2 = 0, then the

presence of species B does not affect the diffusion of species A

even at non-zero D12.

Consider another limiting case with D12 = 0, D21 a 0, and

arbitrary initial perturbations P1 and P2. Then s1 = D11,

s2 = D22, and eqn (40)–(43) give A11 = P1, A12 = 0,

A21 = –P1D21/(D22 – D11), and A22 = P2 – A21. The mean

square displacements of A and B are then given by

hxA2i = 2P1D11t (46)

hxB2i = 2(P1D21 + P2D22)t (47)

We see that species B again does not affect species A, now

because D12 = 0. The displacement of B now depends on the

sum (P1D21 + P2D22). These simple examples are meant to

give some intuitive feeling about the properties of cross-

diffusion.

We next introduce rate constants k1 and k2 and consider a

d-function perturbation (at x = x0) of the equilibrium steady

state (assk1 = bssk2); for simplicity, we apply an ‘‘equilibrium’’

perturbation, i.e., P1k1 = P2k2. We can calculate the mean

square displacements hxA2i and hxB2i as a function of t to

extract the effective diffusion coefficients, DA = hxA2i/(2P1t)

andDB= hxB2i/(2P2t). For small t, i.e., when too 1/max(k1, k2),

the diffusion process proceeds essentially as in the case

k1 = k2 = 0. For large t, however, when t 44 1/min(k1, k2),

the situation is quite different. The effective diffusion coefficients

are equal to each other and given by:

D* = DA = DB = (D21k2 + D12k1 + D11k2 + D22k1)/

(k1 + k2) (48)

Note that this result is independent of the type of d-function

perturbation (‘‘equilibrium’’ or not), since at large t equilibrium

is established. If D12 or D21 is negative and D12/D22 o –1 or

D21/D11 o –1, D* crosses zero and becomes negative with

increasing k1 or k2, respectively. The condition

Dk � D21k2 + D12k1 + D11k2 + D22k1 = 0 (49)

marks the onset of Turing instability. Physically, condition (49)

can be interpreted as follows. Suppose we start with small

perturbation in B and D21 = 0 (for simplicity), then B tends to

diffuse away at a rate that depends onD22, but because D12 o 0,

the perturbation in B also induces a flux of A directed toward the

perturbation. If k1 is large enough and –D12 4 D22 [condition

(49) is fulfilled], this incoming A will be converted to B so rapidly

that it will negate the outgoing flux of B, and there will be no net

diffusion of B away from the perturbation. However Dk cannot

be negative, since Turing patterns would then emerge in the

closed equilibrium system (33), which is forbidden by

thermodynamics. Condition (49) thus implies that there must

be some co-dependence between the diffusion and reaction rate

constants for reaction (33). For example, at large k1 (k2), D22

(D11) must be larger than �D12 (�D21).

Condition (49) can also be obtained from a linear stability

analysis of the system (50)–(51).

qa/qt = –k1a + k2b + D11r2a + div(D12rb) (50)

qb/qt = k1a – k2b + div(D21ra) + D22r2b (51)

where a = [A] and b = [B]. To carry out the linear stability

analysis, we must, in general, take into account the depen-

dence of the cross-diffusion coefficients on a and b. For

example,

div(D12rb) = D12r2b + (dD12/da)rarb (52)

However, the last term in eqn (52) does not contribute to

the linearized equations. Therefore the characteristic matrix

M = J – k2D (where J is the Jacobian for the linearized

system, D is the diffusion matrix, and k is the wavenumber)

has the form

M ¼ �k1 � k2D11 k2 � k2D12

k1 � k2D21 �k2 � k2D22

� �

ð53Þ

Turing instability for system (50), (51) occurs if175

det(M) o 0 (54)

The inequality (54) can be rewritten as:

det(M) = det(D)(k2)2 + (D21k2 + D12k1

+ D11k2 + D22k1)k
2 + det(J) o 0 (55)

Since det(J) = 0 in this case, and det(D) is always positive,

then Turing instability requires Dk o 0 (cf. eqn (49)).

Note that in open linear systems like

A0 - A 2 B - 0 (56)

considered by Almirantis and Papageorgiou,143 Turing patterns

are also impossible, since the parametric region for the required

cross-diffusion coefficients is even narrower than that for the

corresponding closed system (33) with the same constants k1,

k2, D11, and D22. Indeed, due to the reaction B - 0 (with rate

constant k0), det(J) is positive for system (56); and the condition

for Turing instability now reads

D21k2 + D12k1 + D11(k2 + k0) + D22k1

o –2[det(D)det(J)]1/2 o 0 (57)

Comparing (57) to our earlier result (49) without the step

B - 0

D21k2 + D12k1 + D11k2 + D22k1 o 0 (58)

we see that D12 or D21 for system (56) must be even more

negative than for system (33) for Turing patters to occur. So, if

Turing patterns can occur in system (56), then they can occur

in the closed equilibrium system (33), which would contradict

the second law of thermodynamics. Thus, the rate and diffu-

sion coefficients cannot be arbitrarily chosen independently of

one another; there must be some co-dependence.

906 | Phys. Chem. Chem. Phys., 2009, 11, 897–912 This journal is �c the Owner Societies 2009



Tran-Cong and collaborators have found Turing patterns

experimentally in a system that can be described by eqn (33),

where A and B are polymers that can phase separate and can also

undergo a reversible photoinduced interconversion.159,160,176–178

Phase separation in binary mixtures is related to cross-diffusion

in that A molecules tend to diffuse toward A molecules and B

toward B (clustering), and clusters An diffuse toward regions with

lower concentrations of clusters Bn and vice versa. Though system

(33) is not completely equivalent to a phase-separating system, we

can expect Turing patterns in system (33) with appropriate cross-

diffusion coefficients when the rate constant k1 (or k2) is a function

of the light intensity. Note that the system (33) is now an open

system with an influx of energy, so no contradiction of thermo-

dynamics is implied.

Consider now what induces the autocatalytic growth of small

perturbations in our linear system (33) if Dk o 0 (cf. eqn (49)).

For simplicity, suppose that �D12 4 D11k2/k1 + D22

(condition 49 with D21 = 0). The result of a small perturbation

of bss at x = x0 is plotted as curve ‘‘b’’ in Fig. 5a. Due to

the negative cross-diffusion coefficient D12, a flux of species a,

D12qb/qx, is directed toward the center of perturbation (hori-

zontal arrow in Fig. 5a) and creates there an excess of a at the

expense of a in more remote areas (curve ‘‘a’’). Since a increases

in the center, further increase in b due to the photoinduced

reaction A- B (term k1a and vertical arrow in Fig. 5a) occurs.

This is a positive feedback loop, which we might call cross-

spatio-chemical autocatalysis.

The conditions for Turing instability simply imply that the

homogeneous steady state is unstable, but say nothing about

the state that will eventually emerge. To stabilize an inhomo-

geneous (Turing) pattern, the system (50), (51) must have one or

more nonlinear terms that terminate the exponential growth,

exp(Re(l)max t), of the initial small perturbation, where Re(l)

has a positive maximum, Re(l)max, at wavenumber k = kmax.

Unlike classical Turing systems, however, our linear reaction

system does not contain such chemical nonlinear terms as, for

example, �b2. If the cross-diffusion terms (D12 and D21) were

constants, then the maximum and minimum values of a (or b)

would approach +N and �N, respectively. However, the

dependences of D12 and D21 on a and b, respectively, serve as

a brake on the potentially infinite growth of a and b, or, more

precisely, these dependences prevent a and b from becoming

negative. Indeed, at sufficiently small values of a and b, D12

and D21 tend to zero, and the condition for Turing instability

can no longer be satisfied. Since our system conserves mass,
R

Va +
R

Vb = constant (the subscript V signifies integration

over the total volume of the system),i.e., the diffusive terms just

redistribute concentrations but cannot change the total amount

of matter, the limitation on concentration decrease implies a

limitation on growth.

4B Nonreactive species

Consider now the effect of nonreactive species in eqn (32). As the

simplest case, we consider the photo-induced reaction (33) and

add a nonreactive species C. We know that a sufficiently large

negative cross-diffusion coefficient D12 can induce Turing instabi-

lity in reaction (33). But suppose instead thatD12 =D21=0, i.e.,

there is no cross-diffusion in the reactive subsystem (A, B). Is it

possible to mimic the needed coefficient D12 by introducing cross-

fluxes between A and C and between B and C? We answer this

question in the affirmative by taking a hint from Fig. 5a. We seek

cross-diffusion coefficients D13, D23, D31, and D32 (where the

index 3 corresponds to C) to create a profile of species a

analogous to that in Fig. 5a. This task can be accomplished by

using the analytical solution of the diffusion equations for three

variables (equations and solutions analogous to eqn (35)–(43)).93

Avoiding these cumbersome equations, we first give a qualitative

solution of the diffusion equations and then perform linear

stability analysis and numerical solution of the corresponding

RD system.

A negative coefficient D12 would imply that a gradient in B

creates a counter-flux of A. Alternatively, if B produces a

counter-flux of C (negative D32) and in turn C generates a

counter-flux of A (negative D13), the net result should be

equivalent to having a negative D12. The same result is obtained

if bothD32 andD13 are positive. In Fig. 5b we show this situation

schematically for species A, B and C without any reaction.

Comparing the profiles of a in Fig. 5a and b, we see that they

are similar. Note that a positive coefficient Dij (i, j = 1, 2, i a j)

can be replaced by a combination of positive and negative

coefficients Dkj and Dik (k = 3 for three variables); it does not

matter which coefficient is chosen as positive and which as

negative.

Consider now the same system more quantitatively by

writing the following equations.

qa/qt = �k1a + k2b + D11r2a + div(DACrc) (59)

qb/qt = k1a � k2b + D22r2b + div(DBCrc) (60)

qc/qt = div(DCAra) + div(DCBrb) + D33r2c (61)

where we specify the concentration dependence of the cross-

diffusion coefficients as DAC = D13a/(a + KA), DBC =

D23b/(b + KB), DCB = D32c/(c + KC), DCA = 0. In Fig. 6

we show the dispersion curves obtained from linear stability

analysis of eqn (59)–(61) and the stationary Turing patterns

found numerically in 1D for this system. The nonreactive

Fig. 5 (a) Schematic explanation of autocatalysis in linear reaction

(33). (b) Profiles of species A (curve a), B (b), and C (c) after

initial perturbation of B (d-function at x = x0) without any reaction

between A, B, and C. Horizontal axis denotes homogeneous steady

state levels for all species. Diffusion coefficients: D12 = D21 = D31 =

D23 = 0, D11 = 1, D22 = 0.3, D33 = 0.2, D32 = 0.2, and D13 = 0.4,

time t = 0.3.
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variable c (Fig. 6d) becomes spatially periodic like the reactive

variables a and b, but 1801 out of phase with them in analogy

with the initial concentration distribution in Fig. 5b. The

average values of all variables are equal to their initial steady

state values. In this example we see that the nonreactive species

C is an essential ingredient, since without C there are no

patterns with D12 = D21 = 0. In a system of this type,

sprinkling C into a homogeneous mixture of A and B at

equilibrium would result in the formation of Turing patterns.

A similar approach for pattern formation was used in a three-

component phase-separating mixture of polymers, A + B+C,

where the component C is non-reactive.162,179,180 However, the

notion of cross-diffusion was not explicitly invoked in

these works.

4C Bimolecular reaction

Thus far we have considered the role of cross-diffusion only in

linear, monomolecular reactions. Consider now the more

complex but more common case of bimolecular reactions of

the general form

A + S 2 B + P (62)

with forward and reverse rate constants k1 and k2, respec-

tively. As we did for reaction (33), we can seek the condition

for Turing instability in this equilibrium reaction by applying

linear stability analysis. To simplify our investigation and

focus on the role of the cross-diffusion coefficients, we intro-

duce just two nonzero cross-diffusion coefficients, D12 and D13

(where 1, 2, 3, 4 correspond to A, S, B, and P, respectively)

between reacting species A and S and between reactant A and

product B, since the effect of the other cross-diffusion coeffi-

cients can be deduced from an understanding of the role

played by these two coefficients.

If only D12 a 0 and all other off-diagonal elements of D are

zero, then linear stability analysis gives the condition for

Turing instability as

D12 4 D22 + D11[(D22D33/D44)k2b + D22k2p

+ D33k1a]/(D33k1s) (63)

If only D13 a 0, then this condition takes the form

�D13 4 D33 + D11[(D22D33/D44)k2b + D22k2p

+ D33k1a]/(D22k1s) (64)

The inequality (64) is similar to the condition (49) obtained for

reaction (33) when D21 = 0:

�D12 4 D22 + D11k2/k1 (65)

Here D13 (for reaction 62) is analogous to D12 (for reaction 33),

D33 to D22, k2b and k2p to k2, and k1s and k1a to k1.

To obtain Turing patterns in a system described by

reaction (62), the coefficient D13 must be negative or the

coefficient D12 positive. Intuitively, positive D12 reduces the

concentration of S at the site of a positive perturbation of A at

x = x0 (opposite of the situation shown in Fig. 5a). This

decreases the rate of the forward reaction A+ S at x= x0. As

a result, a locally increases due to the back reaction B+P, the

initial positive perturbation da grows, and we have a positive

feedback loop. Similarly, a negative D13 implies that a positive

perturbation of A draws B toward it, increasing the rate of

the back reaction, thereby enhancing the initial perturbation

of A. These cross-diffusion-induced effects must exceed the

stabilizing effect of the diagonal diffusion terms if instability is

to occur.

Again, if neither the forward or the reverse reaction in (62)

is photoinduced, then conditions (63) and (64) are cannot hold

from a thermodynamic point of view, since Turing patterns

could then arise in a closed system. The inequalities (63) and

(64) set constraints on the dependence of the mutual diffusion

coefficients on the rate constants and equilibrium concentra-

tions for bimolecular reactions. For example, from (63) it

follows that at large k1, the inequality D12 o D22 + D11a/s

should hold, while at large k2, we must have D12 o D22 +

D11D22(k2/k1)(b/D44 + p/D33)/s.

If both the coefficients D12 and D13 for reaction (62) are

nonzero, then Turing patterns can occur even if D12 o D22

and �D13 o D33. For example, at k1 = 104 M�1 s�1,

k2 = 103 M�1 s�1, a = 10�5 M, s = 0.1 M, b = 10�4 M,

and p = 0.1 M, a Turing instability exists when

ðDÞ ¼
1 0:52 �0:51 0

0 1 0 0

0 0 1 0

0 0 0 1

0

B

B

@

1

C

C

A

ð66Þ

4D Complex systems (with autocatalysis)

At the beginning of section 3, we mentioned several models,

typically including autocatalytic reactions or their equivalent, in

which introduction of cross-diffusion leads to pattern formation

even with equal diagonal elements of the matrixD.132–142 Now we

turn to more complex, and chemically realistic, activator–inhibitor

systems.

We will look at several models of the well-known Belousov–

Zhabotinsky (BZ) oscillatory reaction.181,182 Consider first a

four-variable model, which is our reduction183 of the

Field–K+orös–Noyes (FKN) model.184 In the general eqn (32),

the four dimensionless reactive species x (1, HBrO2, activator),

Fig. 6 Dispersion curves and Turing patterns in model eqn (59)–(61).

Parameters: k1 = 30, k2 = 0.1, D11 = 2.5, D22 = 2.5, D33 = 1, D12 =

D21 = D31 = 0, D13 = 1.45, D23 = 2.7, D32 = 0.7, KA = 0.0001,

KB = 0.1, KC = 0.2. Turing wavelength lT = 6.3. Curves 1 and 2 in (a)

are different real eigenvalues.
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y (2, Br–, inhibitor), z (3, oxidized form of the catalyst), and

u (4, Br2) correspond to the following reactive terms:

R1 = (1/e1)(qy � xy + x � x2) (67)

R2 = (1/e2)[�2qy � 3xy + fz � x2/2 + au/(y + g)] (68)

R3 = x � z (69)

R4 = (1/e4)[qy + 2xy + x2/2 � au/(y + g)] (70)

There are no nonreactive species in this model. All the

diagonal elements of the matrix D are taken to be 1. We

search for small cross-diffusion coefficients that strongly affect

the stability of the homogeneous steady state [system (67)–(70)

has only a single steady state]. Simulations of the BZ reaction

typically employ two- or three-variable Oregonator models.185

We first explore here this four-variable model to demonstrate

that other variables, like Br2 for example, which are usually

ignored, can be critical for pattern formation. We find that the

system behaviour is quite sensitive to all cross-diffusion coeffi-

cients Di4, while all coefficients D4j have negligible effect. i.e.,

fluxes induced by gradients of bromine are important for

pattern formation, while fluxes of bromine induced by gradi-

ents of other species are not. For example at the set of

parameters (f = 1.2, q = 1 � 10�5, a = 2 � 10�5, g = 0.2,

e1 = 0.1, e2 = 0.004, e4 = 10�5), D14 = �0.000025 induces

Turing instability, D24 = �0.15 induces wave instability, and

D34 = 0.04 induces both Turing and wave instability, while a

negative D34 (D34 = �0.001) induces only wave instability. If

we eliminate the fourth variable u from our model, we can seek

to capture these effects by incorporating the effects of bromine

cross-diffusion into the cross-diffusion coefficients of the

remaining variables in the new reduced system. How to do

this in a systematic fashion is an open question for the theory

of RD systems.

If we are interested in the possibility of dissipative patterns

resulting from cross-diffusion in an aqueous BZ solution, it is

important to note that negative cross-diffusion coefficients D24

between Br2 and Br– (due to complex, Br3
�, formation) as well

as between Br2 and the catalyst [Ru(bpy)3 or ferriin], D34, can

be relatively large at high Br– or catalyst concentrations,

respectively, and at low temperatures.

Consider next the classical three-variable Oregonator model

with the chemically reasonable reactions:185

Y - X (71)

X + Y - 0 (72)

X - 2X + 2Z (73)

2X - 0 (74)

Z - hY (75)

After rescaling, the reactive terms (1,2,3 = X,Y,Z) are

R1 = (1/e1)(qy � xy + x � x2) (76)

R2 = (1/e2)(�qy � xy + fz) (77)

R3 = x � z (78)

where f = 2h. Again we consider a matrix D with diagonal

elements Dii = 1 and search for cross-diffusion coefficients

capable of destabilizing the homogeneous steady state. We

find that three cross-diffusion coefficients are important for

Turing instability, positive D12 and D31, and negative D32 (we

used q = 0.002, f = 2.5, e1 = 0.05, e2 = 0.001, but our

conclusions hold for a broad range of other parameter sets).

The coefficient D12 can originate from reaction (71) or (72),

where species X (1) and Y (2) both participate. D31 arises from

reaction (73), which involves Z and X, and coefficient D32

takes its importance from reaction (75).

Recall that positive (negative) cross-diffusion coefficients

tend to separate (concentrate) the corresponding species. We

know that Y and Z serve as inhibitors, while X is the activator.

We note that cross-diffusion processes that separate an acti-

vator and an inhibitor (positive D12 and D31) or draw together

two inhibitors (negative D32) appear to be important. Notice

further that, like D12 and D31, positive cross-diffusion coeffi-

cients D21 and D13 also separate activator and inhibitor but

have little effect; negative D23 also has negligible effect on the

stability of the steady state. The direction of the chemical

reactions: (71) 2 - 1, (73) 1 - 3, and (75) 3 - 2 may explain

the difference between the symmetrically related elements ofD;

however, in complex nonlinear systems, such explanations

may prove to be illusive.

4E Nonreactive species in complex systems

We now explore briefly the introduction of nonreactive species,

described in subsection 4B, to the Oregonator as an example of

how addition of a fourth, nonreactive species (reactive term

R4 = 0) can mimic important cross-diffusion coefficients. To do

this, we set all off-diagonal elements of D between reactive

species to zero and again take allDii=1. To mimic positiveD12

and D31 and negative D32 we test the following pairs of cross-

diffusion coefficients between reactive and nonreactive species:

D42 and D14 of opposite sign for positive D12, D41 and D34 of

opposite sign for positive D31, and D42 andD34 of the same sign

for negative D32. In all cases this strategy works quite well,

independent of the choice of signs in any pair of cross-diffusion

coefficients and even of the values of the individual coefficients.

The onset of instability depends only on the product of

coefficients:

D42D34 D D32
c (79)

D42D14 D D12
c (80)

D41D34 D D31
c (81)

where D32
c, D12

c, and D31
c correspond to the onset of Turing

instability in a system without component 4, i.e., system

(76)–(78) with a single nonzero cross-diffusion coefficient.

We also find that if we change the sign of one of the

cross-diffusion coefficients in the pairs considered above and

slightly increase the magnitude of their product, we can obtain

wave instability instead of Turing instability. For example,

D32 = �0.005 gives Turing instability for system (76)–(78)

(all other cross-diffusion coefficients are 0). At D32 = 0 and

D42 = 0.1, D34 = 0.05, we have Turing instability, while at

D42 = 0.15, D34 = –0.2 (or D42 = �0.15, D34 = 0.2), we have

wave instability.
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If we add a second nonreactive species, more complex combi-

nations of cross-diffusion coefficients can generate instability.

Consider, as an example, the two-variable (x and z) Oregonator

model186

R1 = (1/e)[x � x2 � fz(x � q)/(x + q)] (82)

R2 = x � z (83)

A positive cross-diffusion coefficient D21, which separates

activator x and inhibitor z, can induce Turing instability at

D11 = D22 = 1 (q = 0.002, f = 2.5, e1 = 0.05, D21
c = 0.59,

D12 = 0). If we add one nonreactive species (3) and set D21 to

zero, then a combination of coefficients D31 and D23 with

D31D23 = �0.59 = �D21
c gives Turing instability. If we add

the second nonreactive species, then a combination of D31,

D43, and D24 such that D31D43D24 = 0.59 also gives

Turing instability. Notice that the product of the three

coefficients should be positive. In general, a combination of

cross-diffusion coefficients between reactive (i, j) and non-

reactive (k, m) species Dkj, Dmk, and Dim can replace the

cross-diffusion coefficient Dij between two reactive species

i and j, if

DkjDmkDim = Dij (84)

This result can be extended to larger numbers of nonreactive

species, though the likelihood of being able to realize such a

system experimentally is small.

Wave instability also can be found in system (82)–(83) with

additional nonreactive species (q = 0.001, f = 2.3, e1 = 0.1,

D11 = D22 = 1, D33 = 1.3, D44 = 3, D13 = �0.1, D34 = 13,

D42 = �60, other off-diagonal elements of matrix D are zero).

Notice that if we have only reactive species, then wave

instability in systems like (2) or (3) requires at least three

variables. If additional nonreactive species and cross-diffusion

are present, two reactive species are sufficient.

Efforts are currently underway to find species that can be

added to the BZ reaction to obtain Turing patterns, standing

waves, or other spatiotemporal structures. Researchers have

added various surfactants (at levels above the critical micelle

concentration) or polymers. What is important to keep in

mind in this search that such additives must interact with at

least two different species in order to mimic cross-diffusion

between them, for example, between the catalyst and Br2 or

between Br– and HBrO2. If the additive interacts only with a

single species, cross-diffusion cannot arise. Another strategy,

which has not yet been implemented, would be to utilize two

additives, each of which interacts with a different BZ species

and in turn interact in an appropriate manner with each other,

for example via excluded volume or electrostatic mechanisms.

5. Conclusion

To date, cross-diffusion has been almost completely ignored in

efforts to explain dissipative patterns found in RD systems.

Our theoretical analysis shows that this phenomenon has the

potential to play an important role in pattern formation, even

when the cross-diffusion coefficients are relatively small, if the

kinetics are sufficiently nonlinear. At present we know three

pattern-forming systems: the CDIMA and FIS reactions, and

the BZ-AOT system, in which stationary patterns have been

found, and of course, the BZ reaction itself, where waves are

the norm. Recent experiments reveal that cross-diffusion

coefficients in the BZ-AOT system are quite significant.93

Therefore cross-diffusion may be an important element in

understanding the many types of patterns found in this system.

The CDIMA5,6 and the FIS187 reactions probably merit

further analysis, since cross-diffusion in these systems can

result from electrostatic, excluded volume (diffusion in pores)

and complexation effects. Such nonreactive species as starch or

polyvinyl alcohol, which are typically added to the CDIMA

reaction as indicators, can complex I3
� and block gel pores to

induce cross-diffusion.

We predict that dissipative patterns should occur in photo-

induced linear (reversible) reactions with appropriate cross-

diffusion coefficients or with additional nonreactive species

(like polymers, charged particles or micelles) that can mimic

cross-diffusion coefficients between reactive species. The

wavelength of these patterns will depend strongly on the rate

constants (which can be regulated by the light intensity) and

should lie in the range from tens of nanometers to tens of

micrometers. This may have practical application.

Further work is needed to elucidate the dependence of cross-

diffusion coefficients on concentrations and, especially, on rate

constants. As chemists become more aware of the capacity of

cross-diffusion to generate patterns, and as they develop better

intuition about how such processes occur, they are likely to be

able to exploit cross-diffusion as a tool to design systems with

desired properties rather than regarding it merely as an exotic

phenomenon that cannot be found in textbook treatments of

diffusion.
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