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Abstract

Recent advances in 3D capturing devices and 3D
modeling software have led to extensive and di-
verse 3D datasets, which usually have different dis-
tributions. Cross-domain 3D model retrieval is be-
coming an important but challenging task. How-
ever, existing works mainly focus on 3D model
retrieval in a closed dataset, which seriously con-
strain their implementation for real applications. To
address this problem, we propose a novel cross-
domain 3D model retrieval method by visual do-
main adaptation. This method can inherit the ad-
vantage of deep learning to learn multi-view vi-
sual features in the data-driven manner for 3D
model representation. Moreover, it can reduce
the domain divergence by exploiting both domain-
shared and domain-specific features of different do-
mains. Consequently, it can augment the discrimi-
nation of visual descriptors for cross-domain simi-
larity measure. Extensive experiments on two pop-
ular datasets, under three designed cross-domain
scenarios, demonstrate the superiority and effec-
tiveness of the proposed method by comparing
against the state-of-the-art methods. Especially, the
proposed method can significantly outperform the
most recent method for cross-domain 3D model re-
trieval and the champion of Shrec’16 Large-Scale
3D Shape Retrieval from ShapeNet Core55.

1 Introduction

The rapid development of 3D techniques for modeling, re-
construction, printing has led to huge deluge of 3D content.
3D model retrieval is becoming mandatory in diverse do-
mains, such as e-business, digital entertainment, medical di-
agnosis and education[Liu et al., 2017; Cheng et al., 2017;
Nie et al., 2016; Tang et al., 2017; He et al., 2017]. Espe-
cially, effective methods for cross-domain 3D model retrieval
play an important role on real applications in virtual and aug-
mented reality, shape completion and scene synthesis. It has
become one of the hot research topics in both computer vision
and machine learning.
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1.1 Motivations

3D model retrieval aims to search the relevant candidates
from the assigned dataset given a query 3D model. Although
much work has been done for 3D model retrieval, there still
exist two critical problems:
1) How to make good use of the current small-scale 3D
model datasets to augment the generalization of algo-
rithms. Compared with millions of 2D image datasets, e.g.
ImageNet and MSCOCO, the current 3D model datasets only
contain limited samples. The most recent 3D datasets, such as
ModelNet40 [Wu et al., 2015] and ShapeNetCore55 [Chang
et al., 2015], only contain 12311 and 51300 models, respec-
tively. Although the deep learning methods, e.g. Multi-
View Convolutional Neural Network (MVCNN) [Su et al.,
2015] which won the first prize of Shrec’16 Large-Scale 3D
Shape Retrieval from ShapeNet Core55, achieved significant
improvement for the task under the identical-domain sce-
nario, they cannot work well for the real applications when
the source and target come from different domains. Theo-
retically, deep learning is highly dependent on big data. In
essence, the current deep learning methods can be regarded as
overfitting with respect to individual datasets. Therefore, it is
necessary to develop sophisticated methods of visual domain
adaptation to integrate these small-scale datasets and improve
the generalization of 3D model retrieval methods.

2) How to retrieve 3D models from different datasets with
diverse data distributions. In the past few years, multiple
3D modeling devices have been widely applied in human life.
Diverse 3D datasets have been released for the research on
3D understanding. For example, there are multiple RGB-D
data captured in real world by depth sensors, e.g. Microsoft
Kinect, Intel RealSense. Meanwhile, there are many new 3D
datasets, such as ShapeNet and 3D warehouse, which con-
sist of 3D CAD models. For the real applications, the target
and source 3D models usually come from different datasets,
even different modalities. 3D models may have different vi-
sual and structural information even though they belong to the
same category. However, there are limited works to address
the challenging task of cross-domain 3D model retrieval.

To handle the problems mentioned above, we propose a
novel cross-domain 3D model retrieval method via visual do-
main adaptation as shown in Fig. 1. First, MVCNN is uti-
lized to extract the visual features for the multi-view images
of each 3D model. Then, visual domain adaptation is imple-
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Figure 1: The framework of cross-domain 3D model retrieval via visual domain adaptation. Each 3D model is firstly represented by a set
of multi-view 2D images. The image set is passed to the CNN1 layer, each branch of which has the same architecture as AlexNet. The
outputs of the CNN1 layer are synthesized by the view-pooling layer. The output of this layer is passed through the CNN2 layer to obtain the
compact visual feature for individual 3D model. The output of CNN2 is fed into the module of cross-domain distance learning for feature
projection and similarity measure. The shape of each subspace indicates the specific geometrical and statistical distribution. The same color
represents the 3D models from the identical category. After visual domain adaptation, the statistical and geometrical discrepancy of two
domains can be explicitly reduced and both domain-shared and domain-specific characteristics can be preserved. Then cross-domain retrieval
can be conducted with the projected subspaces.

mented to reduce the diverse data distributions of different
datasets for cross-domain retrieval. Different from most of
traditional domain adaptation methods, our method is free of
the strong assumption that there must exist a common space
between different datasets. The assumption cannot always
hold especially for 3D model datasets, which usually consists
of extremely complicated characteristics, caused by multiple
views, multiple modalities, complex spatial structures, and so
on. This method can learn two coupled projections to map
the source and target data into the respective subspaces and
reduce domain shift. The transformed visual features by pre-
serving both domain-shared and domain-specific character-
istics can augment the discrimination and robustness for the
cross-domain task. The proposed method is verified on two
popular datasets, the National Taiwan University 3D Model
database (NTU) [Chen et al., 2003] and the Princeton Shape
Benchmark (PSB) [Shilane et al., 2004], under three cross-
domain scenarios. The extensive experimental results show
that the proposed method can significantly outperform the
state of the arts, especially the most recent method for cross-
domain 3D model retrieval and the champion of Shrec’16
Large-Scale 3D Shape Retrieval from ShapeNet Core55.

1.2 Contribution

The main contributions are summarized as follows:

• This paper proposes a novel framework for multi-view
representation and visual domain adaptation in the un-
supervised manner. It can inherit the advantage of deep
learning to learn multi-view visual features and can re-
duce the geometrical and statistical domain divergence
to benefit cross-domain retrieval.

• Different from most of current methods, which works
on retrieval in the closed set, this paper focuses on open-
domain problem. It can make good use of small-scale
3D model datasets to augment the generation ability of
algorithms.

2 Related Work

This section will review the recent progress in the fields of
both 3D model retrieval and domain adaptation.

2.1 3D Model Retrieval

Generally, the existing 3D model retrieval methods can be
grouped into two types, model-based methods and view-
based methods. Model-based methods usually utilize the
voxel grid and RGB-D point cloud for 3D model represen-
tation. Wu et al. [Wu et al., 2015] represented a 3D model
as binary voxel probability distribution. The 3D binary voxel
grid can be trained by the CNN framework. Li et al. [Li et
al., 2016] represented a 3D model by volumetric fields and
replaced the convolutional layer in CNN with Field Probing
Filter, which can overcome the sparse problem of 3D vox-
els. A similar approach is VoxNet [Maturana and Scherer,
2015], which leverages binary voxel grids and supervised
Convolutional Neural Network. The advantage of this kind of
method is that the three-dimensional voxel completely retains
the three-dimensional shape information, which is beneficial
to improve the distinguishing ability.

View-based methods usually utilize a set of multi-view im-
ages for 3D model representation. Hence, the advanced im-
age processing and machine learning techniques can be uti-
lized for this task. Multi-view Convolutional Neural Net-
works [Su et al., 2015] was proposed to process all ren-
dered views and utilize view-pooling layer to combine con-
volutional features. Kalogerakis et al. [Kalogerakis et al.,
2016] captured a series of shadow and depth maps of 3D
shapes, Fully Convolutional Networks (FCN) was then em-
ployed to learn shape descriptors. RotationNet [Kanezaki,
2016] took multiple views as inputs and estimate its pose and
category. The discovered pose and category information can
benefit augmenting the performance of 3D model retrieval.

2.2 Domain Adaptation

Generally, domain adaptation can be divided into two cate-
gories: semi-supervised domain adaptation by using both the
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labeled and unlabeled data in the target domain, and unsu-
pervised domain adaptation by only using unlabeled data in
the target domain. Semi-supervised HFA [Li et al., 2014]

can simultaneously learn the target classifier as well as infer
the labels of unlabeled target samples. Unsupervised domain
adaptation is considered to be more challenging. For instance,
Transfer Component Analysis [Pan et al., 2011] minimized
the discrepancy between the instance of the source and tar-
get data when they were projected into a K-dimensional em-
bedding space. Joint distribution analysis [Long et al., 2013]

took the marginal distribution as well as conditional distribu-
tion into consideration. Zhang’s work [Zhang et al., 2015]

utilized causal models to represent the relationship between
the feature X and label Y , and consider possible situations
where different modules of the causal model change with the
domain.

Although many sophisticated domain adaptation methods
have been developed, seldom of them have been applied for
3D model retrieval. Hong’s work MSTM[Hong et al., 2016]

can be regarded as the first work towards cross-domain 3D
model retrieval. MSTM proposed a multi-scale topic mod-
els for this task. MSTM leveraged cross-domain learning di-
rectly, while ignoring the discrimination of each domain.

3 Methods

3.1 Overview

This paper aims to address the cross-domain 3D model re-
trieval: the source models and the target models are drawn
from different datasets, which have unknown and discrepant
data distributions. The proposed framework is shown in
Fig.1. It consists of two successive steps:
1) Multi-view visual representation: For the view-based
methods, a 3D model is usually represented by a set of
views captured from different directions as shown in Fig.
1. Then, the popular Multi-view Convolutional Neural Net-
work (MVCNN), which can jointly learn the visual and spa-
tial structural characteristics of each category of 3D models,
is adopted to generate a discriminative and compact descrip-
tor for individual 3D model. Section 3.2 will illustrate this
step.
2) Cross-domain distance learning: When pair-wise 3D
models come from the same dataset, their similarity can be di-
rectly computed based on specific metrics with the extracted
visual features. However, for the cross-domain retrieval tasks,
it is mandatory to project the visual features from different
domains into specific subspaces to reduce domain divergence
before similarity measure. To tackle this problem, we present
the visual domain adaptation strategy by jointly reducing the
statistical and geometrical discrepancy of different domains
in an unsupervised manner. Section 3.3 will detail this step.
Then we can measure the similarity between two 3D models
by computing their Euclidean distance, as most representa-
tive methods do, with the transformed visual features after
domain adaptation.

3.2 Multi-View Visual Representation

To transform each 3D model into a set of images, Phong re-
flection model [Phong, 1975] is used to capture and render

Variables Definition

Ds =
{(xi, yi)}

ns

i=1

labeled source domain data,
Xs = {xi}

ns

i=1 ∈ R
D×ns comes

from distribution Ps(Xs), yi is the
label

Dt =
{xj}

nt

j=1

unlabeled target domain data,
Xt = {xj}

nt

j=1 ∈ R
D×nt is drawn

from distribution Pt(Xt).

Table 1: Definition of terminologies. Note Ps(Xs) 6= Pt(Xt) for
the cross-domain problem.

multiple views of 3D models. As most of related works, we
created 12 views by placing 12 virtual cameras around the
model every 30 degrees. With the image set representation,
the popular MVCNN (Fig. 1) is implemented to generate a
compact descriptor for individual 3D models. First, the im-
age set are inputted into MVCNN. Individual images pass
throughout the convolutional layers (CNN1), and are synthe-
sized at the view-pooling layer. All branches in CNN1 share
identical architecture as AlexNet and the same parameters.
Then they are operated by CNN2. The view-pooling layer is
placed after conv5 layer, taking element-wise maximum op-
eration over multiple views. In our work, MVCNN is trained
on ModelNet40 that is the most popular 3D model dataset
and contains the common 20 categories in NTU and PSB. We
apply this MVCNN model to extract the descriptors of the
source and target 3D models. Especially, the output of fc7
(4096-D) is used as visual feature.

3.3 Cross-Domain Distance Learning

In this section, we will detail the method of cross-domain dis-
tance learning for 3D model retrieval. Motivated by [Zhang
et al., 2017], we well adapt the popular Joint Geometrical and
Statistical Alignment method for visual domain adaptation.
The definition of terminologies are summarized in Table 1.
Since the data shift from different datasets (e.g. NTU and
PSB) is large, we aim to find two coupled projections (A for
source domain, and B for target domain) to reduce shifts be-
tween respective domains. An ideal objective function should
have the following properties: 1) maximizing the variance
of target domain, V ARTarget; 2) preserving the discrimina-
tive information of source domain, which can be represented
by inner-class variance, V ARInner, and inter-class variance,
V ARInter; 3) minimizing the divergence of source and target
distributions, DIVdistribution; 4)minimizing the divergence
between source and target subspaces, DIVSubspace. Conse-
quently, the objective function can be formulated, by incor-
porating all these factors, as follows:

max
µ{V ARTarget} + β{V ARInter}

{DIVdistribution} + λ{DIVSubspace} + β{V ARInner}
(1)

where λ, µ, β are weighted parameters.
The optimization of the objective function in Eq. 1 has

two goals: 1) maximizing the numerator to increase the vari-
ance of the target domain and the inter-class variance of the
source domain; 2) minimizing the denominator to decrease
the domain distribution shifts, and the inner-class variance of
the source domain. We will detail the formulation of each
term as follows:
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Target Variance

Maximization of Target Variance can ensure projecting fea-
tures into relevant dimensions. V ARTarget can be formu-
lated as:

V ARTarget = Tr
(

BTStB
)

(2)

where St = XtHtX
T
t is the target domain scatter matrix.

Ht = It −
1
nt
1t1

T
t is the centering matrix, 1t ∈ R

nt is the

column vector with all ones.

Source Discriminative Information

Preserving the source discriminative information can be re-
alized by maximizing inter-class variance and minimizing
inner-class variance. V ARInter and V ARInner are defined
as follows:

V ARInter = Tr
(

ATSbA
)

(3)

V ARInner = Tr
(

ATSwA
)

(4)

where Sw =
∑C

c=1 X
(c)
s H

(c)
s

(

X
(c)
s

)T

is the inner-class

scatter matrix, Sb =
∑C

c=1 n
(c)
s

(

m
(c)
s − m̄s

)(

m
(c)
s − m̄s

)T

is the inter-class scatter matrix of the source mod-
els, where X

(c)
s is the set of 3D models belonging to

class c, m
(c)
s = 1

n
(c)
s

∑n(c)
s

i=1 x
(c)
i , m̄s = 1

ns

∑ns

i=1 xi,

H
(c)
s = I

(c)
s − 1

n
(c)
s

1s(1
(c)
s )T is the centering matrix of

data within class c, I
(c)
s ∈ R

n(c)
s

×n(c)
s is the identity matrix,

1s ∈ R
n(c)
s is the column vector with all ones, n

(c)
s is the

number of target models in class c.

Distribution Divergence

Motivated by [Long et al., 2013], the distribution divergence
can be formulated as follows, considering both marginal and
conditional distribution shift:

min
A,B

Tr

(

[

ATBT
]

[

Ms Mst

Mts Mt

] [

A
B

])

(5)

where

Ms = Xs

(

Ls +

C
∑

c=1

L(c)
s

)

XT
s , Ls =

1

n2
s

1s1
T
s ,

(

L(c)
s

)

ij
=

{

1
(

n
(c)
s

)

2
xi, xj ∈ X

(c)
s

0 otherwise

(6)

Mst = Xs

(

Lst +

C
∑

c=1

L
(c)
st

)

X
T
t , Lst = −

1

nsnt

1s1
T
t ,

(

L
(c)
st

)

ij
=

{

− 1

n
(c)
s n

(c)
t

xi ∈ X
(c)
s , xj ∈ X

(c)
t

0 otherwise

(7)

Note Mt can be computed by replace s with t in Eq.6 and
Mts can be computed by alternate s and t in Eq.7.

Subspace Divergence

To preserve both source class information and target variance,
A and B should be optimized simultaneously. Consequently
the distance between two subspaces can be reduced. Sub-
space Divergence can be computed as:

min
A,B
‖A−B‖

2
F (8)

With the definition of these four critical factors, the objec-
tive function can be formulated by:

max
W

Tr

(

WT

[

βSb 0

0 µSt

]

W

)

Tr

(

WT

[

Ms + λI + βSω Mst − λI
Mts − λI Mt + (λ + µ) I

]

W

) (9)

where WT =
[

AT BT
]

. Because rescaling of W will
not affect the optimization of the objective function, we can
utilize the denominator as constraint and further rewrite the
Eq.9 in the Lagrange function format:

L = Tr

(

W
T

[

βSb 0

0 µSt

]

W

)

+ Tr

((

W
T

[

Ms + λI + βSω Mst − λI
Mts − λI Mt + (λ + µ) I

]

W − I

)

Φ

)
(10)

By setting the derivative ∂L
∂W

= 0, we get:

[

βSb 0

0 µSt

]

W =

[

Ms + λI + βSω Mst − λI
Mts − λI Mt + (λ + µ) I

]

WΦ (11)

where Φ = diag (λ1, ..., λk) are the k leading eigenvalues
and W = [W1, ...,WK ] contains the corresponding eigenvec-
tors, which can be solved analytically by generalized eigen-
value decomposition. Then two subspaces can be computed
with the transformation matrix W.

4 Experimental Results and Discussion

In this section, we describe the experimental settings, evalua-
tion criteria, and discuss the experimental results.

4.1 Experimental Settings

Implementation Details

Two popular 3D model datasets with diverse data distribution
are utilized for evaluation, the same as the most recent work
[Hong et al., 2016] for cross-domain 3D model retrieval. The
National Taiwan University (NTU) 3D model dataset con-
tains 549 3D models from 46 categories. Princeton Shape
Benchmark (PSB) consists of 1,814 models from 161 cate-
gories. There are 20 common categories, such as bike, car,
chair, bookshelf, etc., in NTU and PSB, including 226 and
275 models, respectively. Additionally, the models in NTU
and PSB are split into two subsets: training and test, with
ratio 50% and 50% respectively.

The experiment was conducted under three cross-domain
scenarios: 1) NTU→PSB: the target comes from NTU and
the source comes from PSB ; 2) PSB→NTU: the target comes
from PSB and the source comes from NTU; 3) NTU←→PSB:
we synthesize a new dataset by mixing the common cate-
gories of NTU and PSB; both target and source are from this
mixture.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

831



Evaluation Criteria

The following popular criteria are employed for evaluation.
These criteria range from 0 to 1. The higher value means
the better performance except ANMRR. The lower ANMRR
indicates the better performance.
Nearest neighbor (NN): the precision of the first retrieved
model.
First tier (FT): the recall for the first K relevant samples,
where K is the cardinality of the target category.
Second tier (ST): the recall for the first 2K relevant match
samples.
F-measure: a synthetical measurement of precision and recall
of the top retrieved results. The top 20 retrieval results are
used in our experiments.
Discounted Cumulative Gain (DCG): a statistical measure
that assigns relevant results at the top ranking positions with
higher weights under the assumption that a user is less likely
to consider lower results.
Average Normalized Modified Retrieval Rank (ANMRR): it
considers the ranking information of relevant models among
the retrieved models.
Area Under Curve (AUC): AUC can simultaneously evaluate
the performance of both precision and recall in the PR curve.

Competing Methods

We compare the proposed method against MVCNN, which
is the champion of Shrec’16 Large-Scale 3D Shape Retrieval
from ShapeNet Core55, and MSTM [Hong et al., 2016], the
most recent cross-domain method for 3D model retrieval.
Moreover, the proposed method is compared against sev-
eral representative methods, including: 1) distance-based
methods: Hausdorff (HAUS) [Liu et al., 2017] and Sum-
Min [Gao and Dai, 2014]; 2) model-based method: Ex-
tension Ray-based Descriptor (ERD) [Vranic, 2003], Adap-
tive Views Clustering (AVC) [Ansary et al., 2007], Elevation
Descriptor (ED) [Shih et al., 2007], Bag-of-Visual-Features
(BoVF) [Ohbuchi et al., 2008]; 3) domain adaptation method:
Heterogeneous Feature Augmentation (HFA) [Li et al., 2014]

4) graph matching-based methods: Weighted Bipartite Graph
Matching (WBGM) [Gao et al., 2011], Hypergraph Analysis
(HA) [Gao et al., 2012]; 5) deep learning methods: Learning
Multi-view Deep Features (LMDF) [Guo et al., 2015].

4.2 Comparison against the State of the Arts

The comparison under three cross-domain scenarios are de-
tailed as follows.
1) NTU→PSB: From Fig. 2, it is obvious that the pro-
posed method (VDA) can outperform all competing meth-
ods. Specifically, VDA can achieve the gain of 15.10%-
178.60%, 62.63%-403.70%, 24.84%-263.90%, 33.43%-
168.80%, 49.77%-379.10% in terms of NN, FT, ST, F-
measure, and DCG, with the decline of 111.90%-241.7% in
terms of ANMRR compared with HAUS, SumMin, ERD,
AVC, ED, BoVF, WBGM, HA, LMDF, HFA, MSTM and
MVCNN respectively.
2) PSB→NTU: The results of PSB→NTU are shown in
Fig. 3. VDA can obtain the best performances with
the gain of 9.10%-120.94%, 63.78%-432.13%, 21.70%-
260.67%, 24.99%-184.04%, 46.35%-288.55%, in terms of

NN FT ST F-Measure DCG ANMRR
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

 ED   ERD     HAUS   SumMin   AVC        BoVF   WBGM
 HA   LMDF   HFA      MSTM     MVCNN   VDA

Figure 2: Performance for NTU→PSB.
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Figure 3: Performance for PSB→NTU.
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0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

 ED   ERD     HAUS   SumMin   AVC        BoVF   WBGM
 HA   LMDF   HFA      MSTM     MVCNN   VDA

Figure 4: Performance for NTU←→PSB.

NN, FT, ST, F-measure, and DCG, and 147.13%-432.8% de-
cline in terms of ANMRR.

3) NTU←→PSB: The results of NTU←→PSB are shown
in Figure 4. VDA can obtain the best performances with
the gain of 13.96%-120.94%, 75.23%-432.13%, 26.11%-
260.67%, 34.53%-184.04%, 58.80%-288.55%, in terms of
NN, FT, ST, F-measure, and DCG, and 225.61%-432.8% de-
cline in terms of ANMRR.

According to the experimental results, we have several key
observations:

1) VDA vs. MSTM: MSTM is the most recent method, which
directly implemented cross-domain learning for this task.
By comparison, VDA can significantly outperform MSTM:
a) NTU→PSB: VDA can achieve the gains of 52.91%,
140.71%, 59.19%, 18.59%, 119.01% in terms of NN, FT,
ST, F-measure, DCG and 185.35% decline in terms of AN-
MRR, comparing against MSTM; b) PSB→NTU: VDA can
achieve the gain of 24.48%, 218.99%, 127.61%, 41.27%,
130.35% in terms of NN, FT, ST, F-measure, and DCG,
and 243.94% decline in terms of ANMRR, comparing with
MSTM; c) NTU←→PSB: VDA can achieve the gain of
33.12%, 206.30%, 113.55%, 43.74%, 175.75% in terms of
NN, FT, ST, F-measure, and DCG, and 354.32% decline in
ANMRR, comparing with MSTM. MSTM represents each
3D model with a set of bag of topics discovered by the topic
model. Then it conducts topic clustering for the basic topics
from two datasets and then generates the common topic dic-
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tionary for new representation. In this way, the two models
from different datasets can be aligned to the same common
feature space for comparison. The key problem of MSTM is
that assuming that there exists a unified transformation to map
two domains into one common domain, which cannot always
hold especially when the dataset shift is large. Moreover,
MSTM loses the discriminative information of individual do-
mains. Comparatively, the proposed method is independent
of this assumption and aims to learn two projections to map
each dataset into individual subspaces. The projected sub-
spaces can preserve both domain-shared and domain-specific
characteristics, which can benefit cross-domain 3D model re-
trieval.
2) VDA vs. MVCNN: MVCNN is commonly regarded as
one of the best methods for this task since it can leverage
deep learning for data-driven feature learning, which can
have better generalization ability. When the visual domain
adaptation module is implemented after feature extraction by
MVCNN, VDA can significantly outperform MVCNN: a)
NTU→PSB: VDA can achieve the gain of 15.10%, 62.60%,
24.84%, 33.43%, 49.77% in terms of NN, FT, ST, F-measure,
DCG and 111.90% decline in terms of ANMRR, comparing
against MVCNN; b) PSB→NTU: VDA can achieve the gain
of 9.10%, 63.78%, 21.70%, 24.99%, 46.35% in terms of NN,
FT, ST, F-measure, and DCG, and 147.13% decline in terms
of ANMRR, comparing with MVCNN; c) NTU←→PSB:
VDA can achieve the gain of 13.96%, 75.23%, 26.11%,
34.53%, 58.80% in terms of NN, FT, ST, F-measure, and
DCG, and 225.61% decline in ANMRR, comparing with
MVCNN. This demonstrates that the VDA module can bene-
fit reducing the divergence between different domains by het-
erogeneous information mapping. Consequently, the trans-
formed features after visual domain adaptation can be more
suited for similarity measure for cross-domain data.
3) VDA vs. others: By comparison, it is obvious that VDA
can consistently outperform other competing methods un-
der all three scenarios. The proposed method has two main
advantages: a) VDA inherits the advantage of MVCNN to
generate the discriminative visual descriptors for 3D mod-
els by leveraging multi-view information. b) VDA can re-
duces the domain divergence by exploiting both domain-
shared and domain-specific features. It can further augment
the discrimination and robustness of visual representation for
cross-domain 3D model retrieval, comparing against these
traditional methods. Therefore, VDA can outperform all
the distance-based, model-based, and graph matching-based
methods, which only utilized the hand-crafted visual features
without visual domain adaptation.

4.3 Sensitivity Study

For sensitivity study, we vary the weights of Source Dis-
criminative Information (β) and the subspace dimension (k)
within different ranges to study how they affect the perfor-
mance. The evaluation shows that λ and µ cannot have signif-
icant influence on performances. We experimentally fix λ=1,
and µ=1. We directly compare the proposed method against
the second best method, MVCNN, in our evaluation. Fig. 5
shows the results on three cross-domain scenarios.

We vary β to study how source discriminative information
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Figure 5: Sensitivity study on different types of datasets.

affects the performance by fixing k with the optimal value.
From Fig. 5(a), β can achieve stable results under three sce-
narios within a wide range of [1,102] and significantly outper-
form MVCNN within a wide range of [10−4,104]. It demon-
strates that VDA is robust with respect to β.

We vary k to study how the subspace dimension affects
the performance by fixing β with the optimal value. From
Fig. 5(b), k can achieve stable results under three scenarios
within a wide range of [140, 380], and significantly outper-
form MVCNN within a wide range of [60,460]. If k is too
small or too big, the coupled projections may lose much dis-
criminative information and consequently degrade the perfor-
mance. It demonstrates that VDA is robust with respect to k.

5 Conclusion

This paper proposes a novel framework for multi-view repre-
sentation and visual domain adaptation in the unsupervised
manner. The proposed method can inherit the advantages
of deep learning to generate the visual features. Moreover,
considering the challenge by diverse divergence of differ-
ent datasets, it can reduce both geometrical and statistical
shifts and preserve domain-shared and domain-specific fea-
tures. Consequently, it can augment the discrimination and
robustness of visual representation for cross-domain retrieval.
This method were validated on two popular datasets, under
three retrieval scenarios, comparing with several state-of-the-
art methods. In our future work, we will implement feature
learning and domain adaptation in an end-to-end deep learn-
ing framework, which can inherit more informative data and
more practical for real applications in Artificial intelligence.
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