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Abstract In this paper, we discuss the analysis of a cross-diffusion PDE system for
a mixture of hard spheres, which was derived in Bruna and Chapman (J Chem Phys
137:204116-1–204116-16, 2012a) from a stochastic system of interacting Brownian
particles using the method of matched asymptotic expansions. The resulting cross-
diffusion system is valid in the limit of small volume fraction of particles. While the
system has a gradient flow structure in the symmetric case of all particles having the
same size and diffusivity, this is not valid in general. We discuss local stability and
global existence for the symmetric case using the gradient flow structure and entropy
variable techniques. For the general case, we introduce the concept of an asymptotic
gradient flow structure and show how it can be used to study the behavior close to
equilibrium. Finally, we illustrate the behavior of the model with various numerical
simulations.
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1 Introduction

Systems of interacting particles can be observed in biology (e.g., cell popula-
tions), physics or social sciences (e.g., animal swarms or large pedestrian crowds).
Macroscopic models describing the individual interactions of these particles among
themselves as well as their environment lead to complex systems of differential equa-
tions (cf. e.g., Bendahmane et al. 2009; Bruna and Chapman 2012a, b; Burger et al.
2010, 2016, 2012; Di Francesco and Fagioli 2016; Painter 2009; Schlake 2011; Simp-
son et al. 2009). In microscopic models, the dynamics of each particle is accounted
for explicitly, while the macroscopic models typically consist of partial differential
equations for the population density. Passing from themicroscopicmodel to themacro-
scopic equations in a systematic way is, in general, very challenging, and often one
relies on closure assumptions, which can be made rigorous under certain scaling
assumptions on the number and size of particles. In particular, when crowding due to
the finite size of particles is included in the model, the limiting process is quite sub-
tle and, using different assumptions and closure relations, a variety of macroscopic
equations have been derived. For instance, the macroscopic equations of a two-species
system where particles undergo a simple exclusion process on a lattice can be derived
using formal Taylor expansions, see for example Burger et al. (2010), Simpson et al.
(2009). The case when particles are not confined to a regular lattice and undergo
instead a Brownian motion with hardcore interactions was considered in Bruna and
Chapman (2012a) using matched asymptotic expansions. Cross-diffusion is a com-
mon feature of all these models and poses a particular challenge for the analysis
since maximum principles do not hold. Classical examples of cross-diffusion systems
are reaction diffusion systems or systems describing multicomponent gas mixtures.
These quasi-linear parabolic systems were analyzed by Ladyzhenskaia et al. (1968)
or Amann (1985, 1989), which however rely on strong parabolicity assumptions that
break down for the degenerate cross-diffusion systems derived from the interacting
particle systems mentioned above.

The canonical form for a two-species system of interacting particles (called red and
blue in the following) is

∂t

(
r
b

)
= ∇ ·

(
D(r, b)∇

(
r
b

)
− F(r, b)

(
r
b

))
, (1)

where D = D(r, b) is the diffusion matrix and F = F(r, b) is the drift matrix due to
a convective flux.

Systems like (1) often have a gradient flow structure

∂t

(
r
b

)
= ∇ ·

[
M(r, b)∇

(
∂rE
∂bE

)]
, (2)
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where M is a mobility matrix and ∂rE and ∂bE denote the functional derivative of an
entropy function E with respect to r and b, respectively. The gradient flow formulation
provides a natural framework to study the analytic behavior of such systems, cf. e.g.,
Ambrosio et al. (2008). It has been used to analyze existence and long-time behavior
of systems, see for example Carrillo et al. (2014), Jüngel and Zamponi (2014), Liero
and Mielke (2013), Zinsl and Matthes (2015). As a result, being able to express a
PDE system as gradient flows of an entropy is a very desirable feature; yet, this is not
possible in general. The lack of the gradient flow structure on the PDE level can result
from the approximations made when passing from the microscopic description to the
macroscopic equations. This is the case of the cross-diffusion system derived in Bruna
and Chapman (2012a), which was derived using the method of matched asymptotics.
There has been a lot of research on the passage from microscopic models to the
continuum equations, for example in the hydrodynamic limit (Kipnis and Landim
2013). More recently, the microscopic origin of entropy structures, which connects
gradient flows and the large deviation principle, was analyzed in Adams et al. (2011),
Liero et al. (2015).

In this paper, we introduce the idea of an asymptotic gradient flow structure as
a generalization of a standard or, as we also call it, full gradient flow structure for
systems derived as an asymptotic expansion such as that in Bruna and Chapman
(2012a). In this paper, we provide several analytic results for these cross-diffusion
systems and introduce the notion of asymptotic gradient flows. We discuss how the
closeness of these asymptotic gradient flow structures can be used to analyze the
behavior of the system close to equilibrium. Furthermore, we present a global in time
existence result in the case of particles of same size and diffusivity (inwhich the system
has a full gradient flow structure). The existence proof is based on an implicit Euler
discretization and Schauder’s fixed point theorem.We study the linearized systemwith
an additional regularization term in the entropy to ensure boundedness of the solutions
and deduce existence results for the unregularized system in the limit (similar to the
deep quench limit for the Cahn Hilliard equation Elliott and Garcke 1996). This is,
to the authors’ knowledge, the first global in time existence result for this system so
far. We note, however, that it is only valid if the total density stays strictly below
a certain threshold. It relates to the fact that the model assumptions break down if
the maximum density is reached. We discuss this problem in more detail in Sect.
3.

This paper is organized as follows: we introduce the mathematical model in Sect. 2
and discuss the cases for which the system has either a full or an asymptotic gradient
flow structure. In Sect. 3, we define the notion of asymptotic gradient flows formally
and discuss how they can be used to analyze the behavior of stationary solutions close
to equilibrium. Several numerical examples illustrating the deviation of stationary
solutions from the equilibrium solutions for asymptotic gradient flows are presented
in Sect. 4. Finally, we give a global in time existence result in the case of particles of
same size and diffusivity in Sect. 5.
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2 The Mathematical Model

In this paper, we analyze a cross-diffusion system for amixture of hard spheres derived
in Bruna and Chapman (2012a), which we present below. The system is obtained as
the continuum limit of a stochastic system with two types of interacting Brownian
particles, referred to as red and blue particles. In particular, we consider Nr red particles
of diameter εr, constant diffusion coefficient Dr and external potential Ṽr, and Nb
blue particles of diameter εb, diffusion coefficient Db and external potential Ṽb. Each
particle evolves according to a stochastic differential equation (SDE)with independent
Brownian dynamics and interacts with the other particles in the system via hardcore
collisions. Thismeans that the centers of two particles with positionXi andX j in space
are not allowed to get closer than the sumof their radii, that is, ‖Xi−X j‖ ≥ (εi+ε j )/2,
where εi denotes the radius of the i th particle. We define the total number of particles
in the system by N = Nr + Nb, and the distance at contact between a red and blue
particles by εbr = (εr + εb)/2. The situation detailed above can be described by the
overdamped Langevin SDEs

dXi (t) = √2Dr dWi (t) − ∇ Ṽr(Xi ) dt 1 ≤ i ≤ Nr,

dXi (t) = √2Db dWi (t) − ∇ Ṽb(Xi ) dt Nr + 1 ≤ i ≤ N ,
(3)

where Xi ∈ � ⊂ R
d , d = 2, 3, is the position of the i th particle and Wi a d-

dimensional standard Brownian motion. We assume that � is a bounded domain. The
boundary conditions due to collisions between particles and with the domain walls are

(dXi − dX j ) · n = 0, on ‖Xi − X j‖ = (εi + ε j )/2,

dXi · n = 0, on ∂�,
(4)

wheren denotes the outward unit normal. The continuum-levelmodel associated to this
individual-based model was derived in Bruna and Chapman (2012a) using the method
of matched asymptotic expansions in the limit of low but finite volume fraction. If
vd(ε) is the volume of a d-dimensional ball of diameter ε, then the volume fraction in
the system is

� = Nrvd(εr) + Nbvd(εb), (5)

assuming that the problem is nondimensionalized such that the domain � has unit
volume, |�| = 1. Because particles cannot overlap each other, in addition to the
global constraint � � 1 there is also a local constraint on the total volume density,
defined as

φ(x, t) = vd(εr)r(x, t) + vd(εb)b(x, t), (6)

where r = r(x, t) and b = b(x, t) are the number densities of the red and blue species,
respectively, depending on space and time. This means that r = Nrr̂ and b = Nbb̂
for the probability densities r̂ , b̂. Consequently, meaningful solutions satisfy r ≥ 0
with
∫
�
r dx = Nr and b ≥ 0 with

∫
�
b dx = Nb. For more detailed information, see

Bruna and Chapman (2012a). In particular, the local volume density cannot exceed
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the theoretical maximum allowed volume fraction, given by the Kepler conjecture.
We note that � and φ are related via � = ∫

�
φ dx.

The cross-diffusion model in Bruna and Chapman (2012a) is valid for any number
of blue and red particles, Nb and Nr. However, here we will consider the case that the
number of both particles is large, such that Nr − 1 ≈ Nr,Nb − 1 ≈ Nb, as it simplifies
the model slightly. In this case, the model reads (Bruna and Chapman 2012a)

∂t r = Dr∇ ·
[
(1+εdr αr)∇r + ∇Vrr+εdbr

(
βr r∇b − γrb∇r + ∇(γbVb − γrVr)rb

)]
,

(7a)

∂t b = Db∇ ·
[
(1+εdbαb)∇b + ∇Vbb + εdbr

(
βb b∇r−γbr∇b + ∇(γrVr−γbVb

)
rb
)]

,

(7b)

where Vi = Ṽi/Di are the rescaled potentials, and the parameters α, βi and γi depend
on the geometry of the particles. For balls, they are given by

α = 2(d − 1)π

d
, βi = 2π

d

[(d − 1)Di + dD j ]
Dr + Db

, γi = 2π

d

Di

Dr + Db
, (8)

for i = r, j = b and vice versa, and space dimension d = 2 or 3. This system is
an asymptotic expansion in εr, εb (assuming that both small parameters are of the
same asymptotic order, εr ∼ εb ∼ ε), valid up to order εd . The nonlinear terms in (7)
correspond to the leading-order contribution of the pairwise particle interactions. The
asymptotic method used in Bruna and Chapman (2012a) could be extended if desired
to evaluate higher-order terms coming from three or more particle interactions, as well
as higher-order corrections in the pairwise interaction. This would result in higher-
order terms in εi in (7) (of order ε

(d+1)
i and higher) with quite some effort. However,

it seems impossible to derive the full infinite series expansion.
We will consider the system (7) in � × (0, T ) with no-flux boundary conditions

0 = n ·
{
(1 + εdr αr)∇r + ∇Vrr + εdbr

[
βr r∇b − γrb∇r + ∇(γbVb − γrVr)rb

]}
,

(9a)

0 = n ·
{
(1 + εdbαb)∇b + ∇Vbb + εdbr

[
βb b∇r − γbr∇b + ∇(γrVr − γbVb

)
rb
]}

,

(9b)

on ∂� × (0, T ) and initial values

r(x, 0) = r0(x), b(x, 0) = b0(x). (10)

In order to analyze the cross-diffusion system (7), it is convenient to consider its
associated gradient flow structure of the form (2). However, only the system in the
symmetric case where red and blue particles have same size and diffusivity can be
rewritten in that form. For the general case, we introduce a generalization of a gradient
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flow, namely an asymptotic gradient flow, motivated by the underlying structure of
the general system (7).

2.1 Cross-Diffusion System for Particles of the Same Size and Diffusivity

In this section, we suppose that red and blue particles are of the same size, that is
εr = εb := ε, and have the same diffusion coefficient, Dr = Db. Without loss
of generality, we take the diffusion coefficient equal one (this can be achieved by
rescaling time). In this case, the cross-diffusion system (7) can be written as

∂t r = ∇ ·
[
(1 + αεdr − γ εdb)∇r + βεdr∇b + r∇Vr + γ εd∇ (Vb − Vr) rb

]
,

(11a)

∂t b = ∇ ·
[
(1 + αεdb − γ εdr)∇b + βεdb∇r + b∇Vb + γ εd∇ (Vr − Vb) rb

]
,

(11b)

where βi and γi , for i = r, b, are now equal and simplify to γ = π/d and β =
2(d − 1)γ , respectively.

This cross-diffusion system can be used to describe a mixture of particles that are
physically identical but that are driven by different potentials Vr and Vb (for example
cells that are attracted to different food sources, or pedestrians that want to move
in different directions). Moreover, it can also be used to model the scenario where
the red and the blue particles are in fact identical, but one has knowledge about the
initial distributions of each sub-population, r0 and b0. This is the scenario in many
experimental setups that use noninvasive fluorescent tagging. On the other hand, if
the red and blue particles are identical and initially indistinguishable, then one has
that r/Nr = b/Nb := p for all times. In this case, both Eqs. (11a) and (11b) reduce
to the same equation, which coincides with the equation for the evolution of a single
population of hard spheres as expected (Bruna and Chapman 2012b).

In the following, we define ᾱ = εdα, γ̄ = εdγ , and the total number density

ρ(x, t) := r(x, t) + b(x, t). (12)

When particles have the same size and diffusivity we find that

ρ ≡ 2φ/γ̄ , (13)

where φ is the total volume density given in (6). Using ρ, the Eq. (11) can be rewritten
in the following form

∂t r = ∇ · [(1 − γ̄ ρ)∇r + (ᾱ + γ̄ )r∇ρ + r∇Vr + γ̄∇ (Vb − Vr) rb
]
, (14a)

∂t b = ∇ · [(1 − γ̄ ρ)∇b + (ᾱ + γ̄ )b∇ρ + b∇Vb + γ̄∇ (Vr − Vb) rb
]
, (14b)
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where we have used that β = α + γ . It is straightforward to see that the system (14)
has a formal gradient flow structure, with an entropy functional given by

E(r, b) =
∫

�

r log r + b log b + rVr + bVb + ᾱ

2

(
r2 + 2rb + b2

)
dx. (15)

Using the corresponding entropy variables

u := ∂rE = log r + ᾱρ + Vr,

v := ∂bE = log b + ᾱρ + Vb,
(16)

the system can be written in the form

∂t

(
r
b

)
= ∇ ·

[
M(r, b)∇

(
u
v

)]
, (17)

with the symmetric mobility matrix

M(r, b) =
(
r(1 − γ̄ b) γ̄ rb

γ̄ rb b(1 − γ̄ r)

)
. (18)

2.2 Cross-Diffusion System for Particles of Different Size and Diffusivity

In this section, we attempt to write a gradient flow structure for the general cross-
diffusion system (7) guided by the symmetric case in the previous subsection, (15)
and (18). We will see that this requires a generalization of the definition of gradient
flow structure. We define the following entropy

Eε(r, b) =
∫

�

r log r + b log b + rVr + bVb + α

2

(
εdr r

2 + 2εdbr rb + εdb b
2
)
dx,

(19a)

and mobility matrix

Mε(r, b) =
(
Drr(1 − γrε

d
brb) Drγbε

d
brrb

Dbγrε
d
brrb Dbb(1 − γbε

d
brr)

)
. (19b)

Asmentioned earlier, we suppose that the red and blue particle sizes are of the same
asymptotic order, namely εr ∼ εb. It is then convenient to introduce a single small
parameter ε, and the order one parameters ar, ab and abr such that εdi = aiεd . Note

that as εbr = (εr + εb)/2, it holds that abr = ((a1/db + a1/dr )/2)d . Then, the entropy
and mobility can be expressed as Eε ∼ E0 + εd E1 and Mε ∼ M0 + εdM1, with
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E0 =
∫

�

r log r + b log b + rVr + bVb dx, E1 = α

2

∫
�

arr
2 + 2abrrb + abb

2 dx,

M0 = diag(Drr, Dbb), M1 = abrrb

(−Drγr Drγb
Dbγr −Dbγb

)
.

(20)

Using (19), the general cross-diffusion system (7) can be rewritten as

∂t

(
r
b

)
= ∇ ·

[
Mε∇
(

∂rEε

∂bEε

)
− ε2dG

]
, (21)

where G(r, b) is the vector

G = αabrrb

(
γr(θr∇r − θb∇b)
γb(θb∇b − θr∇r)

)
, (22)

with
θr = Dbabr − Drar, θb = Drabr − Dbab. (23)

Then, it is easy to see that the gradient flow structure induced by (19) and our system
(7) [or (21)] agree up to order εd , which is the order of the asymptotic expansion that
produced (7) in the first place. In other words, the discrepancy between the system (7)
and the gradient flow induced by (19) is of order ε2d . Therefore, up to order εd , we
can see (21) as a gradient flow structure of our system. We will call this an asymptotic
gradient flow structure; the precise definition will be made clear in the following
section.

Finally, we note that the system (19) coincides with the gradient flow structure in
the case Dr = Db and εr = εb, see (15) and (18). Note that G ≡ 0 for the parameter
values of the simpler system (11), as expected. Specifically, we find that if Dr = Db
and εr = εb, then θr = θb = 0. A natural question to ask is whether there are other
parameter values for which G(r, b) ≡ 0 for all r, b. Imposing that θr = θb = 0 leads
to the condition a2br = arab, which in turn leads to εr = εb, and thus that Dr = Db.
Therefore, the only case for which (19) is an exact gradient flow for the system is the
case which we have already studied, that is when the particle sizes and diffusivities
are equal.

3 Gradient Flows and Asymptotic Gradient Flows Close to Equilibrium

In the following, we provide a more detailed discussion on gradient flow structures
and implications for the behavior close to equilibrium.

3.1 Full Gradient Flow Structure Case

In this subsection, we analyze the behavior of system (17) close to equilibrium. We
follow the strategy outlined in the previous subsection, by proving uniqueness of
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equilibrium solutions and studying the stability and well posedness of the system
close to this equilibrium solution.

We have seen in the previous subsection that the linear stability analysis for gradient
flow structures reduces to showing that the mobility matrix M is positive definite in
the case of a strictly convex entropy functional E , cf. Schlake (2011).We assume from
now on:

(AI) Let Vr, Vb ∈ H1(�) ∩ L∞(�).

We recall that in case of assumption (AI) an equilibrium solution (r∞, b∞) exists and
that the corresponding entropy variables u∞ and v∞ are constant. The determinant of
the mobility matrix M defined in (18) is given by

det M = rb(1 − γ̄ ρ). (24)

Together with the positivity of diagonal entries we see that M is positive definite if
ρ < 1/γ̄ . This constraint gives a local bound on the total local volume density (using
(13)), namely 2φ < 1. This is consistent with the asymptotic assumption that φ � 1.
Hence, we define the set

S =
{(

r
b

)
∈ R

2 : r ≥ 0, b ≥ 0, r + b ≤ 1

γ

}
, (25)

which we will also use in the existence proof presented in Sect. 5. For stability and
uniqueness, it will be crucial to have solutions staying strictly in the interior of S, due
to the degeneracy of the mobility matrix on the boundary of S.
Theorem 3.1 (Linear stability) The stationary solutions of the system (17) are unique
and linearly stable with respect to small perturbations ξ, η ∈ L2(0, T ; H1(�)) with
zero mean.

Proof Due to the gradient flow structure, any stationary solution of (17) is a mini-
mizer of the entropy subject to the constraints of given mass and (r(x), b(x)) ∈ S
almost everywhere. Due to the strict convexity of the entropy and the convexity of the
constraint set, the minimizer is unique.

Let us consider the linearization of system (17) around the unique equilibrium,
which corresponds to the constant entropyvariables (u∞, v∞).Aswehave seenbefore,
this is equivalent to have a linear expansion in (r, b) and in the entropy variables (u, v)

, i.e., u = u∞ +ξ, v = v∞ +η. In the latter setting, we obtain the following first-order
approximation

E�′′(u∞, v∞)

(
∂tξ

∂tη

)
=
(

∂ur(u∞, v∞)∂tξ + ∂vr(u∞, v∞)∂tη

∂ub(u∞, v∞)∂tξ + ∂vb(u∞, v∞)∂tη

)

= ∇ ·
(
M(r∞, b∞)

(∇ξ

∇η

))
,

where E�′′ denotes the Hessian of the dual entropy functional. Note that for the first-
order approximation, we also have no flux boundary conditions. A simple calculation
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shows that E�′′(u∞, v∞) aswell asM(r, b) are positive definite for (r, b) in the interior
of S, which is guaranteed everywhere for the stationary solution (r∞, b∞). Stability
of this linear system is equivalent to nonpositivity of all the real parts of eigenvalues
λ in

λE�′′(u∞, v∞)

(
ξ

η

)
= ∇ ·

(
M(r∞, b∞)

(∇ξ

∇η

))
.

Note that due to the symmetry of the eigenvalue problem, all eigenvalues are real.
Moreover, we find

λ

∫
�

E�′′(u∞, v∞)

(
ξ

η

)
·
(

ξ

η

)
dx = −

∫
�

M(r∞, b∞)

(∇ξ

∇η

)
·
(∇ξ

∇η

)
dx.

Since E�′′ and M(r, b) are positive definite, we conclude that λ < 0, which implies
linear stability. ��
Note thatwe assumed ξ, ηwith zeromean,which corresponds to themass conservation
property of the system. Next, we consider the well posedness close to equilibrium.We
shall make use of the following auxiliary lemma:

Lemma 3.1 Let Vr and Vb satisfy assumption 3.1 and let Vr, Vb ∈ X with

X = L∞(0, T ; H2(�)) ∩ L2(0, T ; H3(�)) ∩ H1(0, T ; H1(�)).

Then, the gradient of the dual entropy functional E∗′ : X × X → X × X, (u, v) �→
(r, b), defined by (16), is continuous.

Proof To verify continuity, we have to show the existence of a constant C > 0 such
that

‖(r, b)‖X×X ≤ C‖(u, v)‖X×X ∀(u, v) ∈ X × X. (26)

Given (u, v) ∈ X × X , we calculate

∇u = 1

r
∇r + ᾱ∇ρ + ∇Vr, ∇v = 1

b
∇b + ᾱ∇ρ + ∇Vb, (27)

�u = − 1

r2
(∇r)2 +

(
1

r
+ ᾱ

)
�r + ᾱ�b + �Vr,

�v = − 1

b2
(∇b)2 +

(
1

b
+ ᾱ

)
�b + ᾱ�r + �Vb, (28)

and

∇�u = 1

r3
∇r(∇r)2 − 3

r2
∇r�r +

(
1

r
+ ᾱ

)
∇�r + ᾱ∇�b + ∇�Vr,

∇�v = 1

b3
∇b(∇b)2 − 3

b2
∇b�b +

(
1

b
+ ᾱ

)
∇�b + ᾱ∇�r + ∇�Vb.

(29)
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From H2(�) ↪→ L∞(�) in dimensions d = 2, 3 and using the definition of
the entropy variables (16), we get that r, b ∈ L∞(0, T ; L∞(�)) and r, b > ε

for some positive ε. As u, v ∈ L∞(0, T ; H2(�)) and H2(�) ↪→ W 1,6(�), we
get that ∇u,∇v ∈ L∞(0, T ; L6(�)) and therefore ∇u∇v ∈ L∞(0, T ; L3(�)).
Hence, relation (27) implies that ∇r,∇b ∈ L∞(0, T ; L6(�)) and ∇r∇b ∈
L∞(0, T ; L3(�)) ↪→ L∞(0, T ; L2(�)). Applying relation (28), we obtain that
�r,�b ∈ L∞(0, T ; L2(�)). Since u, v ∈ L2(0, T ; H3(�)), the embedding
H3(�) ↪→ W 1,∞(�) for dimensions d = 2, 3 as well as relation (27) imply that
∇r,∇b ∈ L2(0, T ; L∞(�)). Together with relation (29), we obtain that r, b ∈
L2(0, T ; H3(�)), which implies continuity. ��
Theorem 3.2 (Well posedness) Consider system (17) with initial data u0, v0 ∈
H2(�) and potentials Vr, Vb ∈ H3(�). Furthermore, let

‖u0 − u∞‖H2(�) ≤ κ and ‖v0 − v∞‖H2(�) ≤ κ,

for κ > 0 sufficiently small. Then, there exists a unique solution to system (17) in

Br = {(u, v) : ‖u − u∞‖X ≤ R, ‖v − v∞‖X ≤ R},

where R is a constant depending on κ and T > 0 only.

Proof The proof is based on Banach’s fixed point theorem. The corresponding fixed
point operator is constructed by considering the evolution of u − u∞ and v − v∞,
which can be written as

E�′′(u∞, v∞)

(
∂t (u − u∞)

∂t (v − v∞)

)
− ∇ ·

(
M(r∞, b∞)

(∇u
∇v

))

= ∇ ·
(
(M(r, b) − M(r∞, b∞))

(∇(u − u∞)

∇(v − v∞)

))

− (E�′′(u, v) − E�′′(u∞, v∞))

(
∂t (u − u∞)

∂t (v − v∞)

)

=: F(u, v),

(30)

where we used that (r, b) = E�′(u, v). Note that by using a similar argumentation as in
the proof of Lemma3.1,we can show that the stationary solutions r∞, b∞ are in H3(�)

assuming that the potentials Vr, Vb are in H3(�). Consider (u, v) ∈ X × X with the
corresponding function r = r(u, v), b = b(u, v) and let L denote the solution of (30)
for a given right-hand side. Then the fixed point operator is given by the concatenation
of L and F , that is

J = L ◦ F : X × X → X × X.

Note that Lemma 3.1 guarantees that (r, b) = (r(u, v), b(u, v)) ∈ X × X . Properties
of the entropy functional guarantee that E�′′ is bounded for (u, v) ∈ X × X . The
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operator F defined in (30) maps from X × X into Y × Y , where

Y := L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)).

Standard results for linear parabolic equations, see Ladyzhenskaia et al. (1968) or
Evans (1998), ensure that the solution (ũ − u∞, ṽ − v∞) to Eq. (30) lie in X × X .

To apply Banach’s fixed point theorem, it remains to show that the operator J is
self-mapping into the ball Br and contractive. The self-mapping property follows from
the fact that

‖(ũ − u∞, ṽ − v∞)‖X×X ≤ C
(
‖F(u, v)‖L2︸ ︷︷ ︸

∼R2

+‖(u0 − u∞, v0 − v∞)‖H1
0︸ ︷︷ ︸

∼κ

)
=: R(κ).

For the contractivity, we consider (u1, v1) ∈ X × X and (u2, v2) ∈ X × X and deduce
that:

‖F(u1, v1) − F(u2, v2)‖Y
=
∥∥∥∥∇ ·
((

M(E∗′(u1, v1)) − M(E∗′(u∞, v∞))
) (∇(u1 − u∞)

∇(v1 − v∞)

))

+ (E�′′(u1, v1) − E�′′(u∞, v∞))

(
∂t (u1 − u∞)

∂t (v1 − v∞)

)

− ∇ ·
((

M(E∗′(u2, v2)) − M(E∗′(u∞, v∞))
) (∇(u2 − u∞)

∇(v2 − v∞)

))

−(E�′′(u2, v2) − E�′′(u∞, v∞))

(
∂t (u2 − u∞)

∂t (v2 − v∞)

)∥∥∥∥
Y

Therefore

‖F(u1, v1) − F(u2, v2)‖Y
≤
∥∥∥∥∇ ·
((

M(E∗′(u1, v1)) − M(E∗′(u2, v2))
) (∇(u1 − u∞)

∇(v1 − v∞)

))∥∥∥∥
Y

+
∥∥∥∥∇ ·
((

M(E∗′(u2, v2)) − M(E∗′(u∞, v∞))
) (∇(u1 − u2)

∇(v1 − v2)

))∥∥∥∥
Y

+
∥∥∥∥(E�′′(u1, v1) − E�′′(u2, v2))

(
∂t (u1 − u∞)

∂t (v1 − v∞)

)∥∥∥∥
Y

+
∥∥∥∥(E�′′(u2, v2) − E�′′(u∞, v∞))

(
∂t (u1 − u2)
∂t (v1 − v2)

)∥∥∥∥
Y

≤ C1R(‖u1 − u2‖X + ‖v1 − v2‖X ),

for some constant C1 > 0. Hence, we have that

‖J (u1, v1) − J (u2, v2)‖X ≤ CR(‖u1 − v1‖X + ‖u2 − v2‖X ),
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for some C > 0. Choosing κ and R such that R < 1
C , we can apply Banach’s fixed

point theorem which guarantees the existence of unique solutions (u, v) ∈ Br. ��

3.2 Asymptotic Gradient Flow Structure

We have seen in Sect. 2.1 that system (7) with particles of same size satisfies a gradient
flow structure, which is not valid for the general system due to terms of higher order
in ε. However, we want to interpret the latter as an asymptotic gradient flow structure,
motivated by the fact that it was derived from an asymptotic expansion in ε. For further
motivation, consider a gradient flow structure for the density w of the form

∂tw = ∇ · (M(w; δ)∇E ′(w; δ)), (31)

where both the mobility M and the entropy E depend on a small parameter δ > 0.
With an expansion of M and E in terms of δ as

M(w; δ) =
∞∑
j=0

δ j M j (w), and E(w; δ) =
∞∑
j=0

δ j E j (w),

we find

∂tw =
∞∑
k=0

δk∇ ·
⎛
⎝ k∑

j=0

Mj (w)∇E ′
k− j (w)

⎞
⎠ .

Truncating the expansion on the right-hand side at a finite k does not yield a gradient
flow structure in general, but up to terms of order δk it coincides with the gradient flow
structure with mobility

∑k
j=0 δ j M j (w) and entropy

∑k
j=0 δ j E j (w). In our case, we

deal with the example k = 1 (with δ = εd ), where we have

∂tw = ∇ · (M0(w)∇E ′
0(w)) + δ∇ · (M1(w)∇E ′

0(w) + M0(w)∇E ′
1(w)).

Adding a term of order δ2, namely δ2∇ · (M1(w)∇E ′
1(w)), this equation becomes a

gradient flow. This motivates a more general definition:

Definition 3.3 Let F(.; δ) be a densely defined operator on some Hilbert space for
δ ∈ (0, δ∗). Then, the dynamical system

∂tw = F(w; δ) (32)

is called an asymptotic gradient flow structure of order k if there exist densely defined
operators G j , j = k + 1, . . . , 2k such that for δ ∈ (0, δ∗)

F(w; δ) +
2k∑

j=k+1

δ jG j (w) = −M(w; δ)E ′(w; δ) (33)
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for some (parametric) energy functional E(·; δ), and M(w; δ) is a densely defined
formally positive definite operator for each w.

If an expansion of mobility and entropy up to order k are available, it seems natural
to perform a separate expansion to derive a lower-order model that is a gradient flow
as well. For complicated models and types of expansions as in Bruna and Chapman
(2012a) or Bruna and Chapman (2012b), it seems not suitable to derive such however.
Hence, we shall work with the asymptotic gradient flow concept below. Note that with
the above notations we can rewrite (32) as

∂tw = −M(w; δ)E ′(w; δ) − δk+1
k−1∑
j=0

δ jGk+1+ j (w), (34)

which opens the door to perturbation arguments in the analysis of (32) for δ sufficiently
small.

In the remainder of this section, wewill highlight in particular the use of asymptotic
gradient flow structures close to equilibrium. Let wδ∞ denote the equilibrium solution,
which is a minimizer of the energy functional on the manifold defined by M. Hence
wδ∞ solves M(w; δ)E ′(wδ∞; δ) = 0 for any w. In the case of (31), it typically means
that E ′(wδ∞; δ) is constant. In order to prove the existence of a stationary solution of
(32), one can then try the following strategy: first of all compute wδ∞ (or prove at least
its existence and uniqueness by variational principles) and then use the equation

M(wδ∞; δ)E ′(w; δ) = −δk+1
k−1∑
j=0

δ jGk+1+ j (w) + (M(wδ∞; δ)

−M(w; δ))(E ′(w; δ) − E ′(wδ∞; δ))

as the basis of a fixed point argument, freezingw on the right-hand side. Since the terms
on the right-hand side are of high order in δ or of second order in terms of w − wδ∞,
there is some hope of contractivity of the fixed point operator close to equilibriumwδ∞.
Such an approach can also yield some structural insight into the stationary solution,
since it will be a higher-order perturbation of wδ∞. The same idea can be employed to
analyze transient solutions of (32), since

∂tw + M(wδ∞; δ)E ′(w; δ) = − δk+1
k−1∑
j=0

δ jGk+1+ j (w)

+ (M(wδ∞; δ) − M(w; δ))(E ′(w; δ) − E ′(wδ∞; δ)).

IfM(wδ∞; δ) is invertible and E(·; δ) is strictly convex on its domain, one can directly
apply variational techniques to analyze the fixed point operator. In particular, it can
be rather beneficial to set up the fixed point operator in dual (or entropy) variables
z = E ′(w; δ) instead.
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Finally, let us comment on the linear stability analysis around a stationary solution
wδ∗. Using a similar way of expanding the equation aroundwδ∞, the linearized problem
for a variable w̃ is given by

∂t w̃ + M(wδ∞; δ)(E ′′(wδ∗; δ)w̃) = −δk+1
k−1∑
j=0

δ jG′
k+1+ j (w

δ∗)w̃

+ (M(wδ∞; δ) − M(wδ∗; δ))(E ′′(wδ∗; δ)w̃)

− (M′(wδ∗; δ)w̃)(E ′(wδ∗; δ) − E ′(wδ∞; δ)),

where we denote by E ′ and M′ the derivatives with respect to w at fixed δ. Due to
positive definiteness of E ′′(wδ∗; δ), this system can be interpreted as a linear equation
for the linearized entropy variable z̃ = E ′′(wδ∗; δ)w̃, which is equivalent to consid-
ering linear stability directly in the transformed equation for the entropy variable z
as performed in Schlake (2011). Using the simplified notation A = E ′′(wδ∗; δ)−1 and
B = M(wδ∞; δ), we obtain

A∂t z̃ + Bz̃ = −δk+1
k−1∑
j=0

δ jG′
k+1+ j (w

δ∗)Az̃ + (B − M(wδ∗; δ))z̃

− (M′(wδ∗; δ)Az̃)(E ′(wδ∗; δ) − E ′(wδ∞; δ)).

In the case of a gradient flow (G j ≡ 0, wδ∗ = wδ∞) this reduces to

A∂t z̃ + Bz̃ = 0,

which is stable if A and B are positive definite. In the asymptotic gradient flow case,
with wδ∗ = wδ∞ + O(δk+1), we can formally write the linearized problem as

A∂t z̃ + (B + δk+1C)z̃ = 0, (35)

and hence expect linear stability also for wδ∗ if δ is sufficiently small.
The application of the above strategies to prove existence of solutions and linear

stability to a concretemodel obviously depends on an appropriate choice of topologies.
In the remaining part of this section,we focus on the analysis of the asymptotic gradient
flow of the general model.

3.3 Asymptotic Gradient Flow Structure Case

First, we study the existence of stationary solutions to (21). Then, we discuss stability
of stationary states following the ideas presented in Sect. 3.2.

Note that for ε = 0, the equilibrium solutions are given by (r∞, b∞) =
(Cre−Vr ,Cbe−Vb), with constants Cr and Cb depending on the initial masses only.
Hence (r∞, b∞) are bounded for Vr and Vb satisfying assumption 3.1. For ε > 0, the
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equilibrium solutions are a O(εd) perturbation in L∞ and therefore also uniformly
bounded.

Theorem 3.4 (Existence of stationary solutions) Consider system (21)with potentials
Vr, Vb ∈ H3(�). Then, there exists a unique stationary state (u∗, v∗) to system (21)
in

Br = {(u, v) : ‖u − u∞‖X ≤ R, ‖v − v∞‖X ≤ R},

where X = H3(�) and R depending on ε and T > 0 only.

Proof We follow the ideas detailed in Sect. 3.2 and define a fixed point operator close
to equilibrium. Denote by (r∞, b∞) the minimizer of the entropy functional Eε(r, b),
which exists as the entropy functional is strictly convex. Then, any stationary solution
to system (21) exists has to satisfy

− ∇ ·
(
M(r∞, b∞)

(∇u
∇v

))

= ∇ ·
(

−ε2dG(r, b) + (M(r, b) − M(r∞, b∞))

(∇(u − u∞)

∇(v − v∞)

))

=: F(u, v). (36)

Similar arguments as in Lemma 3.1 ensure that for (u, v) ∈ X × X the functions
r = r(u, v) and b = b(u, u) lie in X × X . Let L denote the solution operator to (36)
for a given right-hand side F(u, v). Then, the fixed point operator is constructed by:

J = L ◦ F : X × X → X × X.

Hence, we can conclude that F maps from X × X into Y × Y , where Y = H1(�).
Employing results about the elliptic operator, cf. Gilbarg and Trudinger (2015) or
Evans (1998), we obtain that the solution (ũ, ṽ) to Eq. (36) is in X × X .

To apply Banach’s fixed point theorem, it remains to show that the operator J is
self-mapping into the ball Br and contractive. The self-mapping property follows from
the fact that

‖(ũ, ṽ)‖X×X ≤ C̃ ‖F(u, v)‖L2︸ ︷︷ ︸
∼R2+ε2d

=: R(ε).

For the contractivity, we consider (u1, v1) ∈ X × X and (u2, v2) ∈ X × X . Then

‖F(u1, v1) − F(u2, v2)‖Y
=
∥∥∥∇ ·
(
−ε2dG(E∗′(u1, v1))d + ε2dG(E∗′(u2, v2))

)
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+ ∇ ·
((

M(E∗′(u1, v1)) − M(E∗′(u∞, v∞))
) (∇(u1 − u∞)

∇(v1 − v∞)

))

−∇ ·
((

M(E∗′(u2, v2)) − M(E∗′(u∞, v∞))
) (∇(u2 − u∞)

∇(v2 − v∞)

))∥∥∥∥
Y

.

Therefore

‖F(u1, v1) − F(u2, v2)‖Y
≤
∥∥∥∇ ·
(
ε2dG(E∗′(u1, v1)) − ε2dG(E∗′(u2, v2)

)∥∥∥
Y

+
∥∥∥∥∇ ·
((

M(E∗′(u1, v1)) − M(E∗′(u2, v2))
) (∇(u1 − u∞)

∇(v1 − v∞)

))∥∥∥∥
Y

+
∥∥∥∥∇ ·
((

M(E∗′(u2, v2)) − M(E∗′(u∞, v∞))
) (∇(u1 − u2)

∇(v1 − v2)

))∥∥∥∥
Y

≤ ε2dC1 (‖r1 − r2‖X + ‖b1 − b2‖X ) + C2R(‖u1 − u2‖X + ‖v1 − v2‖X )

≤
(
ε2dC3 + 2C1R

)
(‖u1 − u2‖X + ‖v1 − v2‖X ),

for some constants C1,C2,C3 > 0 and therefore

‖J (u1, v1) − J (u2, v2)‖X ≤ C̃
(
ε2dC3 + 2C1R

)
(‖u1 − v1‖X + ‖u2 − v2‖X ),

for some C > 0. Choosing R and ε such that

C̃
(
ε2dC3 + 2C1R

)
< 1,

we can apply Banach’s fixed point theorem which guarantees the existence of unique
solutions (u∗, v∗) ∈ Br. ��

Adirect consequence of the proof is the closeness of the stationary solution (u∗, v∗)
to the gradient flow solution (u∞, v∞):

Corollary 3.1 Let the assumptions of Theorem 3.4 be satisfied. Then, there exists a
constant C > 0 such that for ε sufficiently small

‖u∗ − u∞‖X + ‖v∗ − v∞‖X ≤ Cε2d . (37)

Proof We use (36) rewritten as

− ∇ ·
(
M(r∞, b∞)

(∇(u∗ − u∞)

∇(v∗ − v∞)

))

= ∇ ·
(

−ε2dG(r, b) + (M(r∗, b∗) − M(r∞, b∞))

(∇(u∗ − u∞)

∇(v∗ − v∞)

))
.

and the properties of the operators used above immediately imply the assertion. ��
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We conclude this section by discussing linear stability of system (21) close to its
stationary states (u∗, v∗). Following the ideas presented in Sect. 3.2, we rewrite (21)
as

∂t (r, b) = M(r, b)E ′(r, b) − ε2dG(r, b).

Then

∂t (r, b) − M(r∞, b∞)E ′(r, b) = − ε2dG(r, b)

+ (M(r, b)−M(r∞, b∞))(E ′(r, b)−E ′(r∞, b∞)).

(38)

The linearization of Eq. (38) around (r∗, b∗) is given by the following system for
(r̃ , b̃):

∂t (r̃ , b̃) − M(r∞, b∞)(E ′′(r∗, b∗)(r̃ , b̃))
= −ε2dG′(r∗, b∗)(r̃ , b̃)

+ (M(r∗, b∗) − M(r∞, b∞))(E ′′(r∗, b∗)(r̃ , b̃))
+ (M′(r∗, b∗)(r̃ , b̃))(E ′(r∗, b∗) − E ′(r∞, b∞)).

Using the linearized entropy variables (ũ, ṽ) = E ′′(r∗, b∗)(r̃ , b̃) we obtain

A∂t (ũ, ṽ) − B(ũ, ṽ) = −ε2dG′(r∗, b∗)A(ũ, ṽ) + (M(r∗, b∗) − B)(ũ, ṽ)

+ (M′(r∗, b∗)A(ũ, ṽ))(E ′(r∗, b∗) − E ′(r∞, b∞)),
(39)

whereA = E ′′−1
(r∗, b∗) is a positive and B = M(r∞, b∞) are negative semidefinite

operator. Note that with the usual settings for elliptic systems, B is elliptic and hence
invertible on the space of function pairs in H1(�) with zero means.

As already mentioned in Sect. 3.2, (r∗, b∗) = (r∞, b∞) + O(ε2d) and (39) can be
written as

A∂t (ũ, ṽ) − (B + ε2dC)(ũ, ṽ) = 0,

for some bounded operator C on H1(�)2. As B is symmetric and negative definite
except on the two-dimensional space of constant functions also annihilated by C, the
nonzero eigenvalues of B+ ε2dC stay negative for ε sufficiently small, yielding linear
stability for (r∗, b∗), cf. Kato (2013).

4 Numerical Investigations of Steady States

In this section, we compute the stationary solutions of (7). For the symmetric system
(11), the solutions can be computed exactly as the minimizers of the entropy E in (15).
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If the mobility matrix (18) is positive definite (which it is under the assumptions), the
equilibrium states can be computed by finding constants χr ∈ R and χb ∈ R such that

∂rE = χr and ∂bE = χb

subject to normalization constraints. In the case of system (11), we have

log r∞ + Vr + α(εdr r∞ + εdbrb∞) = χb (40a)

log b∞ + Vb + α(εdb b∞ + εdbrr∞) = χr (40b)∫
�

r∞(x) dx = Nr (40c)
∫

�

b∞(x) dx = Nb. (40d)

System (40) defines a nonlinear operator equation F(r∞, b∞, χr, χb) = 0, which
can be solved via Newton’s method. Note that the no-flux boundary conditions are
automatically satisfied by assuming that ∂rE and ∂bE are constant.

For the general case (7), we only obtain an asymptotic gradient flow structure with
the entropy Eε ; ifweuse (40) to solve for the stationary solutionswewill be committing
anorder ε2d error. Instead,we compute the exact stationary states (r∗, b∗)of the general
system by solving the time-dependent problem (7) for long-times, until the system has
equilibrated. To solve (7), we use a second-order accurate finite-difference scheme in
space and the method of lines with the inbuilt MATLAB ode solver ode15s in time.

We set d = 2 and consider one-dimensional external potentials Ṽr = Ṽr(x) and
Ṽb = Ṽb(x) so that the stationary states will be also one dimensional. In particular,
we take linear potentials Ṽr = vrx and Ṽb = vbx and solve for the full system (7) and
for the minimizers (40) in [−1/2, 1/2], which is split into 200 intervals. The Newton
solver is initialized with the stationary state solution in the case of point particles and
terminated if ‖F(r, b, χr, χb)‖L2(0,1) ≤ 10−8.

Example 1 First we consider the case: εr = εb and Dr = Db, that is particles of the
same size and diffusivity. In this case, system (11) has a full gradient flow structure
and hence we expect that the stationary states computed with the two approaches to
be the same. We plot the two pairs, (r∗, b∗) computed as the long-time limit of (11),
and (r∞, b∞), computed from (40) in Fig. 1. The parameters are Dr = Db = 1,
εr = εb = 0.01, Nb = Nr = 200 and vr = 2, vb = 1. As expected, the solutions are
identical.

Example 2 From Corollary 3.1, we expect the stationary solutions corresponding to
the case of an asymptotic and a full gradient flow equation agree up to order O(εd).
To investigate this, we again compare the solutions (r∗, b∗) and (r∞, b∞) as we move
away from the case with an exact gradient flow structure [which corresponds to θr =
θb = 0, see (21)–(23)]. We recall that the parameters θr and θb are only zero in the
symmetric case with identical particles, so that can think of these as a measure of
the asymmetry in the system (either in size, diffusivity, or both). In particular, we do
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Fig. 1 Stationary solutions
(r∗, b∗) and (r∞, b∞) from
solving the long-time limit of (7)
and (40), respectively, in the
case with θr = θb = 0. The
parameter values are d = 2,
Dr = Db = 1, εr = εb = 0.01,
Nb = Nr = 200 and Ṽr = 2x ,
Ṽb = x
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Fig. 2 Stationary solutions
(r∗, b∗) and (r∞, b∞) from
solving the long-time limit of (7)
and (40), respectively, in a case
with θr = 8 · 10−5. The
parameter values are d = 2,
Dr = 0.2, Db = 1,
εr = εb = 0.01,
Nb = Nr = 200 and Ṽr = 2x ,
Ṽb = x
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a one-parameter sweep with θr, increasing it from 0 (as in Fig. 1) to 9 · 10−5, while
keeping εr = εb = 0.01 and Db = 1 fixed. This ensures that when θr = 0 then θb = 0.
The reds diffusivity Dr is varied according to (23). We plot the result for θr = 8 ·10−5

in Fig. 2. As expected, the error between the stationary solutions is apparent.

The absolute error and the relative error between the solutions, ‖r∞ − r∗‖ and
‖b∞ − b∗‖ and ‖r∞ − r∗‖/‖r∞‖ and ‖b∞ − b∗‖/‖b∞‖, respectively, as a function
of θr is shown in Fig. 3.

To conclude this section, we compute the stationary solutions of the (exact) full
system and that approximated by the asymptotic gradient flow system as we vary ε,
where ε = εb = εr, while keeping all the other parameters fixed. We plot the results
in Fig. 4. As expected from Corollary 3.1, the errors scale with ε2d = ε4.
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Fig. 3 Error between the stationary solution (r∗, b∗) of (7) and (r∞, b∞) of (40) as a function of θr . a
Absolute error. b Relative error. The red particles diffusion Dr is varied according to (23), while the other
parameter values are fixed to: d = 2, Db = 1, εr = εb = 0.01, Nb = Nr = 200 and Ṽr = 2x , Ṽb = x
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Fig. 4 Error between the stationary solution (r∗, b∗) of (7) and (r∞, b∞) of (40) as a function of ε, where
ε = εr = εb. a Absolute error. b Relative error. The parameter values are fixed to: d = 2, Dr = 2, Db = 1,
Nb = Nr = 200 and Ṽr = 2x , Ṽb = x

5 Global Existence for the Full Gradient Flow System

In this section, we present a global in time existence result for the systemwith particles
of same size and diffusivity (14). We look for a weak solution (r, b) : �× (0, T ) → S
to the system

∂t

(
r
b

)
= ∇ ·

(
Jr
Jb

)
with

(1 − γ ρ)Jr = (1 − γ ρ) ((1 − γ̄ ρ)∇r + (ᾱ + γ̄ )r∇ρ + r∇Vr + γ̄∇(Vb − Vr)rb)

(1 − γ ρ)Jb = (1 − γ ρ) ((1 − γ̄ ρ)∇b + (ᾱ + γ̄ )b∇ρ + b∇Vb + γ̄∇(Vb − Vr)rb) .

(41)

Note the special fluxes Jr and Jb, where the multiplication with (1 − γ ρ) is due
to the fact that Jr, Jb are not well defined for maximal packing. From a variational
perspective, one might expect additional Lagrange parameters to change Jr, Jb if the
constraint γρ ≤ 1 is active.
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Theorem 5.1 (Global existence in the case of small volume fraction) Let T > 0, let
(r0, b0) : � → S◦, where S is defined by (25), be a measurable function such that
E(r0, b0) < ∞. Then, there exists a weak solution (r, b) : � × (0, T ) → S to system
(41) satisfying

∂t r, ∂t b ∈ L2(0, T ; H1(�)′),
ρ ∈ L2(0, T ; H1(�)),

(1 − γ̄ ρ)2∇√
r , (1 − γ̄ ρ)2∇√

b ∈ L2(0, T ; L2(�)).

Moreover, the solution satisfies the following entropy dissipation inequality:

dE

dt
+ D1 ≤ C, (42)

where

D1 =
∫

�

2(1 − γ̄ ρ)4|∇√
r |2 + 2(1 − γ̄ ρ)4|∇√

b|2 + γ̄

2
|∇ρ|2 dx

and C ≥ 0 is a constant.

We recall that system (14) can be written as a gradient flow:

∂t

(
r
b

)
= ∇ ·

(
M(r, b)∇

(
u
v

))
, (43)

where

M =
(
r(1 − γ̄ b) γ̄ rb

γ̄ rb b(1 − γ̄ r)

)
.

Note that if r, b and ρ ∈ S◦, then the matrix M is positive definite.
We perform a time discretization of system (43) using the implicit Euler scheme.

The resulting recursive sequence of elliptic problems is then regularized. Let N ∈ N

and let τ = T/N be the time step size. We split the time interval into the subintervals

(0, T ] =
N⋃

k=1

((k − 1)τ, kτ ], τ = T

N
.

Then, for given functions (rk−1, bk−1) ∈ S, which approximate (r, b) at time τ(k−1),
we want to find (rk, bk) ∈ S solving the regularized time discrete problem

1

τ

(
rk − rk−1
bk − bk−1

)
= ∇ ·

(
M(rk, bk)

(∇ũk
∇ṽk

))
+ τ

(
�ũk − ũk
�ṽk − ṽk

)
, (44)
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where we use the modified entropy

Ẽ = E + Eτ =
∫

�

r(log r − 1) + b(log b − 1) + rVr + bVb + ᾱ

2

(
r2 + 2rb + b2

)

+ τ(1 − γ̄ ρ)(log(1 − γ̄ ρ) − 1) dx, (45)

with associated entropy variables

ũ = u + uτ = log r + ᾱρ + Vr − τ γ̄ log(1 − γ̄ ρ),

ṽ = v + vτ = log b + ᾱρ + Vb − τ γ̄ log(1 − γ̄ ρ).
(46)

The additional term in the entropy provides upper bounds on the solutions and
the higher-order regularization terms guarantee coercivity of the elliptic system in
H1(�), which is needed to show existence of weak solutions to a linearized version
of the problem (44) using Lax–Milgram. The existence result of the corresponding
nonlinear problem is concluded by applying Schauder fixed point theorem.

Finally, uniform a priori estimates in τ and the use of a generalized version of the
Aubin–Lions lemma allow to pass to the limit τ → 0 leading to the existence of (41).
Note that the compactness results are sufficient for 1 − γ̄ ρ > 0 to pass to the correct
limit in the flux terms Jr and Jb, i.e., leading to the global existence of weak solutions
to system (14).

Lemma 5.1 The entropy density

h̃ : S◦ → R,

(
r
b

)
�→ r(log r − 1) + b(log b − 1) + rVr + bVb

+ ᾱ

2

(
r2 + 2rb + b2

)
+ τ(1 − γ̄ ρ)(log(1 − γ̄ ρ) − 1)

is strictly convex and belongs to C2(S◦). Its gradient h̃′ : S◦ → R
2 is invertible and

the inverse of the Hessian h̃′′ : S◦ → R
2×2 is uniformly bounded.

Proof Note that

h̃′ =
(
log r − τ γ̄ log(1 − γ̄ ρ) + ᾱρ + Vr
log b − τ γ̄ log(1 − γ̄ ρ) + ᾱρ + Vb

)

and

h̃′′ =
(

1
r + τ

γ̄ 2

1−γ̄ ρ
+ ᾱ τ

γ̄ 2

1−γ̄ ρ
+ ᾱ

τ
γ̄ 2

1−γ̄ ρ
+ ᾱ 1

b + τ
γ̄ 2

1−γ̄ ρ
+ ᾱ

)
.

The matrix h̃′′ is positive definite on the set S◦, so h̃ is strictly convex. We can easily
deduce that the inverse of h̃′′ exists and is bounded on S◦.

Next, we verify the invertibility of h̃′. Note that the function g = (g1, g2) : S◦ →
R
2, (r, b) �→ (log r − τ γ̄ log(1 − γ̄ ρ), log b − τ γ̄ log(1 − γ̄ ρ)) is invertible. Let
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(x, y) ∈ R
2 and define u(z) = (ex + ey)(1 − γ̄ z) for 0 < z < 1

γ̄
. Then, u is

nonincreasing and as u(0) > 0 and u
(
1
γ̄

)
= 0, there exists a unique fixed point

0 < z0 < 1
γ̄
such that u(z0) = z0. Then, we define r = ex (1 − γ̄ z0) > 0 and

b = ey(1 − γ̄ z0) > 0. It holds that r + b = (ex + ey)(1 − γ̄ z0) = z0 < 1
γ̄
. So,

(r, b) ∈ S◦. Then, we define the function f = h̃′ ◦ g−1 : R2 → R
2. Since h̃′′ and

g′ are nonsingular matrices for (r, b) ∈ S◦, the Jacobian of f is also nonsingular for
(r, b) ∈ S◦. Furthermore, we have that

f (y) = y + χ(g−1(y)), y ∈ R
2,

where χ =
(

ᾱρ + Vr
ᾱρ + Vb

)
∈ C0(S) ⊆ L∞(S◦). So, | f (y)| → ∞ as |y| → ∞, which

together with the invertibility of the matrix Df allow us to apply Hadamard’s global
inverse theorem showing that f is invertible. So, also h̃′ is invertible. ��

5.1 Time Discretization and Regularization of System (43)

The weak formulation of system (44) is given by:

1

τ

∫
�

(
rk − rk−1
bk − bk−1

)
·
(

�1
�2

)
dx +
∫

�

(∇�1
∇�2

)T
M(rk, bk)

(∇ũk
∇ṽk

)
dx

+ τ R

((
�1
�2

)
,

(
ũk
ṽk

))
= 0

(47)

for (�1,�2) ∈ H1(�) × H1(�), where (rk, bk) = h′−1(ũk, ṽk) and

R

((
�1
�2

)
,

(
ũk
ṽk

))
=
∫

�

�1ũk + �2ṽk + ∇�1 · ∇ũk + ∇�2 · ∇ṽk dx dy.

We define F : S ⊆ L2(�,R2) → S ⊆ L2(�,R2), (r̃ , b̃) �→ (r, b) = h′−1(ũ, ṽ),
where (ũ, ṽ) is the unique solution in H1(�,R2) to the linear problem

a((ũ, ṽ), (�1,�2)) = F(�1,�2) for all (�1,�2) ∈ H1(�,R2) (48)

with

a((ũ, ṽ), (�1,�2)) =
∫

�

(∇�1
∇�2

)T
M(r̃ , b̃)

(∇u
∇v

)
dx + τ R

((
�1
�2

)
,

(
ũ
ṽ

))

F(�1,�2) = −1

τ

∫
�

(
r̃ − rk−1

b̃ − bk−1

)
·
(

�1
�2

)
dx
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The bilinear form a : H1(�;R2) × H1(�;R2) → R and the functional F :
H1(�,R2) → R are bounded. Moreover, a is coercive since the positive semidefi-
niteness of M(r, b) implies that

a((ũ, ṽ), (ũ, ṽ)) =
∫

�

(∇ũ
∇ṽ

)T
M(r̃ , b̃)

(∇ũ
∇ṽ

)
dx + τ R

((
ũ
ṽ

)
,

(
ũ
ṽ

))

≥ τ
(
‖ũ‖2H1(�)

+ ‖ṽ‖2H1(�)

)
.

Then the Laxp–Milgram lemma guarantees the existence of a unique solution (ũ, ṽ) ∈
H1(�;R2) to (48).

To apply Schauer’s fixed point theorem, we need to show that the map S:

(i) maps a convex, closed set onto itself,
(ii) is compact,
(iii) is continuous.

Since S is convex and closed, property (i) is satisfied; (ii) follows from the compact
embedding H1(�,R2) ↪→ L2(�,R2). Continuity (iii): let (r̃k, b̃k) be a sequence
in S converging strongly to (r̃ , b̃) in L2(�,R2) and let (ũk, ṽk) be the correspond-
ing unique solution to (48) in H1(�;R2). As the matrix M only contains sums and
products of r and b, we have that M(r̃k, b̃k) → M(r̃ , b̃) strongly in L2(�,R2). The
positive semidefiniteness of the matrix M for (r, b) ∈ S provides a uniform bound
for (ũk, ṽk) in H1(�;R2). Hence, there exists a subsequence with (ũk, ṽk) ⇀ (ũ, ṽ)

weakly in H1(�;R2). The L∞ bounds of M(r̃k, b̃k) and the application of a den-
sity argument allow us to pass from test functions (�1,�2) ∈ W 1,∞(�,R2) to
test functions (�1,�2) ∈ H1(�,R2). So, the limit (ũ, ṽ) as the solution of prob-
lem (48) with coefficients (r̃ , b̃) is well defined. Due to the compact embedding
H1(�,R2) ↪→ L2(�,R2), we have a strongly converging subsequence of (ũk, ṽk) in
L2(�,R2). Since the limit is unique, the whole sequence converges. From Lemma 5.1
weknow that (r, b) = h′−1(ũ, ṽ) is Lipschitz continuous,which yields continuity of F .

Hence, we can apply Schauder’s fixed point theorem, which assures the existence
of a solution (r, b) ∈ S to (48) with (r̃ , b̃) replaced by (r, b).

5.2 Entropy Dissipation

Lemma 5.2 Let r, b : � → S be a sufficiently smooth solution to system

∂t

(
r
b

)
= ∇ ·

(
M(r, b)∇

(
ũ
ṽ

))
. (49)

Then, the entropy Ẽ is decreasing and there exists a constant C ≥ 0 such that

dẼ

dt
+ D0 ≤ C, (50)
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where

D0 =
∫

�

2(1− γ̄ ρ)|∇√
r |2+2(1− γ̄ ρ)|∇√

b|2+ γ̄

2
|∇ρ|2+ τ 2

2

γ̄ 5ρ2

(1 − γ̄ ρ)2
|∇ρ|2 dx.

Proof System (49) enables us to deduce the entropy dissipation relation:

dẼ

dt
=
∫

�

(ũ ∂t r + ṽ ∂t b) dx = −
∫

�

(∇ũ
∇ṽ

)T
M

(∇ũ
∇ṽ

)
dx

= −
∫

�

r(1 − γ̄ b)|∇ũ|2 + b(1 − γ̄ r)|∇ṽ|2 + 2γ̄ rb∇ũ∇ṽ dx

= −
∫

�

r(1 − γ̄ ρ)|∇ũ|2 + b(1 − γ̄ ρ)|∇ṽ|2 + γ̄ |r∇ũ + b∇ṽ|2 dx ≤ 0.

(51)

Inequality (50) follows from the definitions of ũ and ṽ as well as Young’s inequality
to estimate the mixed terms. Furthermore, we use that

r(1 − γ̄ ρ)

∣∣∣∣∇r

r
+τ

γ̄ 2

1−γ̄ ρ
∇ρ+ᾱ∇ρ

∣∣∣∣
2

+b(1−γ̄ ρ)

∣∣∣∣∇b

b
+ τ

γ̄ 2

1 − γ̄ ρ
∇ρ + ᾱ∇ρ

∣∣∣∣
2

= 4(1 − γ̄ ρ)|∇√
r |2+4(1−γ̄ ρ)|∇√

b|2+ᾱ2ρ(1−γ̄ ρ)|∇ρ|2+2ᾱ(1 − γ̄ ρ)|∇ρ|2

+ τ 2
γ̄ 4ρ

1 − γ̄ ρ
|∇ρ|2 + 2τ γ̄ 2|∇ρ|2 + 2τργ̄ 2ᾱ|∇ρ|2

and

γ̄ |r∇ũ + b∇ṽ|2 = γ̄

∣∣∣∣∇ρ

(
1 + τ γ̄ 2ρ

1 − γ̄ ρ
+ ᾱρ

)
+ r∇Vr + b∇Vb

∣∣∣∣
2

.

This gives us

dE

dt
≤ −
∫

�

2(1−γ̄ ρ)|∇√
r |2+2(1−γ̄ ρ)|∇√

b|2+ γ̄

2
|∇ρ|2+ τ 2

2

γ̄ 5ρ2

(1−γ̄ ρ)2
|∇ρ|2 dx

+
∫

�

(1 − γ̄ ρ)(r |∇Vr|2 + b|∇Vb|2) + γ̄ |r∇Vr + b∇Vb|2 dx.

Since r, b and ρ ∈ S and ∇Vr,∇Vb ∈ L1(�), we deduce (50). ��

5.3 The Limit τ → 0

As the entropy density h̃ is convex, we have h̃(ϕ1) − h̃(ϕ2) ≤ h̃′(ϕ1) · (ϕ1 − ϕ2) for
all ϕ1, ϕ2 ∈ S. Choosing ϕ1 = (rk, bk) and ϕ2 = (rk−1, bk−1) and using h̃′(rk, bk) =
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(ũk, ṽk), we obtain

1

τ

∫
�

(
rk − rk−1
bk − bk−1

)
·
(
ũk
ṽk

)
dx ≥ 1

τ

∫
�

(
h̃(rk, bk) − h̃(rk−1, bk−1)

)
dx. (52)

Applying (52) in Eq. (47) with the test function (�1,�2) = (ũk, ṽk) leads to

∫
�

h̃(rk, bk) dx + τ

∫
�

(∇ũk
∇ṽk

)T
M(rk, bk)

(∇ũk
∇ṽk

)
dx

+ τ 2R

((
ũk
ṽk

)
,

(
ũk
ṽk

))
≤
∫

�

h̃(rk−1, bk−1) dx.

(53)

Applying the entropy inequality (50) and resolving recursion (53) yields

∫
�

h̃(rk, bk) dx + τ

k∑
j=1

∫
�

2(1 − γ̄ ρ j )|∇√
r j |2 + 2(1 − γ̄ ρ j )|∇

√
b j |2 + γ̄

2
|∇ρ j |2

+ τ 2

2

γ̄ 5ρ2
j

(1 − γ̄ ρ j )2
|∇ρ j |2 dx + τ 2

k∑
j=1

R

((
ũ j

ṽ j

)
,

(
ũ j

ṽ j

))

≤
∫

�

h̃(r0, b0) dx dy + TC.

(54)

Let (rk, bk) be a sequence of solutions to (47). We define rτ (x, t) = rk(x) and
bτ (x, t) = bk(x) for x ∈ � and t ∈ ((k − 1)τ, kτ ]. Then (rτ , bτ ) solves the following
problem, where στ denotes a shift operator, i.e., (στ rτ )(x, t) = rτ (x, t − τ) and
(στbτ )(x, t) = bτ (x, t − τ) for τ ≤ t ≤ T ,

∫ T

0

∫
�

1

τ

(
rτ −στ rτ
bτ −στbτ

)
·
(

�1
�2

)
+
(

(1−γ̄ ρτ )∇rτ +(ᾱ+γ̄ )rτ∇ρτ

(1−γ̄ ρτ )∇bτ +(ᾱ+γ̄ )bτ∇ρτ

)
·
(∇�1

∇�2

)
dx dt

+
∫ T

0

∫
�

(
rτ∇Vr + γ̄∇(Vb − Vr)rτbτ

bτ∇Vb + γ̄∇(Vr − Vb)rτbτ

)
·
(∇�1

∇�2

)
dx dt

+
∫ T

0

∫
�

(
τ γ̄ 2rτ
1−γ̄ ρτ

∇ρτ

τ γ̄ 2bτ

1−γ̄ ρτ
∇ρτ

)
·
(∇�1

∇�2

)
dx + τ R

((
�1
�2

)
,

(
ũτ

ṽτ

))
dt = 0, (55)

for (�1(t),�2(t)) ∈ L2(0, T ; H1(�)). Note that the terms in the third line are the
regularization terms.
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Inequality (54) becomes

∫
�

h̃(rτ (T ), bτ (T )) dx+
∫ T

0

∫
�

2(1−γ̄ ρτ )|∇√
rτ |2+2(1−γ̄ ρτ )|∇

√
bτ |2+ γ̄

2
|∇ρτ |2

+ τ 2

2

γ̄ 5ρ2
τ

(1 − γ̄ ρτ )2
|∇ρτ |2 dx dt + τ

∫ T

0
R

((
ũτ

ṽτ

)
,

(
ũτ

ṽτ

))
dt

≤
∫

�

h̃(r0, b0) dx dy + TC,

(56)

which provides us the following a priori estimates. Note that from now on K denotes
a generic constant.

Lemma 5.3 (A priori estimates) There exists a constant K ∈ R
+, such that the

following bounds hold:

‖√1 − γ̄ ρτ∇√
rτ‖L2(�T ) + ‖√1 − γ̄ ρτ∇

√
bτ‖L2(�T ) ≤ K , (57)

‖ρτ‖L2(0,T ;H1(�)) ≤ K , (58)

τ

(∥∥∥∥ rτ
1 − γ̄ ρτ

∇ρτ

∥∥∥∥
L2(�T )

+
∥∥∥∥ bτ

1 − γ̄ ρτ

∇ρτ

∥∥∥∥
L2(�T )

)
≤ K , (59)

√
τ(‖ũτ‖L2(0,T ;H1(�)) + ‖ṽτ‖L2(0,T ;H1(�))) ≤ K , (60)

where �T = � × (0, T ).

Lemma 5.4 The discrete time derivatives of rτ and bτ are uniformly bounded, i.e.,

1

τ
‖rτ − στ rτ‖L2(0,T ;H1(�)′) + 1

τ
‖bτ − στbτ‖L2(0,T ;H1(�)′) ≤ K . (61)

Proof Let� ∈ L2(0, T ; H1(�)). Using the a priori estimates from Lemma 5.3 gives

1

τ

∫ T

0
〈rτ − στ rτ ,�〉 dt = −

∫ T

0

∫
�

((1 − γ̄ ρτ )∇rτ + (ᾱ + γ̄ )rτ∇ρτ )∇� dx dt

−
∫ T

0

∫
�

(rτ∇Vr + γ̄∇(Vb − Vr)rτbτ )∇� dx dt

−τ γ̄ 2
∫ T

0

∫
�

rτ
1 − γ̄ ρτ

∇ρτ∇� dx dt

−τ

∫ T

0

∫
�

ũτ� + ∇ũτ · ∇� dx dt

≤ ‖(1 − γ̄ ρτ )∇rτ‖L2(�T )‖∇�‖L2(�T )

+(ᾱ + γ̄ )‖rτ‖L∞(�T )‖∇ρτ‖L2(�T )‖∇�‖L2(�T )

+‖rτ∇Vr + γ̄∇(Vb − Vr)rτbτ‖L∞(�T )‖∇�‖L1(�T )
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+τ γ̄ 2
∥∥∥∥ rτ
1 − γ̄ ρτ

∇ρτ

∥∥∥∥
L2(�T )

‖∇�‖L2(�T )

+τ‖ũτ‖L2(0,T ;H1(�))‖�‖L2(0,T ;H1(�))

≤ K‖�‖L2(0,T ;H1(�)).

A similar estimate can be deduced for b which concludes the proof. ��
Even though the a priori estimates from Lemma 5.3 are enough to get boundedness

for all terms in (55) in L2(�T ), the compactness results are not enough to identify the
correct limits for τ → 0. From Lemma 5.3 we get that, as τ → 0

τ ũτ , τ ṽτ → 0 strongly in L2(0, T ; H1(�)).

Together with Lemma 5.4, we get a solution to

∫ T

0

∫
�

(
∂t r
∂t b

)
·
(

�1
�2

)
dx dt =

∫ T

0

∫
�

(
Jr
Jb

)
·
(∇�1

∇�2

)
dx dt, (62)

where

(1−γ̄ ρτ )∇rτ +(ᾱ+γ̄ )rτ∇ρτ + rτ∇Vr + γ̄∇(Vb−Vr)rτbτ + τ γ̄ 2rτ
1 − γ̄ ρτ

∇ρτ ⇀ Jr,

(63)

(1−γ̄ ρτ )∇bτ +(ᾱ+γ̄ )bτ∇ρτ +bτ∇Vb+γ̄∇(Vr − Vb)rτbτ + τ γ̄ 2bτ

1−γ̄ ρτ

∇ρτ ⇀ Jb,

(64)

weakly in L2(�T ).
In order to identify the limit terms, we multiply Eq. (63) by (1 − γ ρ).

Lemma 5.5 For τ → 0, we have

(i) (1 − γ̄ ρτ )
2∇rτ ⇀ (1 − γ̄ ρ)2∇r weakly in L2(�T )

(ii) (1 − γ̄ ρτ )(ᾱ + γ̄ )rτ∇ρτ ⇀ (1 − γ̄ ρ)(ᾱ + γ̄ )r∇ρ weakly in L2(�T )

(iii) (1 − γ̄ ρτ )rτ∇Vr → (1 − γ̄ ρ)r∇Vr strongly in L2(�T ),
(iv) (1 − γ̄ ρτ )γ̄∇(Vb − Vr)rτbτ → (1 − γ̄ ρ)γ̄∇(Vb − Vr)rb strongly in L2(�T ),

(v) (1 − γ̄ ρτ )
τ γ̄ 2rτ
1−γ̄ ρτ

∇ρτ = τ γ̄ 2rτ∇ρτ → 0 strongly in L2(�T ).

Proof The estimates from Lemma 5.3 and Lemma 5.4 allow us to use Aubin’s lemma
to deduce the existence of a subsequence (not relabeled) such that, as τ → 0:

ρτ → ρ strongly in L2(�T ). (65)

This implies
1 − γ ρτ → 1 − γ ρ strongly in L2(�T ). (66)
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Note that the L∞ bounds for bτ and rτ imply that, up to a subsequence,

rτ ⇀ r, bτ ⇀ b weakly∗ in L∞(�T ). (67)

With the help of a generalized version of Aubin–Lions Lemma (see Lemma 7 in
Zamponi and Jüngel (2015)), we also get strong convergence of the terms (1−γ ρτ )rτ
and (1 − γ ρτ )rτbτ . The lemma states that if (61), (66), (67) and

‖(1 − γ ρτ ) g‖L2(0,T ;H1(�)) ≤ K for g ∈ {1, rτ , bτ } (68)

hold, then we have strong convergence up to a subsequence for all f = f (rτ , bτ ) ∈
C0(S;R2) of

(1 − γ ρτ ) f (rτ , bτ ) → (1 − γ ρ) f (r, b) strongly in L2(�T ), (69)

as τ → 0.
Applying (69) with f (rτ , bτ ) = rτ , we get

(1 − γ ρτ ) rτ → (1 − γ ρ) r strongly in L2(�T ). (70)

Writing (i) as

(1 − γ ρτ )
2∇rτ = (1 − γ ρτ )∇((1 − γ ρτ )rτ ) − (1 − γ ρτ )rτ∇(1 − γ ρτ ),

and using the L∞ bounds together with the bounds in Lemma 5.3 to get L2 bounds for
∇((1−γ ρτ )rτ ) = ∇(1−γ ρτ )rτ +2

√
rτ

√
1 − γ ρτ

√
1 − γ ρτ∇√

rτ , we can deduce

(1 − γ̄ ρτ )
2∇rτ ⇀ (1 − γ̄ ρ)2∇r weakly in L2(�T ).

The convergence of (ii) follows from the L∞ bounds, the a priori estimate (58) as well
as from the convergences (65) and (70).

The strong convergences of (iii) and (iv) can be shown by applying (70) in (iii) and
the generalized Aubin–Lions lemma with f (rτ , bτ ) = rτbτ in (iv).

Finally, as rτ∇ρτ is bounded in L2(�T ) and τ → 0, we can deduce (v).

Analogous results hold for Eq. (64) which allows us to perform the limit τ → 0 giving
a weak solution to system (41).

The only thing which remains to verify is the entropy inequality (42). Since E
is convex and continuous, it is weakly lower semicontinuous. Because of the weak
convergence of (rτ (t), bτ (t)),

∫
�

h̃(r(t), b(t)) dx ≤ lim inf
τ→0

∫
�

h̃(rτ (t), bτ (t)) dx for a.e. t > 0.
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We cannot expect the identification of the limit of
√
1 − ρτ∇√

rτ , but employing (67)
with f (r, b) = √

r , we get

(1 − γ ρτ )
√
rτ → (1 − γ ρ)

√
r strongly in L2(�T )

with analogous convergence results for r being replaced by b. Because of the L∞-
bounds and the bounds in (5.3), we obtain ∇((1 − γ ρτ )

√
rτ ),∇((1 − γ ρτ )

√
bτ ) ∈

L2(�T ), which implies

(1 − γ ρτ )
√
rτ ⇀ (1 − γ ρ)

√
r weakly in L2(0, T ; H1(�)),

(1 − γ ρτ )
√
bτ ⇀ (1 − γ ρ)

√
b weakly in L2(0, T ; H1(�)).

(71)

The L∞-bounds, (71) and the fact that

∇(1 − γ ρτ ) ⇀ ∇(1 − γ ρ) weakly in L2(�T ),

imply that both

(1 − γ ρτ )
2∇√

rτ = (1 − γ ρτ )∇((1 − γ ρτ )
√
rτ ) − (1 − γ ρτ )

√
rτ∇(1 − γ ρτ )

and

(1 − γ ρτ )
2∇√bτ = (1 − γ ρτ )∇((1 − γ ρτ )

√
bτ ) − (1 − γ ρτ )

√
bτ∇(1 − γ ρτ )

converge weakly in L1 to the corresponding limits. The L2 bounds imply also weak
convergence in L2:

(1 − γ ρτ )
2∇√

rτ ⇀ (1 − γ ρ)2∇√
r weakly in L2(�T ),

(1 − γ ρτ )
2∇√bτ ⇀ (1 − γ ρ)2∇√

b weakly in L2(�T ).

As 1 − ρτ ≥ (1 − ρτ )
4, we can pass to the limit inferior τ → 0 in

∫
�

h̃(rτ (T ), bτ (T )) dx +
∫ T

0

∫
�

2(1 − γ̄ ρτ )
4|∇√

rτ |2 + 2(1 − γ̄ ρτ )
4|∇√bτ |2

+ γ̄

2
|∇ρτ |2 + τ 2

2

γ̄ 5ρ2
τ

(1 − γ̄ ρτ )2
|∇ρτ |2 dx dt + τ

∫ T

0
R

((
ũτ

ṽτ

)
,

(
ũτ

ṽτ

))
dt

≤
∫

�

h̃(r0, b0) dx dy + TC,

attaining the entropy inequality (42). ��
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6 Conclusion

Gradient flow techniques provide a natural framework to study the behavior of time
evolving systems that are driven by an energy. This energy is decreasing along solutions
as fast as possible, a property inherent in nature. Hence, many partial differential
equation models exhibit this structure. Most of these systems arise in the mean field
limit of a particle system, which has a gradient structure itself. Passing from the
microscopic level to the macroscopic equations often relies on closure assumptions
and approximations, which perturb the original gradient flow structure.

In this paper, we studied a mean field model for two species of interacting particles
which was derived using themethod of matched asymptotics in the case of low volume
fraction. This asymptotic expansions results in a cross-diffusion system which has a
gradient flow structure up to a certain order. We therefore introduce the notion of
asymptotic gradient flows for systems whose gradient flow structure is perturbed by
higher-order terms. We show that this ‘closeness’ to a classic gradient flow structure
allows us to deduce existence and stability results for the perturbed or as we call them
asymptotic gradient flow system. We expect that the presented approach would also
be extendable to a higher number of species. However, one would have to consider all
types of pairwise interactions which would result in much more complicated systems.

While the presented results on linear stability (Theorem 3.1), well posedness (The-
orem 3.2) and existence of stationary solutions (Theorem 3.4) also hold on unbounded
domains, the proof of the global existence result in Sect. 5 uses embeddings which do
not hold on unbounded domains in general, e.g., H2(�) is compactly embedded in
L2(�).

The presented work is a first step toward the development of a more general frame-
work for asymptotic gradient flows. It provides the necessary tools to understand the
impact of high-order perturbations on the energy dissipation as well as the behavior
of solutions and opens interesting directions for future research.
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