
Cross-Domain Synthesis of Medical Images

Using Efficient Location-Sensitive Deep Network

Hien Van Nguyen, Kevin Zhou, and Raviteja Vemulapalli

Imaging and Computer Vision, Siemens Corporate Technology

Abstract. Cross-modality image synthesis has recently gained signifi-
cant interest in the medical imaging community. In this paper, we pro-
pose a novel architecture called location-sensitive deep network (LSDN)
for synthesizing images across domains. Our network integrates inten-
sity feature from image voxels and spatial information in a principled
manner. Specifically, LSDN models hidden nodes as products of fea-
tures and spatial responses. We then propose a novel method, called
ShrinkConnect, for reducing the computations of LSDN without sac-
rificing synthesis accuracy. ShrinkConnect enforces simultaneous spar-
sity to find a compact set of functions that accurately approximates the
responses of all hidden nodes. Experimental results demonstrate that
LSDN+ShrinkConnect outperforms the state of the art in cross-domain
synthesis of MRI brain scans by a significant margin. Our approach is
also computationally efficient, e.g. 26× faster than other sparse repre-
sentation based methods.

1 Introduction

Recently, cross-modality synthesis has gained significant interest in the medi-
cal imaging community. Existing approaches do not have a systematic way to
incorporate the spatial information which is important for accurate synthesis.
As an illustration, we plot the intensity correspondences of registered MRI-T1
and MRI-T2 of the same subject in Fig. 1a. We can notice that the intensity
transformation is not only non-linear but also far from unique, i.e. there are
multiple feasible intensity values in MRI-T2 domain for one intensity value in
MRI-T1 domain. The non-uniqueness comes from a well-known fact that inten-
sity values depend on the regions in which voxels reside. By restricting to a local
neighborhood of, say 10 × 10 × 10 voxels, the intensity transformation is much
simpler as shown in Fig. 1b. In particular, it could be reasonably well described
as a union of two linear subspaces represented by the two red lines. That is to
say, the spatial information helps simplify the relations between modalites which
in turn could enable more accurate prediction.

In this paper, we propose a novel architecture called location-sensitive deep
network (LSDN) to integrate image intensity features and spatial information
in a principled manner. Our network models the responses of hidden nodes as
the product of feature responses and spatial responses. In LSDN formulation,
spatial information is used as soft constraints whose parameters are learned.
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Fig. 1. a) 2D histogram of intensity correspondences between T1 and T2 scans over
an entire image. Brighter color indicates higher density regions. b) Intensity corre-
spondences of a restricted region of 10 × 10 × 10 voxels. Red lines indicate the main
directions of variation. All images are registered using rigid transformations.

As a result, LSDN is able to capture the joint distribution of feature and spatial
information. We also propose a network simplification method for speeding up
LSDN prediction. Experimental results demonstrate that our approach achieves
better synthesis quality compared to the state-of-the-art. It is also more com-
putationally efficient because the algorithm only uses feed-forward operations
instead of expensive sparse coding or nearest neighbor search.

Contributions: 1) We incorporate spatial location and image intensity feature
for cross-domain image synthesis in a principled manner. To perform such an in-
tegration, we propose a novel deep network architecture called location-sensitive
deep network. We derive the gradients necessary for training LSDN. 2) We pro-
pose a network simplification technique for speeding up LSDN. 3) We provide
experiments to demonstrate that LSDN outperforms state-of-art methods on
brain MRI synthesis.

2 Location-Sensitive Deep Network

Our goal is to learn a deep network that uses an image of one domain (e.g., MRI-
T1) to predict the corresponding image from another domain (e.g., MRI-T2). It is
ineffective to train a network that operates on the entire image since the number
of variables becomes too large for the learning algorithm to generalize well. In-
stead, our network operates on small voxels. Let s and x denote the voxel’s inten-
sity feature and spatial coordinates from the input domain, respectively. Let ψ(.)
represent a mapping that is carried out by a multi-layer network. This function
operates on (s,x) and gives out a scalar value approximating the corresponding
intensity t in the output domain. The error function that we want to minimize can
be written as:

E =
1

2N

N∑

n=1

‖ψ(sn,xn)− tn‖2 (1)



Cross-Domain Synthesis of Medical Images 679

where N is the total number of voxels sampled from all training images. The
minimization is with respect to network variables which will be explained in de-
tail shortly. As E is just a sum over the individual error on each training sample,
it is sufficient to study the optimization with respect to a single sample. For the
simplicity of notation, the subscript “n” would be omitted in our derivations
of gradients. Motivated by the observation in Fig. 1, which shows that output
intensity depends on voxel’s location, we make our mapping dependent on both
local feature and spatial coordinates.

We introduce a location-sensitive deep network for effectively fusing image
feature and spatial information in a principled manner. Fig. 2a shows the archi-
tecture of a LSDN, where (F(k),h(k),b(k)) are the set of filters, hidden nodes,
and biases at k-th layer, respectively. LSDN has multiple feed-forward layers.
Moreover, the hidden nodes in the second layer of LSDN is modeled as products
of feature and spatial functions:

h(2) = κ(s)� ς(x), κ(s) = γ(u(2)), u(2) = F(2)s+ b(2) (2)

ς(x) = 2γ

(
−
[‖x− x̂1‖2

σ2
, . . . ,

‖x− x̂p2‖2
σ2

]T)
(3)

Here, κ(s) is a feature response computed by a linear filtering followed by a
sigmoid function denoted as γ(.). The spatial response function ς(x) is parame-

terized by X̂ = [x̂1, . . . , x̂p2 ], which are learned, and a constant σ. We use “�”
to indicate the Hadamard product. The reason we choose ς as in (3) is because
we want to enforce locality property within the network. Specifically, we asso-
ciate each hidden node in the second layer with a latent coordinates x̂i. As can
be seen from (3), i-th hidden node of the second layer only turns on when the
voxel is close enough to location x̂i. The combination of on/off hidden nodes
effectively creates multiple sub-networks, each tuned to a small spatial region in
the image. This novel property is an important advantage of our network com-
pared to other approaches. We recall from the observation in Fig. 1b that the
input-output mapping becomes much simpler when restricted to a smaller spa-
tial region. Therefore, LSDN has the potential to yield more accurate prediction.
Our experimental results in section 4 confirm this intuition.

For spatial coordinates x to convey useful information, training and test im-
ages are registered to a reference image using rigid transformations, as done
in [6,2]. This makes the same location in different images corresponding to
roughly the same anatomical region. Alternatively, one could eliminate the need
for registration by using relative coordinates with respect to some landmarks.
This direction is open for future research. We note that in [4], three-way mul-
tiplicative interactions were used with Restricted Boltzmann Machine to model
the transformation between two images. Their hidden nodes are products of
learned weights and pixel intensities from two different images. In contrast, our
network uses multiplicative interactions between a spatial function and an inten-
sity function computed from a single image. LSDN is similar to the convolutional
neural network (CNN) [3] in the sense that it is applied on every voxel during the
synthesis phase. However, the two networks differ in how they incorporate the
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Fig. 2. a) Location-sensitive deep network. Green color and cyan color indicate feature
s and spatial location x, respectively. For better clarity, we only draw connections
between input layer and one product node. b) Comparison of training errors.

spatial information. CNN uses spatial pooling while LSDN uses multiplicative
interactions.

2.1 Training LSDN

We use stochastic gradient descent [1] to optimize the loss function in (1). The
optimization is with respect to the network’s parameters such as filters’ coeffi-
cients, biases, and latent coordinates. As mentioned earlier, all derivations in this
section are for based on one training sample (s,x, t). Recall that the second-layer
hidden nodes’ responses are given in (2). We can write the responses of hidden
nodes in higher layers as:

h(k) = γ(u(k)), where u(k) = F(k) h(k−1) + b(k), ∀k ∈ [3,K] (4)

where K is the number of layers. First, the gradients of the bias terms b(k),
denoted as d(k), can be computed recursively as in (5), where γ′(.) denotes the
derivative of the sigmoid function. This recursive relationship can be verified
easily using the chain rule.

d(k) = (F(k+1))Td(k+1) � γ′(u(k)), where d(k) =
∂E

∂b(k)
, ∀k ∈ [3,K − 1]. (5)

The above expression only applies to the intermediate layers. The gradients of
biases in the second layer and the last layer take slightly different forms:

d(2) = F(3)T d(3) � γ′(u(2))� ς(x), and d(K) = (ψ(s,x) − t)� γ′(u(K)) (6)
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Once all d(k) and h(k) are computed, the other gradients could be easily
derived from using the chain rule. For completion, the gradients of filters coeffi-
cients and latent coordinates are provided below. We use [.]i to denote the i-th
element of a vector.

∂E

∂F(k)
= d(k) h(k−1)T , ∀k ∈ [2,K] (7)

∂E

∂x̂i
=

[
F(3)T d(3) � γ(u(2))� ς(x)� (2− ς(x))

]

i
× (x− x̂i)

σ2
, ∀i ∈ [1, p2] (8)

The learning rate is one of the most important tuning parameters.We empirically
found that 0.25 is a good learning rate for our experiments. We also slowly
decrease the learning rate after each iteration by multiplying it by 0.99. Fig. 2b
shows the evolution of training error over 100 epochs which we obtained when
training a LSDN to predict MRI-T2 intensity values from MRI-T1 intensity
values. More details of this experiment will be explained in section 4. We can
see that LSDN error goes significantly lower than that of the vanilla network
despite they have the same parameter setting such as learning rate and number
of hidden nodes. Similar patterns were observed for different learning rates and
network sizes.

3 Network Simplification

Applying LSDN on every voxel during the synthesis process can be computation-
ally expensive because medical images usually contains hundreds of thousands
of voxels. In what follows, we propose a post-processing approach for simplifying
the network in order to improve the speed of LSDN without losing much in its
prediction accuracy. Our method is based on a central observation that, at each
hidden layer of a network, there exists a smaller subset of functions that approx-
imately span the same functional space of the entire layer. Let I(k) denote the
index set of such subset, we have:

h
(k)
i,n ≈

∑

j∈I(k)

α
(k)
ij h

(k)
j,n, ∀i ∈ [1, pk], ∀n ∈ [1, N ] (9)

where pk is the number of hidden nodes at k-th layer, h
(k)
i,n is the response of

i-th hidden node at k-layer for n-th training sample, and α
(k)
ij is an unknown

coefficient of the linear approximation. We propose the following optimization

to find I(k) and α
(k)
ij :

argmin
A(k)

‖H(k) −A(k)H(k)‖2F , subject to ‖A(k)‖col−0 ≤ T (k) (10)

A
(k)
ij =

{
α
(k)
ij , if j ∈ I(k)

0, otherwise
, H(k) =

⎛

⎜⎜⎝

h
(k)
1,1 . . . h

(k)
1,N

...
. . .

...

h
(k)
pk,1

. . . h
(k)
pk,N

⎞

⎟⎟⎠ (11)
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The optimization in (10) enforces a small number of hidden nodes to linearly repre-
sent well all hidden nodes for all training samples. This is achieved by constraining
the quasi-norm ‖A(k)‖col−0, which is the number of nonzero columns, to be less
than T (k). Since the formulation in (10) is a special case of the simultaneous spar-
sity, we use simultaneous orthogonal matching pursuit [5] to efficiently minimize
the loss function. It takes less than 2 seconds for each network in our experiments.
Finally, the subset I(k) is obtained from the indices of non-zero columns inA(k).

Once we find I(k) and all the coefficients, the computation can be reduced
by shrinking the connection at each layer (in short, ShrinkConnect). This is
done by discarding the hidden nodes at k-layer and their associated rows in F(k)

whose indices are not in I(k). In addition, the latent coordinates x̂i is removed if
i /∈ I(2). Since the hidden nodes of k-layer connect to (k+1)-layer, we also need
to update F(k+1). Intuitively, the update should preserve F(k+1)h(k) as much
as possible so that the output at (k + 1)-layer is similar to that of the original
network. From (9), we can derive the update rule for F(k+1) whose details are
given in the appendix. The update step can be summarized as follows:

F(k) ← F
(k)

row∈I(k) and F(k+1) ← F(k+1)A
(k)

column∈I(k) (12)

where F
(k)

row∈I(k) and A
(k)

column∈I(k) are the matrices formed by the rows of F(k)

and columns of A(k) whose indices are in I(k), respectively. In practice, we
set the sparsity level T (k) of all layers to a certain percentage of the original
layer’s size (e.g. from 10% to 90%) and pick the smallest network that does
not degrade the prediction accuracy on training data by more than 2%. We re-
train LSDN with 10 epochs after performing ShrinkConnect to refine the whole
network. In most cases, the network could be reduced 4× without losing much in
prediction accuracy. We note that training a LSDN of the same size from scratch
or randomly removing hidden nodes yield worse results.

4 Experiments

We perform experiments on NAMIC brain dataset with leave-one-out cross val-
idation. All images are registered, within domain and across domain, to a refer-
ence image using rigid transformations, as done in [6,2].

Training Phase: We are given a set of training pairs of images. Each pair has
one image from a source domain (e.g. MRI-T1) and another image from a target
domain (e.g. MRI-T2) of the same subject. We assume that our data are 3-
dimensional volumes. Source images are cropped into small voxels of size 3×3×
3. The source voxels’s intensities and their corresponding center’s coordinates,
denoted as (s, x), are used as input for training a LSDN network. The intensities
at centers of target voxels are treated as the desirable outputs. We investigate
two network configurations denoted LSDN-1 and LSDN-2 whose layers sizes are
[30-200-20-1] and [30-400-40-1], respectively. In the first layer, 27 dimensions are
from the intensity feature and 3 dimensions are from the spatial coordinates.
The learning rate λ is set to 0.25, and the constant σ to 0.5.
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Input Ground truth MP CDN LSDN−1

Fig. 3. Visual comparison of synthesized MRI-T1 volumes using different approaches.
Red boxes indicates regions where there are significant differences among approaches.

Test Phase: We apply LSDN over all voxels of a given source image in a sliding-
window fashion. The predicted intensity values of all source-domain voxels are
arranged according to the voxel centers’ coordinates to create a synthesized
target image. We note that computational complexity for applying LSDN to one
voxel is O(psp2 + pxp2 +

∑K
k=3 pk−1pk), where ps and px are the dimensions of

the intensity feature and the spatial coordinates, respectively. This is slightly
more expensive than that of a vanilla network, which is O(psp2+

∑K
k=3 pk−1pk).

However, we will see that ShrinkConnect further reduces the computation of
LSDN, making our network significantly faster than the vanilla deep network.

Results and Discussion: We use signal-to-noise ratio (SNR) as the mea-
sure to evaluate different methods. Table 1 compares average SNR for differ-
ent methods. One of the methods trains a vanilla deep network (VDN) of size
[27-400-40-1] on only intensity features. Another approach, denoted as concate-
nation deep network (CDN), trains a vanilla deep network of size [30-400-40-1]
on the concatenation of intensity features and spatial coordinates. We also com-
pare with recent methods in literature such as modality propagation (MP) [6]
and coupled sparse representation [2]. The improvements in SNR is quite signifi-
cant for LSDN compared to other approaches, especially for the case of T2→T1
synthesis. It is interesting to see that the synthesis results from T2→T1 is much
better than from T1→T2. We conjecture that more details of the brain are
visible under T2 than under T1. From CDN results, we observe that the con-
catenation of intensity feature and spatial feature is not as effective as LSDN.
ShrinkConnect reduces the LSDN-1 and LSDN-2 sizes respectively to [30-50-5-1]
and [30-100-10-1] without losing much in prediction accuracy, as shown in the
last two rows of Table 1. To validate if we could obtain the same accuracy with-
out ShrinkConnect, we train a LSDN network of size [30-50-5-1] from scratch,
denoted as LSDN-Small. We can easily notice the accuracy of LSDN-Small is
significantly lower than that of LSDN+ShrinkConnect. This demonstrates the
effectiveness of our network simplification technique.

The results also indicate that increasing network size improves the accuracy,
at the cost of higher run-time computation. Table 1 provides training time of
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Table 1. Comparison of signal to noise ratios and speeds on NAMIC brain dataset

Method
SNR (T1→T2) SNR (T2→T1) Training Synthesis

(dB) (dB) (hour) (second)

MP [6] 13.64 ± 0.67 15.13 ± 0.88 n/a 928

Coupled Sparse [2] 13.72 ± 0.64 15.24 ± 0.85 2.8 245

VDN 12.67 ± 0.6 14.19 ± 0.82 1.2 23.5

CDN 13.79 ± 0.68 15.36 ± 0.88 1.2 23.6

LSDN-Small 12.53 ± 0.75 13.85 ± 0.86 0.6 9.2

LSDN-1 14.82 ± 0.72 17.09 ± 0.94 1.4 29.5

LSDN-2 14.93 ± 0.73 17.39 ± 0.91 2.5 68.0

LSDN-1+ShrinkConnect 14.79 ± 0.72 17.05 ± 0.91 1.4 9.2

LSDN-2+ShrinkConnect 14.80 ± 0.74 17.1 ± 0.86 2.5 21.5

LSDN with 300 epochs. The average time it takes LSDN-1 to synthesize an image
is 29.5 seconds compared to 23.5 seconds of VDN. With ShrinkConnect, the run
time is reduced to 9.2 seconds per image, which is 26× faster than the coupled
sparse method and 100× faster than modality propagation. Fig 3 provides visual
comparisons for different methods.

5 Conclusions

We proposed LSDN as a way to incorporate both image intensity feature and
spatial information into a deep network. We also proposed a novel network sim-
plification technique for reducing computation of LSDN. Our approach outper-
forms the state of the art in both accuracy and computation on MR brain image
synthesis. In the future, we plan to investigate the use of LSDN for other appli-
cations such as segmentation.
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