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Abstract

Can we detect common objects in a variety of image do-

mains without instance-level annotations? In this paper, we

present a framework for a novel task, cross-domain weakly

supervised object detection, which addresses this question.

For this paper, we have access to images with instance-level

annotations in a source domain (e.g., natural image) and

images with image-level annotations in a target domain (e.g.,

watercolor). In addition, the classes to be detected in the

target domain are all or a subset of those in the source do-

main. Starting from a fully supervised object detector, which

is pre-trained on the source domain, we propose a two-step

progressive domain adaptation technique by fine-tuning the

detector on two types of artificially and automatically gener-

ated samples. We test our methods on our newly collected

datasets1 containing three image domains, and achieve an

improvement of approximately 5 to 20 percentage points in

terms of mean average precision (mAP) compared to the

best-performing baselines.

1. Introduction

Object detection is a task to localize instances of partic-

ular object classes in an image. It is a fundamental task

and has advanced rapidly due to the development of con-

volutional neural networks (CNNs). Best-performing de-

tectors [9, 28, 22, 27, 19, 20] are fully supervised detec-

tors (FSDs). They are highly data-hungry and typically

learned from many images with instance-level annotations.

An instance-level annotation is composed of a label (i.e., the

object class of an instance) and a bounding box (i.e., the

location of the instance).

While object detection in a natural image domain has

achieved outstanding performance, less attention has been

paid to the detection in other domains such as watercolor.

This is because it is often difficult and unrealistic to construct

1Datasets and codes are available at https://naoto0804.

github.io/cross_domain_detection
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Figure 1: Left: the situation of the cross-domain weakly

supervised object detection; Right: Our methods to generate

instance-level annotated samples in the target domain.

a large dataset with instance-level annotations in many image

domains. There are many obstacles such as lack of image

sources, copyright issues, and the cost of annotation.

We tackle a novel task, cross-domain weakly supervised

object detection. The task is described as follows: (i) in-

stance-level annotations are available in a source domain;

(ii) only image-level annotations are available in a target do-

main; (iii) the classes to be detected in the target domain are

all or a subset of those in the source domain. The objective

of the task is to detect objects as accurately as possible in

the target domain under these conditions by using sufficient

instance-level annotations in the source domain and a small

number of image-level annotations in the target domain. This

assumption is reasonable as it is easier to collect image-level

annotations than instance-level annotations from existing

datasets or an image search engine.

We will describe a framework to solve the proposed task.

Starting from an FSD trained on images with instance-level

annotations in the source domain, we fine-tune the FSD in

the target domain, as this is the most straightforward and

promising approach. However, there are no instance-level

annotations available in the target domain. Instead, as shown

in Fig. 1, we present two methods to generate images with

instance-level annotations artificially and automatically, and

fine-tune the FSD on them. The first method, domain trans-
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fer (DT), is used to generate images that look like those in

the target domain from images in the source domain having

instance-level annotations. This generation is achieved by

image-to-image translation methods from unpaired exam-

ples such as CycleGAN [40]. The second method, pseudo-

labeling (PL), is used to generate pseudo instance-level an-

notations. Given images with image-level annotations in

the target domain and the FSD which is fine-tuned on the

artificially generated samples by DT, these annotations and

predictions of the FSD are combined. We achieve a two-step

progressive domain adaptation by sequentially fine-tuning

the FSD on the artificially generated samples. Our frame-

work is general to cross-domain weakly supervised object

detection across any image domain and is relatively scalable

to many classes and instances.

Since there is no dataset for the target domain that is

suitable to evaluate the proposed task, we construct new

datasets with instance-level annotations, which we call Cli-

part1k, Watercolor2k, and Comic2k. Each dataset comprises

1,000, 2,000, and 2,000 images of clipart, watercolor, and

comic, respectively. The validity of our methods is demon-

strated using these datasets. We show that the proposed two-

step adaptation achieves an improvement of approximately 5

to 20 percentage points as compared to the best-performing

baselines’ mAP across all datasets. We believe that this pa-

per itself can be a strong baseline for cross-domain weakly

supervised object detection.

Our main contributions are as follows:

• We propose a framework for a novel task, cross-domain

weakly supervised object detection. We achieve a two-step

progressive domain adaptation by sequentially fine-tuning

the FSD on the artificially generated samples by the proposed

domain transfer and pseudo-labeling.

• We construct novel, fully instance-level annotated datasets

with multiple instances of various object classes across three

domains that are far from natural images.

• Our experimental results show that our framework outper-

forms the best-performing baselines by approximately 5 to

20 percentage points in terms of mAP.

2. Related Work

2.1. Fully Supervised Detection

Standard methods in fully supervised object detection,

such as R-CNN [10], Fast R-CNN [9], and Faster R-

CNN [28], are based on a two-stage approach: generating

region proposals and then, classifying them. Recently, single-

stage object detectors such as SSD [22], YOLOv2 [27], and

RetinaNet [20] have also emerged. All of these detectors

require large datasets with instance-level annotations such as

PASCAL VOC [6], Microsoft Common Objects in Context

(MSCOCO) [21], and OpenImages [17].

Dataset construction for a new image domain becomes

harder as the number of images and classes increases. [32]

reported that it took 35 seconds for a worker to annotate

one bounding box. Recently, [26] reduced it to 7 seconds

through extreme clicking, while it still takes much time and

effort to obtain large-scale datasets. On the contrary, our

framework does not require instance-level annotations for

the new target domain at all.

2.2. Weakly Supervised Detection

One possible approach addressing the lack of large-scale

instance-level annotations for object detection is to use a

weakly supervised detector (WSD). In weakly supervised

object detection, only pairs of an image and an image-level

annotation (i.e., labels of objects in each image) are pro-

vided for training. Many existing methods are built upon

region-of-interest (RoI) extraction methods such as selective

search [36]. Feature extraction for each region, region selec-

tion, and classification of the selected region are performed

through multiple instance learning (MIL) [30, 11, 31, 1, 18]

or two-stream CNN [2, 15, 33]. However, WSDs are poor

at accurately localizing the object boundary. Our frame-

work uses image-level annotations in the target domain by

pseudo-labeling the image.

2.3. Cross­domain Object Detection

Using an object detector that is neither trained nor fine-

tuned for the target domain causes a significant drop in per-

formance as shown in [38]. Therefore, adapting the detector

with the help of some information on the target domain is

essential. [13, 5] are the some of the best works closely re-

lated to this paper. Our methods and [13] are similar as they

propose to learn from a combination of instance- and image-

level annotations. However, we address the adaptation of the

detector from one domain to another, whereas [13] addresses

the classifier-to-detector adaptation for weakly labeled object

classes within one domain. This paper and [5] are similar as

they tackle the adaptation of the detector from one domain to

another. However, only image-level annotations are available

in the source domain in [5]. This is the first work to propose

the cross-domain weakly supervised object detection.

For evaluating the cross-domain object detection method,

the existing datasets for detecting common objects in various

domains seem to have limitations. People-Art [37] is used

only for single-class detection in an artwork. Photo-Art [39]

assumes only one instance per image, which is unrealis-

tic. Besides, we introduce the fully instance-level annotated

datasets for object detection which comprises multiple com-

mon classes to be detected various visual domains.

2.4. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) in an image is

a task used for learning domain invariant models, where
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(a) Clipart1k (b) Watercolor2k (c) Comic2k

Figure 2: Examples of datasets that we collected across three domains; The images usually contain not only the target objects

but also various other objects and complex backgrounds.

pairs of an image and annotation are available in the source

domain while only images are available in the target do-

main. Previous works for UDA in image classification is

mostly distribution-matching-based, in which features ex-

tracted from two domains are made to closely resemble each

other using the maximum mean discrepancy (MMD) [12]

or a domain classifier network [23, 8, 24, 35]. Although

current distribution-matching-based methods are applicable,

it is primarily challenging to fully align the distribution for

tasks that require structured outputs, such as object detection.

This is because it is essential to keep the spatial information

in the feature map. Our framework employs image-to-image

translation and fine-tuning to avoid this problem.

3. Dataset

Our objective is to detect objects in a target domain by

adapting an FSD that is originally trained on a source do-

main. The classes to be detected in the target domain are

all or a subset of the classes defined in the dataset which

is in the source domain. In this paper, PASCAL VOC [6],

which contains twenty classes, was used for the source do-

main, natural image. As no suitable dataset for the target

domain of our task was available, we constructed three origi-

nal datasets, Clipart1k, Watercolor2k, and Comic2k using

Amazon Mechanical Turk.

Examples of the images are shown in Fig. 2. These im-

ages usually contain multiple objects per image, and some

instances are small or partially occluded by the other objects.

The statistics of the three datasets are shown in Table 1. We

collected a total of 5,000 images and 12,869 instance-level

annotations. We believe these datasets are good benchmarks

Table 1: List of the datasets that we constructed for the target

domains in this paper.

Dataset #classes #images #instances

Clipart1k 20 1,000 3,165

Watercolor2k 6 2,000 3,315

Comic2k 6 2,000 6,389

not only for domain adaptation but also for fully and weakly

supervised, semi-supervised detection tasks. For the more

detailed statistics, please refer to the supplementary material.

In the following subsection, we will briefly describe each

dataset, and the data collection method.

3.1. Clipart1k

In Clipart1k, the target domain classes to be detected

were the same as those in the source domain. All the images

for a clipart domain were collected from one dataset (i.e.,

CMPlaces [4]) and two image search engines (i.e., Opencli-

part2 and Pixabay3). When we collected the images from

the search engines, we used queries of the 205 scene classes

(e.g., pasture) used in CMPlaces to collect various objects

and scenes with complex backgrounds.

3.2. Comic2k and Watercolor2k

In Comic2k and Watercolor2k, the classes to be de-

tected in the target domain were the subset of those in the

source domain. The images were collected from BAM! [38].

2https://openclipart.org/
3https://pixabay.com/
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Figure 3: The workflow of our framework.

In BAM! , millions of images with slightly noisy (80%−90%
in precision) image-level attributes regarding object classes,

domain, and emotion are provided in a human-in-the-loop

fashion. Specifically, the target classes are bicycle, bird,

cat, car, dog, and person, which are representative of

the intersection of the classes in VOC and those in BAM!.

We chose the watercolor and comic domains as the other

domains in BAM! are not suitable for object detection. For

example, oil paint images are unsuitable as they usually de-

pict a single person in the center of the image, making object

detection a trivial task.

As collecting instance-level annotations for all images

in BAM! is difficult, we annotated the images in the follow-

ing way: (i) images that contained at least one of the six tar-

get classes were extracted. Note that we relied on the labels

provided by BAM! and did not conduct any other filtering

process. We obtained 17,814 and 52,790 images for water-

color and comic domains, respectively. (ii) as many as 2,000

images are randomly sampled and assigned instance-level

annotations for each domain. The remaining 15,814 and

50,790 images, which we called extra dataset, are still use-

ful as they possess many image-level annotations. Although

they are noisy and incomplete, they provided room for fur-

ther improvement with respect to detector performance as

shown in Sec. 5.3.

4. Proposed Method

We propose a framework to adapt an FSD that is pre-

trained on a source domain. The adaptation is achieved

through fine-tuning the FSD on artificially generated sam-

ples with instance-level annotations in a target domain. We

propose two methods to generate the samples as shown in

Fig. 1: (i) domain transfer (DT), transferring images with

instance-level annotations from the source domain to the tar-

get domain, and (ii) pseudo-labeling (PL), pseudo-labeling

the images with image-level annotations in the target domain.

The samples generated by these two methods display differ-

ent properties. Although the samples generated by (i) are

not high-quality images with respect to their similarities to

target-domain images, bounding boxes are correctly anno-

tated. On the contrary, although the samples generated by

(ii) do not have accurate bounding boxes, image quality is

guaranteed as they are completely target-domain images.

We progressively fine-tune an FSD using these examples

as shown in Fig. 3. First, we pre-train it while using instance-

level annotations in the source domain. Second, we fine-tune

it while using the images obtained by DT. Lastly, we fine-

tune it while using the images obtained by PL. We would

like to emphasize that the sequential execution of the two

fine-tuning steps is critical as the performance of PL highly

depends on the used FSD.

4.1. Domain Transfer (DT)

The differences between the source and target domains

tackled in this paper mainly lie in their low-level features,

such as color and texture. We generate images that look like

those in the target domain to capture such differences and

then, make the FSD robust to such differences by fine-tuning

the FSD on the generated images.

To achieve this goal, an unpaired image-to-image trans-

lation method called CycleGAN [40] is employed. With

CycleGAN, the goal is to learn the mapping functions be-

tween two image domains X and Y with unpaired exam-

ples. In practice, a mapping G : X → Y and an inverse

mapping F : Y → X are jointly learned using CNN. We

train CycleGAN to learn the mapping functions between

the source domain, Xs, and the target domain, Xt. Once

the mapping functions are trained, we convert images in the

source domain that are used in the pre-training and obtain

domain-transferred images that accompany instance-level

annotations. Using these images, the FSD is fine-tuned.

4.2. Pseudo­Labeling (PL)

In the target domain, if we use an FSD that is trained

only on the source domain for object detection, then the

FSD mainly fails because of confusion with other classes

and backgrounds rather than inaccurate localization. We will

later show this trend in Fig. 4. Fine-tuning FSD on images

obtained by PL dramatically reduces such confusion. PL

is simple and applicable in any FSD as it does not access

intermediate layers of an FSD.

Formally, the objective of PL is to obtain a pseudo

instance-level annotation G for each image x from the target

domain Xt. Let x ∈ R
H×W×3 denote an RGB image, where

H and W are the image’s height and width, respectively. C

indicates a set of object classes. z indicates an image-level

annotation: the set of classes in x. Further, G comprises

g = (b, c), where b ∈ R
4 is a bounding box, and c ∈ C.

First, we obtain FSD outputs D. D comprises each detec-

tion d = (p, b, c), where c ∈ C and p ∈ R indicates the

probability of b belonging to c. Second, for each class c ∈ z,

we take the top-1 confident detection d = (p, b, c) ∈ D
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and add (b, c) to G. We fine-tune the FSD using pairs of

x and G. Note that no layers of the FSD are replaced to

preserve the original network’s detection ability. The FSD

that is trained on images obtained by DT was subsequently

fine-tuned on these images.

5. Experiments

In Sec. 5.1, we explain the details of the implementa-

tions, the compared methods, and the evaluation metrics.

In Sec. 5.2, we test our methods using Clipart1k and con-

duct error analysis and ablation studies on the FSDs. In

Sec. 5.3, we confirm that our framework is generalized for

a variety of domains using Watercolor2k and Comic2k. In

Sec. 5.4, we show actual detection results and the generated

domain-transferred images for further discussion.

5.1. Implementation and Evaluation Metrics

Our methods were implemented using Chainer [34]. We

evaluated our methods using average precision (AP) and its

mean, i.e., mAP.

Dataset Arrangement for Training and Evaluation

VOC2007-trainval and VOC2012-trainval [6] were used as

images in the source domain (i.e., natural image) in all the

experiments. For the target-domain images, the ones with

instance-level annotations were used when discussing the

performance gap between our methods and the ideal case

quantitatively. The target-domain images were split into

training set and test set by a ratio of 1:1. For the train-

ing set, the bounding box information was ignored to meet

the proposed situation. For the test set, the labels and the

bounding boxes of the annotations were used to evaluate the

performance of the compared methods and our methods.

Comparison We compared our methods against the fol-

lowing methods:

• Baseline: SSD300 [22] was used as our baseline FSD.

We used the implementation provided by ChainerCV [25],

and we obtained an SSD300, which was pre-trained on

VOC2007-trainval and VOC2012-trainval, and skipped the

pre-training. We followed the original paper on hyper-

parameters of SSD300 unless specified. The input images

were resized to 300 × 300 in SSD300. The IoU threshold

for NMS (0.45) and the confidence threshold for discarding

low confidence detections (0.01) were employed.

• Ideal case: In this case, we had access to the instance-

level annotations for the training set of the target domain

dataset. We simply fine-tuned the baseline FSD using these

annotations. This experiment was to confirm the weak upper-

bound performance of our methods.

• Weakly supervised detection (WSD): ContextLocNet

(CLNet) [15] and WSDDN [2] were chosen as the com-

pared WSDs. Each WSD was trained on the images with

image-level annotations from the training set of the dataset

in the target domain.

• Unsupervised domain adaptation (UDA): We tested one of

the state-of-the-art UDA methods, ADDA [35]. We aligned

the distributions at the relu4_3 layer in SSD300. We

trained the model with a batch size of 32 and a learning rate

of 1.0× 10−6 for 1,000 iterations using Adam [16].

• Ensemble: In image classification, unweighted averaging,

which uses the unweighted average of the output score /

probability of all the base models as the output, is a reason-

able approach to boost performance. We accumulated all the

detections produced by multiple detectors and applied non-

maximum suppression (NMS) 4 to them. The parameters of

NMS were the same as those used in SSD300.

Details of Training We trained CycleGAN with a learning

rate of 1.0× 10−5 for the first ten epochs and a linear decay-

ing rate to zero over the next ten epochs. We followed the

original paper on the other hyper-parameters of CycleGAN.

When fine-tuning SSD300, we employed a learning rate of

1.0× 10−5, which is the same as the final learning rate for

the original SSD300 training. Fine-tuning, using the images

obtained by DT and PL, was conducted for one epoch and

10,000 iterations, respectively.

5.2. Quantitative Results on Clipart1k

Table 2 shows the comparison of AP for each class and

mAP among our methods against the baseline FSD and the

comparable methods. We observe that SSD300 performs

better than the WSDs in terms of mAP, although SSD300 is

not trained to adapt to the target domain. On the contrary,

WSDs perform poorer due to insufficient data and their poor

localization ability. The ensembling of WSDs with SSD300

have almost no effect as shown in the case of Ensemble.

Conventional distribution-matching-based methods do not

work well as shown in the case of ADDA.

The results of our methods based on SSD300 are shown

in the bottom half of Table 2. To quantify the relative con-

tribution of each step, the performances of our methods are

examined using different configurations.

• DT+PL: the proposed two-step fine-tuning.

• DT: only fine-tuning using images obtained by DT.

• PL: only fine-tuning using images obtained by PL. Note

that the baseline FSD is used for PL.

PL provides an improvement of 9.6 percentage points im-

provement from the baseline SSD300 in terms of mAP. Fur-

ther, DT+PL achieves 46.0 % in terms of mAP. This result

4Further details about NMS can be found in [7].
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Table 2: Comparison of all the methods in terms of AP [%] using SSD300 as the baseline FSD in Clipart1k. Ensemble

denotes an ensemble of SSD300, CLNet, and WSDDN.

AP for each class

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Baseline 19.8 49.5 20.1 23.0 11.3 38.6 34.2 2.5 39.1 21.6 27.3 10.8 32.5 54.1 45.3 31.2 19.0 19.5 19.1 17.9 26.8

Compared

WSDDN [2] 1.6 3.6 0.6 2.3 0.1 11.7 4.5 0.0 3.2 0.1 2.8 2.3 0.9 0.1 14.4 16.0 4.5 0.7 1.2 18.3 4.4

CLNet [15] 3.2 22.3 2.2 0.7 4.6 4.8 17.5 0.2 4.8 1.6 6.4 0.6 4.7 0.6 12.5 13.1 14.1 4.1 8.0 29.7 7.8

Ensemble 20.6 49.6 20.5 23.4 11.3 39.3 35.2 2.6 39.0 22.8 27.3 11.2 33.2 54.7 34.0 30.7 21.0 20.3 20.3 18.3 26.7

ADDA [35] 20.1 50.2 20.5 23.6 11.4 40.5 34.9 2.3 39.7 22.3 27.1 10.4 31.7 53.6 46.6 32.1 18.0 21.1 23.6 18.3 27.4

Proposed

PL w/o label 18.6 40.3 17.1 16.7 4.9 35.3 36.1 1.1 36.0 22.9 29.1 14.7 31.5 52.6 43.8 28.6 13.3 14.6 32.8 15.1 25.3

PL 24.2 59.8 22.0 26.6 25.0 54.7 51.3 3.9 47.4 44.5 40.3 14.3 33.6 55.1 50.8 41.1 23.2 26.3 40.5 43.2 36.4

DT 23.3 60.1 24.9 41.5 26.4 53.0 44.0 4.1 45.3 51.5 39.5 11.6 40.4 62.2 61.1 37.1 20.9 39.6 38.4 36.0 38.0

DT+PL w/o label 16.8 53.7 19.7 31.9 21.3 39.3 39.8 2.2 42.7 46.3 24.5 13.0 42.8 50.4 53.3 38.5 14.9 25.1 41.5 37.3 32.7

DT+PL 35.7 61.9 26.2 45.9 29.9 74.0 48.7 2.8 53.0 72.7 50.2 19.3 40.9 83.3 62.4 42.4 22.8 38.5 49.3 59.5 46.0

Ideal case 50.5 60.3 40.1 55.9 34.8 79.7 61.9 13.5 56.2 76.1 57.7 36.8 63.5 92.3 76.2 49.8 40.2 28.1 60.3 74.4 55.4

ensures that both of our methods work and are complemen-

tary. The mAP of the combination of DT+PL is 19.2 percent-

age points higher than that of the baseline SSD300 and is

approximately 18 percentage points greater than the ensem-

ble of the detectors. We emphasize that this performance is

only 9.4 percentage points lower than Ideal case.

Ablation Study We considered a setting where we can

obtain only images with no annotation in the target domain.

DT is applicable without any modification. DT provides

an improvement of 11.2 percentage points improvement

from the baseline SSD300 in terms of mAP in Table 2.

PL is not directly applicable as we do not have access

to the image-label annotations. To address this problem,

only one detection dbest, which has the highest probability

p among all detections, can be pseudo-labeled. The results

are shown as PL w/o label and DT+PL w/o label

in Table 2. Fine-tuning the FSD on the images labeled by

this method harms the performance as the result of pseudo-

labeling contains a lot of inaccuracy. Therefore, image-level

annotations in the target domain are essential for PL, which

greatly improves the detection performance.

Generality across Detectors We investigated our frame-

work on other FSDs such as Faster R-CNN [28] and

YOLOv2 [27]. Please refer to the supplementary material

about details of the hyper-paramters. The result further em-

phasizes the generality of our framework across all baseline

FSDs, as shown in Table 3. We additionally found that the

ensembling of SSD300 and Faster R-CNN yields 30.2 % in

terms of mAP and that of all the three FSDs yields 31.0 %

in terms of mAP, which is not so remarkable compared to

Table 3: Results of our methods on the different baseline

FSDs in terms of mAP [%] in Clipart1k.

Method SSD300 YOLOv2 Faster R-CNN

Baseline 26.8 25.5 26.2

DT 38.0 31.5 32.1

PL 36.4 34.0 29.8

DT+PL 46.0 39.9 34.9

Ideal case 55.4 51.2 50.0

the improvement by DT+PL. The performance gain is signif-

icant in SSD300 compared to YOLOv2 and Faster R-CNN.

This result suggests the importance of data augmentation

(e.g., the zoom-in and zoom-out features implemented in

SSD300) during the process of training FSDs with pseudo-

labeled annotations, which are often noisy and incomplete.

Performance Analysis Focusing on Errors The tool

from [14] was used to understand the type of the detection

error that is reduced by our methods. The classes within

the brackets were regarded as the same category: {all vehi-

cles}, {all animals including person}, {chair, dining table,

sofa}(furniture), {aeroplane, bird}(air objects). Considering

the class, the category, and the IoU between the predicted

bounding box and the ground truth bounding box, the detec-

tions were classified into five groups as listed below:

• Correct (Cor): correct class and IoU > .5

• Localization (Loc): correct class, misaligned bounding
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(c) DT+PL

Figure 4: Visualization of performance for various methods

on animals and vehicles in the test set of Clipart1k using

SSD300 as the baseline FSD. The solid red line and dashed

red line reflect the change of recall with strong criteria (0.5

jaccard overlap) and weak criteria (0.1 jaccard overlap) as

the number of detections increases, respectively.

box (.1 < IoU < .5)

• Similar (Sim): wrong class, correct category, IoU > .1

• Other (Oth): wrong class, wrong category, IoU > .1

• Background (BG): IoU < .1 for any object

Fig. 4 shows the example of the error analysis in the Cli-

part1ktest set. Comparing the baseline and DT, we observe

that fine-tuning the FSD on images obtained by DT improves

the detection performance, especially in less-confident de-

tections. Comparing DT and DT+PL, we observe that the

confusion, which emerged with the other classes (Sim and

Oth), especially in more confident detections, is greatly re-

duced by PL, which uses the image-level annotations in the

target domain to remove such confusions with the FSD.

Table 4: Comparison in terms of AP [%] using SSD300 as

the baseline FSD in Watercolor2k.

AP for each class

Method bike bird car cat dog person mAP

Baseline 79.8 49.5 38.1 35.1 30.4 65.1 49.6

Compared

WSDDN [2] 1.5 26.0 14.6 0.4 0.5 33.3 12.7

CLNet [15] 4.5 27.9 19.6 14.3 6.4 31.4 17.4

Ensemble 79.8 49.6 38.1 35.2 30.4 58.7 48.6

ADDA [35] 79.9 49.5 39.5 35.3 29.4 65.1 49.8

Proposed

PL 76.3 54.9 46.6 37.5 36.9 71.7 54.0

DT 82.8 47.0 40.2 34.6 35.3 62.5 50.4

DT+PL 76.5 54.9 46.0 37.4 38.5 72.3 54.3

PL (+extra) 84.8 57.7 48.0 44.9 46.6 72.6 59.1

DT+PL (+extra) 86.3 57.3 48.5 43.0 46.5 73.2 59.1

Ideal case 76.0 60.0 52.7 41.0 43.8 77.3 58.4

Table 5: Comparison in terms of AP [%] using SSD300 as

the baseline FSD in Comic2k.

AP for each class

Method bike bird car cat dog person mAP

Baseline 43.9 10.0 19.4 12.9 20.3 42.6 24.9

Compared

WSDDN [2] 1.5 0.1 11.9 6.9 1.4 12.1 5.6

CLNet [15] 0.0 0.0 2.0 4.7 1.2 14.9 3.8

Ensemble 44.0 10.0 19.4 14.5 20.7 42.9 25.3

ADDA [35] 39.5 9.8 17.2 12.7 20.4 43.3 23.8

Proposed

PL 52.9 13.7 35.3 16.2 28.9 50.8 32.9

DT 43.6 13.6 30.2 16.0 26.9 48.3 29.8

DT+PL 55.2 18.5 38.2 22.9 34.1 54.5 37.2

PL (+extra) 53.4 19.0 35.0 30.0 30.5 53.7 36.9

DT+PL (+extra) 56.6 24.0 40.7 35.8 39.0 57.3 42.2

Ideal case 55.9 26.8 40.4 42.3 43.0 70.1 46.4

5.3. Quantitative Results on
Watercolor2k and Comic2k

The comparison among our methods against the baseline

FSD and the comparable methods is shown in Table 4 and

Table 5. In Watercolor2k, the learning rate was set to 10−6

as the fine-tuning overfitted in 10−5 even in Ideal case.

Both our methods work in the two domains.

+extra in both tables indicates the use of extra
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(a) Clipart1k (b) Watercolor2k (c) Comic2k

Figure 5: Example outputs for our DT+PA in the test set of each dataset. We only show windows whose scores are over 0.25

to maintain visibility.

Source image Images generated by cycleGAN

Clipart Watercolor Comic

Figure 6: Example images generated by DT.

BAM! images with raw noisy image-level labels of the tar-

get classes as described in Sec. 3.2. These images were

pseudo-labeled and used for fine-tuning the FSD. With a

substantial number of images, the training of +extra meth-

ods underwent 30000 iterations. The methods using ex-

tra noisy labels in BAM! significantly improved the detec-

tion performance and sometimes proved to be better than

Ideal case trained on 1,000 clean instance-level annota-

tions. Without any manual annotation, our framework can

use large-scale images with noisy labels.

5.4. Qualitative Results

Fig. 6 shows the example images generated by DT. There

was no mode collapse in the training of CycleGAN. Visibly,

the perfect mapping is not accomplished in this experiment

as the representation gap between a natural image domain

and the other domains used in this paper is too wide as

compared with the gap between synthetic and real images

tackled in recent studies, such as [29, 3]. CycleGAN seems

to transfer color and texture while keeping most of the edges

and semantics of the input image. The result of fine-tuning

the FSD on these domain-transferred images in Table 2,

Table 4, and Table 5 confirms the validity of our domain

transfer method. Moreover, our methods are valid for various

depiction styles as shown in Fig. 5. For more results, please

refer to the supplementary material.

6. Discussion

In PL, only the top-1 bounding box for each class is

employed. The other instances, if any, can be considered as

negative samples. This issue is our future work. Moreover, if

we could extract features with the same size corresponding

to each detection, using the standard MIL paradigm in WSD

such as [11, 18], we would improve the localization accuracy

in pseudo-labeling, which is also our future work.

7. Conclusion

We proposed the novel task, cross-domain weakly super-

vised object detection, and the novel framework perform-

ing the two-step progressive domain adaptation to address

this task. To evaluate our methods, we constructed original

datasets comprising images with instance-level annotations

in three visual domains. The results suggested that our meth-

ods were better than the other existing comparable methods

and provided a simple but solid baseline.
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