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Abstract
In this paper we investigate the error criteria that are optimized
during the training of artificial neural networks (ANN). We
compare the bounds of the squared error (SE) and the cross-
entropy (CE) criteria being the most popular choices in state-
of-the art implementations. The evaluation is performed on au-
tomatic speech recognition (ASR) and handwriting recognition
(HWR) tasks using a hybrid HMM-ANN model. We find that
with randomly initialized weights, the squared error based ANN
does not converge to a good local optimum. However, with a
good initialization by pre-training, the word error rate of our
best CE trained system could be reduced from 30.9% to 30.5%
on the ASR, and from 22.7% to 21.9% on the HWR task by
performing a few additional “fine-tuning” iterations with the SE
criterion.
Index Terms: hybrid approach, training criterion for ANN
training, automatic speech recognition, handwriting recognition

1. Introduction
While the artificial neural networks become more and more sub-
stantial parts of state-of-the-art automatic speech and handwrit-
ing recognition systems, various questions arise considering the
ANN architecture and the fundamentals of training.

It can be shown that the true posterior probability is a global
minimum for both the cross-entropy (CE) and squared error
(SE) criteria [1, p. 100]. Thus, in theory an ANN can be trained
equally well by minimizing either function, as long as it is ca-
pable of approximating the true posterior distribution arbitrarily
close. When modeling a distribution, SE is bounded and the op-
timization is therefore more robust to outliers than minimzation
of CE. In practice, however, CE mostly leads to faster conver-
gence and better results in terms of classification error rates.
Hence, SE became less popular over the last years.

In the literature, the error criterion is often considered only
in combination with certain output activation functions, result-
ing in what is sometimes called “natural pairing”, that allows
to express the gradient in the last layer as the difference be-
tween the actual output and the desired reference output. This
choice can also be motivated by means of canonical link func-
tions, resulting from the assumption of target variable to have a
distribution from the exponential family [2, p. 217], which does
not have to hold true in all cases. While this is a convenient
choice from the point of view of implementation and training
time, in principle, every combination is possible. Thus, for this
work, we decided to change only one thing at a time and com-
pare the SE and CE criteria using the same activation function
(softmax).

Previous investigations of the error function have usually
been evaluated on comparably small tasks. Nowadays, how-
ever, with increasing amount of available data and computa-
tional power, ANNs with many millions of free parameters can
be trained within a few days. The number of classes (i.e. HMM
states) in ASR tasks also goes up to several thousands. Previ-
ous works mostly investigate the quality of the estimated poste-
rior distributions on synthetic data by measuring deviation from
known distrubution [3][4]. This motivates an experimental eval-
uation on a real-world task with current state-of-the-art systems.
The goal of this paper is to analyze the two criteria, both from a
theoretical and experimental point of view.

This paper is organized as follows. We analyze both crite-
ria from a theoretical perspective and compare their bounds in
Section 2. Then we summarize the training procedure of ANNs
and investigate the convergence properties in Section 3. Sec-
tion 4 provides experimental results of our investigation and the
conclusions are drawn in Section 5.

2. Theoretical analysis of training criteria
In this section, we will consider two training criteria derived in
[5] and discuss differences in their potential effect on parameter
learning.

We assume a normalized “acoustic” model whose output
nodes represent the classes, i.e. the labels of the associated
HMM states. We will use an ANN with the softmax opera-
tion in the output layer. For an observed input vector x, the
model computes a score for each class c. These scores can be
interpreted as estimates of a class posterior probability q(c|x)
and are normalized. In general, the model has a set of free pa-
rameters θ: q(c|x) = qθ(c|x). To simplify the notation when
considering the training criteria, we will drop the parameters θ
and simply use q(c|x). We are given annotated training data
{(xn, cn) : n = 1, ..., N}, and we consider the following two
training criteria:

• cross-entropy (empirical equivocation or logarithm):

q̂(c|x) = argmin
{q(c|x)}

{
−
∑
n

log q(cn|xn)
}

(1)

• squared error:

q̂(c|x) = argmin
{q(c|x)}

{∑
n

∑
c

[q(c|xn)−δ(c, cn)]2
}

(2)

Both training criteria [1, p. 100] have the attractive property
that, in the case of a model q(c|x) with a sufficient degree of
flexibility, the optimum solution q̂(c|x) is the true class poste-
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Figure 1: Training criteria (SE and CE) as a function of
log q(cn|xn), i.e. the model probability of the correct class.

rior distribution pr(c|x) that is computed from the distribution
of the training data pr(x, c) = 1

N

∑N
n=1 δ(xn, x) · δ(cn, c)

with the Kronecker delta or delta function δ(·, ·) for discrete
and continuous-valued arguments, respectively.

We will study the two training criteria in more detail. For
this purpose, we will visualize the training criteria. For the CE
criterion, this is easy since the criterion depends only on a sin-
gle value, namely the score of the correct class q(cn|xn). For
the SE criterion, the visualization is more difficult, since the
criterion depends on the set of all scores {q(c|xn)}.

Therefore, we will derive lower and upper bounds for the
local squared error as a function of the score of the correct class
q(cn|xn). We re-write the squared error in point xn:∑

c

[q(c|xn)− δ(c, cn)]2 =

= [1− q(cn|xn)]2 +
∑
c 6=cn

q2(c|xn) (3)

For a given q(cn|xn), we want to bound this error from below
and from above. The upper bound is attained if the remaining
probability [1 − q(cn|xn)] is assigned to a single rival class,
while the lower bound is attained if it is uniformly distributed
over all rival classes. Hence we obtain:

[C − 1] ·
[1− q(cn|xn)

C − 1

]2
≤

∑
c6=cn

q2(c|xn) (4)

≤ [1− q(cn|xn)]2 (5)

Thus we obtain the upper bound:∑
c

[q(c|xn)− δ(c, cn)]2 ≤

≤ [1− q(cn|xn)]2 + [1− q(cn|xn)]2 (6)
= 2 · [1− q(cn|xn)]2 (7)

and the lower bound:∑
c

[q(c|xn)− δ(c, cn)]2 ≥

≥ [1− q(cn|xn)]2 + [C − 1] ·
[1− q(cn|xn)

C − 1

]2
(8)

=
C

C − 1
· [1− q(cn|xn)]2 ≥ [1− q(cn|xn)]2 (9)

The result is plotted in Figure 1: the squared error criterion
is bounded from below and from above by quadratic functions
in q(cn|xn) (grey area); it is limted to values in the intervall
[0, 2]. The cross-entropy criterion is simply the negative loga-
rithm of q(cn|xn) and therefore unlimited. Figure 3 shows the

distribution of log q(cn|xn) and the corresponding error values
on a development set.

The squared error criterion can be interpreted as an error
“count” in the training data: the count varies between the lower
(no strong rival class) and the upper bound (one single rival
class). There is a smooth transition from a totally correct classi-
fication and a totally wrong classification. The optimal solution
is attained at q̂(c|x) = pr(c|x).

So far, the discussion and comparison of the two training
criteria has focussed on the properties of the optimal solutions
as such. However, there is another important issue related to any
training criterion, namely its associated (gradient) search strat-
egy and its convergence behaviour. This issue will be discussed
in the next section.

3. Convergence analysis
This section briefly summarizes the training of an ANN via
backpropagation and presents an investigation of how the gra-
dient computation affects the convergence.

An ANN has the model parameters θ = {wlij ∈ R}. The
output values of each neuron are calculated by applying non-
linear activation functions to the linear combination of the con-
nected inputs. We will only outline formalisms that are rele-
vant for the further analysis and refer the interested reader e.g.
to [2] for details. Omitting the bias terms, the input to the fi-
nal layer is calculated as zLc =

∑
i w

L
icy

(L−1)
i and the out-

put yL results from a transformation with the softmax function:
yLc = σ(zc) =: qθ(c|xn).

Given a training set of correctly labeled samples{
(xn, cn) : 1 ≤ n ≤ N

}
, the training consists of minimizing

the global error function Eglobal = 1
N

∑
nE(q

(
· |xn

)
, cn).

The minimization is usually done by stochastic gradient descent
and the weight update is performed in the direction of the nega-
tive gradient, which is given by:

∂E

∂wlij
=
∂E

∂zlj
·
∂zlj
∂wlij

= ∆l
j · y

(l−1)
i (10)

The error signal ∆L in the final layer depends on both the error
criterion and the activation function.

As stated in Section 1, some combinations of error criterion
and activation function in the last layer, such as {SE, linear}
or {CE, softmax}, result in a convenient form of the error ∆L

c :
yc − δ(cn, c). In case of the pair {SE, softmax}, the error be-
comes

∑
k(yk − δ(k, cn)) · yk[δ(c, k)− yc].

How does the error signal (and therefore the gradient in
Eq. 10) depend on the actual output of a neuron? Following
a similar approach as in [6], we look at the functional depen-
dencies between the two variables. For the CE criterion, the
dependency is linear:

∆CE
c (yc) =

{
yc − 1 c = cn

yc c 6= cn
(11)

while in case of SE, the dependency contains quadratic and cu-
bic terms:

∆SE
c (yc) =

{
4y2c − 2yc(1 +

∑
k y

2
k) c = cn

2y2c − 2yc(−ycn +
∑
k y

2
k) c 6= cn

(12)

In contrast to ∆CE
c , these polynomials can attain small values

not only when the output is nearly optimal, but also when it
comes close to the opposite value. This can cause the gradient
to vanish where the learning should have been continued.



4. Experimental results
In this chapter we describe our evaluation environment and the
results obtained on an ASR and an HWR tasks.

There are several methods of integration of neural networks
in an ASR system. We will focus on the hybrid approach [1]
rather than Tandem [7], because it allows to observe the dif-
ferences between ANNs more directly. The main idea here is
to plug in the state posterior estimation of the ANN into the
likelihood computation needed in a conventional HMM system:
p̃(xn|c) ∝ qθ(c|xn)/p(c)α. The scaling factor α was empiri-
cally tuned on the development data and set to 0.3 for both the
ASR and the HWR task.

Note that the recognition result depends not only on the
ANN outputs, but also on the other knowledge sources in the
overall system, i.e. language model and pronunciation lexicon
(ASR) or spelling dictionary (HWR).

4.1. Experimental setup

ASR. The ANN mini-batch training for the ASR task is per-
formed with a multi-layer perceptron (MLP) on 50 hours of
speech from the Quaero [8] English database train11, which
amounts to ca. 16 million input samples. The development
and evaluation sets consist of ca. 3.5 hours of speech each,
corresponding to about 1.2 million samples. Every input vec-
tor is a concatenation of 16-dimensional MFCC vector with its
first temporal derivative and the first component of the second
derivative (16+16+1=33). A sliding window of 9 frames is ap-
plied to build the 297-dimensional vector as input to the ANN.
A 4-gram language model (LM) is used during the recognition.

We chose a simple topology of one hidden layer with 2000
nodes and a softmax output layer with 4500 nodes correspond-
ing to the generalized triphones tied by a phonetic classification
and regression tree (CART). The number of trainable weights
amounts to approx. 600k.

The ASR baseline system is a conventional GMM-HMM
based model trained on the same database w.r.t. the maximum
likelihood (ML) criterion. We applied linear discriminant anal-
ysis (LDA) to 9 consecutive MFCC frames to obtain the final
45-dimensional features. The GMM with a globally pooled
diagonal covariance matrix consists of approx. 660k densities,
which corresponds to about 30M trainable parameters.

HWR. For the HWR task the IAM database [9] was used,
which consists of handwritten English sentences built upon the
LOB corpus [10]. The data is provided in three disjoint sets
with 747 text lines for training, 116 text lines for development,
and 336 text lines for evaluation. A sliding cosine window of
30px width with a shift of 3px is applied to the images pro-
ducing 4 million frames for the training set, 600k frame for the
development set, and 2 million frames for the evaluation set.
Each frame is normalized by its 1st and 2nd order moments and
reduced by PCA to 20 components. Concatenating the horizon-
tal and vertical moments to the PCA reduced frame results in a
24-dimensional feature vector [11]. We use a 3-gram LM built
upon the LOB, Brown, and Wellington corpora [10, 12, 13] with
a vocabulary containing the 50k most frequent words.

As baseline system we use a conventional GMM-HMM
based model trained on the same data w.r.t. the ML crite-
rion. The GMM consists of approx. 33k densities. A glob-
ally pooled diagonal covariance matrix is used leading to about
800k trainable parameters. Experiments were performed with
bidirectional Long-Short-Term-Memory recurrent neural net-
works (LSTM-BRNN) [14]. The LSTM-BRNN is composed

Table 1: Effect of random initialization on the convergence.
Frame and word error rates in percent.

Task System dev eval
FER WER FER WER

ASR MLP CE 70.5 24.9 71.6 30.9
MLP SE 81.1 41.1 82.0 47.4

HWR BRNN CE 13.2 17.7 15.2 22.7
BRNN SE 18.3 19.0 19.9 24.4

0 0.25 0.5 0.75 1
−1

−0.5

0

0.5

1

yc

∆
C
E

c

 

 

c = cn
c 6= cn (random)

0 0.25 0.5 0.75 1
−0.6

−0.3

0

0.3

0.6

yc

∆
S
E

c

 

 

c = cn
c = cn (miscl.)
c 6= cn (random)

Figure 2: Error signal ∆c as a function of network output for
CE (top) and SE (bottom). In case of SE, the correct class is
plotted in green whenever the frame was misclassified.

of memory cells. Each memory cell contains a central linear
node which is controlled by several gating nodes. This structure
allows the network to use long-term contextual information se-
lectively such that it is less affected by the vanishing gradient
problem compared to tradition recurrent neural network models
[15]. The LSTM-BRNN was successfully applied to several se-
quence learning tasks and evolved to be the topology of choice
in HWR.

In our experiments the LSTM-BRNN contained two hid-
den layers with 100 and 200 nodes respectively. Through the
recurrent connections no window on frame level is required and
therefore the input layer of the LSTM-RNN consists of one
node for each of the 24 dimensions of an input vector. The
softmax output layer consists of 79 nodes representing the char-
acter labels of the IAM database. In total approx. 800k weights
have to be trained.

4.2. Results

4.2.1. Convergence issues
Starting with the ASR task we trained two MLPs with randomly
initialized weights. Table 1 shows that the SE network has not
reached the performance of CE. In fact, one could argue that the
SE training requires different parametrization and that the expe-
rience of training CE networks does not apply to SE. In order to
obtain the best possible SE system, we performed a grid search
over various parameters like the learning rate, the weight initial-
ization range and the stopping condition. We found it helpful to
increase the learning rate from from 0.008 to 0.01 and to reduce
the batch size from 2048 to 256. All other parameters turned
out to be not very sensitive to switching from the CE criterion
to SE. It took 15 epochs to train both the CE and the SE systems
from scratch.



Table 2: Effect of initialization by CE pre-trained neural net-
work. Frame and word error rates for the baseline GMM sys-
tems and hybrid systems.

Task System dev eval
FER WER FER WER

ASR Baseline GMM - 24.8 - 31.7
MLP CE 70.5 24.9 71.6 30.9
MLP SE 70.3 24.5 71.5 30.5

HWR Baseline GMM - 17.4 - 22.3
BRNN CE 13.2 17.7 15.2 22.7
BRNN SE 12.2 16.8 13.5 21.9

For the HWR task we trained two LSTM-BRNNs with ran-
domly initialized weights. The results are shown in Table 1.
Similar to the ASR task, the CE system outperforms the SE
system. In our experiments learning rates of 0.001 for CE and
0.01 for SE gave best results. The CE system reached its min-
imal cross-entropy score after 5 epochs, while the SE system
required 25 epochs to converge.

As stated in Section 3, the inferior performance of the SE
training with random initialization can be connected to a gra-
dient vanishing already in the output layer. Figure 2 shows the
output error signal ∆c evaluated on a subset of training data.
The plot shows that with SE, in contrast to CE, many misclassi-
fied training examples result in a tiny gradient, which can be ex-
plained by the existence of the plateau resulting from the bounds
derived in Eq. 7 and 9. This representation clearly shows that,
other than for CE, the gradient can vanish for the SE criterion
with the softmax activation. During the training, this can lead
to a slowdown or even full stagnation. This analysis agrees with
the observations reported in [6] and [16].

4.2.2. Training with a good initialization
We made sure that the CE ANN fully converged by restarting
the training, but the performance did not improve anymore. Fi-
nally we used that model to initialize a new SE training. It con-
verged already after 3 more epochs and the recognition results
in Table 2 show that this “fine-tuning” step improved all error
measures consistently.

For the HWR task we followed the same strategy: we made
sure that the CE ANN reached its maximum performance by
training an additional epoch. While this epoch decreased the
FER from 13.27% to 13.19% it led to an increase in the CE
score which in turn decreased the performance of the hybrid
HMM system. Finally we trained an SE system initalized with
the CE system. As in the ASR task, this “fine-tuning” step im-
proved the overall system and outperformed the GMM baseline.

In order to understand the effect the SE training had on the
initalization by CE, we look at the distribution of the network
outputs for the correct class as well as the distribution of the
SE values within the boundaries derived in Section 2. Figure 3
shows that the SE training slightly shifted the probability mass
towards the high values of q(cn|xn). Figure 4 shows the his-
togram of the directions on the error plane in which every vector
has been shifted during the SE training. The difference in the
SE is inversely proportional to the difference in log q(cn|xn)

before and after “fine-tuning” (denoted as q(0) and q(1)). While
the error criterion increased for 39.2% of the vectors (top-left
quadrant), it decreased for the other 47.4% (bottom-right quad-
rant). The overall squared error was reduced by 1.2%.

5. Conclusions
In this paper we presented an investigation on the properties of
the cross-entropy and the squared error criteria for training of
ANNs. A theoretical analysis of the error bounds was supported

Figure 3: The upper plot shows the histogram of log q(cn|xn)
on a development set. The lower plot depicts how the corre-
sponding error values are distributed within the boundaries de-
rived in Eq. 7 and 9. The values are obtained from the best ASR
systems (cf. Table 2).
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Figure 4: Histogram of shifts the points in Fig. 3 (bottom) expe-
rience after the “fine-tuning” training according to SE.

by experimental evaluation with well trained ANNs.
The experimental results have shown that, in a compara-

ble environment and with randomly initialized weights, the CE
criterion allows to find a better local optimum than the SE crite-
rion. The training of the SE system quickly got stuck in a worse
local optimum where the gradient vanished and no further re-
duction of the classification errors was possible. We presented
an analysis of the gradients that explains this convergence issue.

However, starting with a good initialization, the SE crite-
rion could consistently improve the solution found by the CE
system from 30.9% to 30.5% (ASR) and from 22.7% to 21.9%
(HWR) measured in WER in a HMM-ANN hybrid system.
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