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Cross Euclidean-to-Riemannian Metric Learning
with Application to Face Recognition from Video

Zhiwu Huang, Member, IEEE, Ruiping Wang, Member, IEEE, Shiguang Shan, Senior Member, IEEE,

Luc Van Gool, Member, IEEE and Xilin Chen, Fellow, IEEE

Abstract—Riemannian manifolds have been widely employed for video representations in visual classification tasks including video-

based face recognition. The success mainly derives from learning a discriminant Riemannian metric which encodes the non-linear

geometry of the underlying Riemannian manifolds. In this paper, we propose a novel metric learning framework to learn a distance metric

across a Euclidean space and a Riemannian manifold to fuse the average appearance and pattern variation of faces within one video.

The proposed metric learning framework can handle three typical tasks of video-based face recognition: Video-to-Still, Still-to-Video

and Video-to-Video settings. To accomplish this new framework, by exploiting typical Riemannian geometries for kernel embedding,

we map the source Euclidean space and Riemannian manifold into a common Euclidean subspace, each through a corresponding

high-dimensional Reproducing Kernel Hilbert Space (RKHS). With this mapping, the problem of learning a cross-view metric between

the two source heterogeneous spaces can be expressed as learning a single-view Euclidean distance metric in the target common

Euclidean space. By learning information on heterogeneous data with the shared label, the discriminant metric in the common space

improves face recognition from videos. Extensive experiments on four challenging video face databases demonstrate that the proposed

framework has a clear advantage over the state-of-the-art methods in the three classical video-based face recognition tasks.

Index Terms—Riemannian manifold, video-based face recognition, cross Euclidean-to-Riemannian metric learning.

✦

1 INTRODUCTION

DUE to robustness against varying imaging conditions,
Riemannian manifolds have proven powerful repre-

sentations for video sequences in many branches of com-
puter vision. Two of the most popular Riemannian struc-
tures are the manifold of linear subspaces (i.e., Grassmann
manifold) and the manifold of Symmetric Positive Definite
(SPD) matrices. From a different perspective, these Rieman-
nian representations can be related to modeling a video with
a multivariate Gaussian distribution, characterized by its
mean and covariance matrix. In the case of the Grassmann
manifold, the distances between subspaces can be reduced
to distances between multivariate Gaussian distributions by
treating linear subspaces as the flattened limit of a zero-
mean, homogeneous factor analyzer distribution [1]. In the
case of the SPD manifold, a sequence of video frames is
represented as the covariance matrix of the image features
of frames [2], [3], which therefore essentially encodes a zero-
mean Gaussian distribution of the image features. In [4], [5],
each video is modeled as a Gaussian distribution with non-
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zero mean and covariance matrix, which can be combined to
construct an SPD matrix, and thus also resides on a specific
SPD manifold [6], [7].

The success of Riemannian representations in visual
recognition is mainly due to the learning of more dis-
criminant metrics, which encode Riemannian geometry of
the underlying manifolds. For example, by exploiting the
geometry of the Grassmann manifolds, [8] proposed Grass-
mann kernel functions to extend the existing Kernel Linear
Discriminant Analysis [9] to learn a metric between Grass-
mannian representations. In [10], a new method is presented
to learn a Riemannian metric on a Grassmann manifold
by performing a Riemannian geometry-aware dimension-
ality reduction from the original Grassmann manifold to a
lower-dimensional, more discriminative Grassmann mani-
fold where more favorable classification can be achieved.
To learn a discriminant metric for an SPD representation,
[2] derived a kernel function that explicitly maps the SPD
representations from the SPD manifold to a Euclidean space
where a traditional metric learning method such as Partial
Least Squares [11] can be applied. In [12], an approach
is proposed to search for a projection that yields a low-
dimensional SPD manifold with maximum discriminative
power, encoded via an affinity-weighted similarity measure
based on Riemannian metrics on the SPD manifold.

In this paper, we focus on studying the application of
Riemannian metric learning to the problem of video-based
face recognition, which identifies a subject with his/her
face video sequences. Generally speaking, there exist three
typical tasks of video-based face recognition, i.e., Video-to-
Still (V2S), Still-to-Video (S2V) and Video-to-Video (V2V)
face identification/verification. Specifically, the task of V2S
face recognition matches a query video sequence against
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Fig. 1. Conceptual illustration of traditional Euclidean metric learning (a),
Euclidean-to-Euclidean metric learning (b), Riemannian metric learn-
ing (c), Riemannian-to-Riemannian metric learning (d) and the pro-
posed cross Euclidean-to-Riemannian metric learning (e). RD1/RD2 ,
M/M1/M2 and Rd indicate a Euclidean space, a Riemannian man-
ifold and a common subspace, respectively. f/g, ϕ/ψ denote linear
and non-linear transformations, and different shapes (i.e., circles and
rectangles) represent classes.

still face images, which are typically taken in a controlled
setting. This task commonly occurs in watch list screening
systems. In contrast, in the task of S2V face recognition,
a still face image is queried against a database of video
sequences, which can be applied to locate a person of inter-
est by searching his/her identity in the stored surveillance
videos. The third task, i.e., V2V face recognition, looks for
the same face in input video sequences among a set of target
video sequences. For example, one could track a person
by matching his/her video sequences recorded somewhere
against the surveillance videos taken elsewhere.

To handle the tasks of video-based face recognition,
state-of-the-art deep feature learning methods [13], [14],
[15], [16], [17] typically adopt mean pooling strategy to fuse
deep features from single frames within one face video.
However, in addition to the first-order mean pooling, as
studied in many works such as [4], [5], [18], [19], [20], the
pattern variation (i.e., second-order pooling) of videos pro-
vides yet an important complementary cue for video-based
face recognition. With this motivation in mind, we propose a
new metric learning scheme across a Euclidean space and a
Riemannian manifold to match/fuse appearance mean and
patter variation (i.e., first- and second-order poolings) for
still images and video sequences. In particular, the learning
scheme employs either raw or even deeply learned feature
vectors (i.e., Euclidean data) from still facial images, while
representing the faces within one video sequence with both
their appearance mean (i.e., Euclidean data) and pattern
variation models that are typically treated as Riemannian
data. Benefited from the new architecture, the three typical
video-based face recognition tasks can be uniformly tackled.
Compared with the previous version [21] that can only
handle V2S/S2V face recognition with pattern variation
modeling on videos, this paper mainly makes two technical
improvements:

• To improve the V2S/S2V face recognition task, the
new framework represents each video simultane-
ously with appearance mean and pattern variation
models, and derives a more generalized cross Eu-

clidean and Riemannian metric learning scheme to
match still images and video sequences.

• The original framework is also extended to handle
the task of V2V face recognition. To this end, the
objective function of the framework is adapted to
fuse Euclidean data (i.e., appearance mean) and Rie-
mannian data (i.e., pattern variation) of videos in a
unified framework.

The key challenge of learning Euclidean-to-Riemannian
metric learning is the essentially heterogeneous properties
of the processed underlying data spaces, i.e., Euclidean
spaces and Riemannian manifolds, which respect totally
different geometrical structures and thus are equipped with
different metrics, i.e. Euclidean distance and Riemannian
metric respectively. As a result, applying most of traditional
metric learning methods in Fig.8(a), (b), (c) and (d) will
totally break down in the context of learning a metric
across a Euclidean space and a Riemannian manifold. For
example, Euclidean-to-Euclidean metric learning Fig.8(b)
merely learns a discriminative distance metric between two
Euclidean spaces with different data domain settings, while
Riemannian-Riemannian metric learning Fig.8(c) only ex-
plores a discriminative function across two homogeneous
Riemannian manifolds. Hence, in the metric learning theory,
this work mainly brings the following three innovations:

• As depicted in Fig.8(e), a novel heterogeneous met-
ric learning framework is developed to match/fuse
Euclidean and Riemannian representations by de-
signing a new objective function well performing
across Euclidean-Riemannian spaces. To the best of
our knowledge, it is one of the first attempts to learn
the metric across Euclidean and Riemannian spaces.

• The proposed metric learning scheme can accommo-
date a group of typical non-Euclidean (Riemannian)
representations widely used in vision problems, e.g.,
linear subspaces, affine subspaces and SPD matrices.
Thus, it is a general metric learning framework to
study the problem of fusing/matching hybrid Eu-
clidean and Riemannian data.

2 RELATED WORK

In this section we review relevant Euclidean metric learning
and Riemannian metric learning methods. In addition, we
also introduce existing applications of Riemannian metric
learning to the problem of video-based face recognition.

2.1 Euclidean Metric Learning

In conventional techniques to learn a metric in a Euclidean
space, the learned distance metric is usually defined as
a Mahalanobis distance, which is the squared Euclidean
distance after applying the learned linear transformation(s)
to the original Euclidean space(s). According to the number
of the source Euclidean spaces, traditional metric learning
methods can be categorized into Euclidean metric learning
and Euclidean-to-Euclidean metric learning.

As shown in Fig.8(a), the Euclidean metric learning
methods [22], [23], [24], [25], [26] intend to learn a metric or a
transformation f of object features from a source Euclidean
space R

D to a target Euclidean space R
d. For example, [23]
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introduced an information-theoretic formulation to learn
a metric in one source Euclidean space. In [25], a metric
learning method was proposed to learn a transformation
from one Euclidean space to a new one for the K-nearest
neighbor algorithm by pulling neighboring objects of the
same class closer together and pushing others further apart.
In [26], an approach was presented to learn a distance metric
between (realistic and virtual) data in a single Euclidean
space for the definition of a more appropriate point-to-set
distance in the application of point-to-set classification.

In contrast, as depicted in Fig.8(b), the Euclidean-to-
Euclidean metric learning methods [27], [28], [29], [30],
[31], [32], [33] are designed to learn a cross-view metric
or multiple transformations f, g mapping object features
from multiple source Euclidean spaces, say R

D1 , R
D2 , to

a target common subspace R
d. For instance, [30] proposed a

metric learning method to seek multiple projections under a
neighborhood preserving constraint for multi-view data in
multiple Euclidean spaces. In [31], a multiple kernel/metric
learning technique was applied to integrate different object
features from multiple Euclidean spaces into a unified Eu-
clidean space. In [33], a metric learning method was devel-
oped to learn two projections from two different Euclidean
spaces to a common subspace by integrating the structure
of cross-view data into a joint graph regularization.

2.2 Riemannian Metric Learning

Riemannian metric learning pursues discriminant functions
on Riemannian manifold(s) in order to classify the Rieman-
nian representations more effectively. In general, existing
Riemannian metric learning Fig.8 (c) and Riemannian-to-
Riemannian metric learning Fig.8 (d) adopt one of the
following three typical schemes to achieve a more desirable
Riemannian metric on/across Riemannian manifold(s).

The first Riemannian metric learning scheme [34], [35],
[36], [37], [38], [39] typically first flattens the underlying
Riemannian manifold via tangent space approximation, and
then learns a discriminant metric in the resulting tangent
(Euclidean) space by employing traditional metric learning
methods. However, the map between the manifold and
the tangent space is locally diffeomorphic, which inevitably
distorts the original Riemannian geometry. To address this
problem, LogitBoost on SPD manifolds [34] was introduced,
by pooling the resulting classifiers in multiple approximated
tangent spaces on the calculated Karcher mean on Rieman-
nian manifolds. Similarly, a weighted Riemannian locality
preserving projection is exploited by [38] during boosting
for classification on Riemannian manifolds.

Another family of Riemannian metric learning methods
[1], [2], [3], [4], [8], [40], [41], [42], [43] derives Rieman-
nian metric based kernel functions to embed the Rieman-
nian manifolds into a high-dimensional Reproducing Kernel
Hilbert space (RKHS). As an RKHS respects Euclidean ge-
ometry, this learning scheme enables the traditional kernel-
based metric learning methods to work in the resulting
RKHS. For example, in [1], [3], [8], [40], the projection metric
based kernel and its extensions were introduced to map
the underlying Grassmann manifold to an RKHS, where
kernel learning algorithms developed in vector spaces can
be extended to their counterparts. To learn discriminant data

on the SPD manifolds, [2], [3], [4], [41], [42], [43] exploited
some well-studied Riemannian metrics such as the Log-
Euclidean metric [44], to derive positive definite kernels on
manifolds that permit to embed a given manifold with a
corresponding metric into a high-dimensional RKHS.

The last kind of Riemannian metric learning [10], [12],
[45], [46] learns the metric by mapping the original Rieman-
nian manifold to another one equipped with the same Rie-
mannian geometry. For instance, in [12], a metric learning
algorithm was introduced to map a high-dimensional SPD
manifold into a lower-dimensional, more discriminant one.
This work proposed a graph embedding formalism with
an affinity matrix that encodes intra-class and inter-class
distances based on affine-invariant Riemannian metrics [47],
[48] on the SPD manifold. Analogously, on the Grassmann
manifold, [10] proposed a new Riemannian metric learning
to learn a Mahalanobis-like matrix that can be decomposed
into a manifold-to-manifold transformation for geometry-
aware dimensionality reduction.

In contrast to Riemannian metric learning performed on
a single Riemannian manifold, Riemannian-to-Riemannian
metric learning [20], [49] typically learns multiple Rieman-
nian metrics across different types of Riemannian mani-
folds by employing the second Riemannian metric learning
scheme mentioned above. For example, in [49], multiple Rie-
mannian manifolds were first mapped into multiple RKHSs,
and a feature combining and selection method based on
a traditional Multiple Kernel Learning technique was then
introduced to optimally combine the multiple transformed
data lying in the resulting RKHSs. Similarly, [20] adopted
multiple traditional metric learning methods to fuse the
classification scores on multiple Riemannian representations
by employing Riemannian metric based kernels on their
underlying Riemannian manifolds.

2.3 Riemannian Metric Learning Applied to Video-

based Face Recognition

State-of-the-art methods [1], [2], [4], [5], [8], [12], [19], [36],
[46], [50] typically model each video sequence of faces with
a variation model (e.g., linear subspace, affine subspace and
SPD matrices) and learn a discriminant Riemannian metric
on the underlying Riemannian manifold for robust video-
based face recognition. For example, [8] represented each set
of video frames by a linear subspace of their image features.
By exploiting the geometry of the underlying Grassmann
manifold of linear subspaces, they extended the Kernel Lin-
ear Discriminant Analysis method to learn discriminative
linear subspaces. As studied in [1], image sets are more
robustly modeled by affine subspaces, each of which is
obtained by adding an offset (i.e, the data mean) to one
linear subspace. Analogously to [8], an affine Grassmann
manifold and its Riemannian geometry were exploited by
[1] for affine subspace discriminant learning. In [2], each
video is modeled as a covariance matrix, which is then
treated as an SPD matrix residing on the SPD manifold. To
learn discriminative SPD matrices, they applied traditional
discriminant analysis methods such as Partial Least Squares
on the manifold of SPD matrices. Accordingly, the success
of these methods mainly derives from the effective video
modeling with Riemannian representations and discrimi-
nant metric learning on such Riemannian data.
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Fig. 2. Overview of the proposed Cross Euclidean-to-Riemannian Metric
Learning (CERML) framework. RD , M, Hx/Hy , Rd represent a Eu-
clidean space, a Riemannian manifold, a Hilbert space and a common
subspace respectively. fx/fy , ψx/ψy denote linear and nonlinear trans-
formation functions, and different shapes represent classes.

3 CROSS EUCLIDEAN-TO-RIEMANNIAN METRIC

LEARNING

In this section, we first formulate the new problem of Cross
Euclidean-to-Riemannian Metric Learning (CERML), and
then present its objective function. In the end, we develop
an optimization algorithm to solve the objective function.

3.1 Problem Formulation

Let X = {x1,x2, . . . ,xm},xi ∈ R
D be a set of Eu-

clidean data with class labels {lx1 , l
x
2 , . . . , l

x
m} and Y =

{y1,y2, . . . ,yn},yj ∈ M be a set of Riemannian represen-
tations with class labels {ly1 , l

y
2 , . . . , l

y
n}, where yj come as

a certain type of Riemannian representations such as linear
subspaces, affine subspaces, or SPD matrices.

Given one pair of a Euclidean point xi and a Rieman-
nian point yj , we use d(xi,yj) to represent their distance.
To achieve an appropriate distance metric between them
for better discrimination, we propose to learn two trans-
formation functions ψx and ψy , which respectively map
the Euclidean points and Riemannian points to a common
Euclidean subspace. In the common subspace, the learned
distance metric between the involved pair of heterogeneous
data can be reduced to the classical Euclidean distance as:

d(xi,yj) =
√

(ψx(xi)− ψy(yj))T (ψx(xi)− ψy(yj)). (1)

However, as the source Euclidean space R
D and Rieman-

nian manifold M differ too much in terms of geometrical
data structure, it is difficult to employ linear transformations
to map them into the common target Euclidean subspace
R
d. This motivates us to first transform the Riemannian

manifold to a flat Euclidean space so that the heterogene-
ity between this flattened space and the source Euclidean
space reduces. To this end, there exist two strategies: one
is tangent space embedding, and the other is Reproducing
Kernel Hilbert Space (RKHS) embedding. The first strategy
pursues an appropriate tangent space to approximate the
local geometry of the Riemannian manifold. In contrast,
the second strategy exploits typical Riemannian metrics
based kernel functions to encode Riemannian geometry of

the underlying manifold. As evidenced by the theory of
kernel methods in Euclidean spaces, compared with the
tangent space embedding scheme, the RKHS embedding
yields much richer high-dimensional representations of the
original data, making visual classification tasks easier.

With this idea in mind, and as shown in Fig.2, the pro-
posed framework of Cross Euclidean-to-Riemannian Metric
Learning (CERML) first derives the kernel functions based
on typical Euclidean and Riemannian metrics to define the
inner product of the implicit non-linear transformations ϕx

and ϕy , which respectively map the Euclidean space R
D

and the Riemannian manifold M into two RKHSs Hx, Hy .
After the kernel space embedding, two mappings fx, fy
are learned from the two RKHSs to the target common
subspace. Thus, the final goal of this new framework is
to employ the two mappings ψx and ψy to transform
the original Euclidean data and Riemannian data into the
common subspace R

d, where the distance metric between
each pair of Euclidean data point and Riemannian data
point is reduced to the classical Euclidean distance de-
fined in Eq. 1. In particular, the two linear projections
can be represented as fx(xi) = V T

x xi, fy(yj) = V T
y yj ,

where V T
x ,V

T
y are two linear projection matrices. Inspired

by the classical kernel techniques, we employ the corre-
sponding kernel functions to derive the inner products of
these two non-linear transformations as 〈ϕx(xi), ϕx(xj)〉 =
Kx(xi,xj), 〈ϕy(yi), ϕy(yj)〉 = Ky(yi,yj), where Kx,Ky

are the kernel matrices involved. By parameterizing the
inner products in the two RKHSs, the formulations of the
two final mapping functions ψx and ψy can be achieved by
ψx(xi) = W T

x Kx.i
, ψy(yj) = W T

y Ky.j
, where Kx.i

,Ky.i

are respectively the i-th columns of the kernel matrices
Kx,Ky . Accordingly, the distance metric Eq.1 between a
pair of a Euclidean point x and a Riemannian representation
y can be further formulated as:

d(xi,yj) =
√

(W T
x Kx.i

−W T
y Ky.j

)T (W T
x Kx.i

−W T
y Ky.j

).

(2)
Additionally, according to the above mapping mode, the
distance metric between each pair of transformed homoge-
neous data points in the common Euclidean subspace can
also be achieved as:

dx(xi,xj) =
√

(W T
x Kx.i

−W T
x Kx.j

)T (W T
x Kx.i

−W T
x Kx.j

),

(3)

dy(yi,yj) =
√

(W T
y Ky.i

−W T
y Ky.j

)T (W T
y Ky.i

−W T
y Ky.j

),

(4)
where the specific forms of Kx and Ky will be presented in
the following.

Now, we need to define the kernel functions
Kx(xi,xj),Ky(yi,yj) for Euclidean data and Riemannian
representations. For the Euclidean data, without loss of gen-
erality, we exploit the Radial Basis Function (RBF) kernel,
which is one of the most popular positive definite kernels.
Formally, given a pair of data point xi,xj in Euclidean
space, the kernel function is defined as:

Kx(xi,xj) = exp(−‖xi − xj‖
2/2σ2

x), (5)

which actually employs the Euclidean distance between two
Euclidean points xi and xj .
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As for the Riemannian representations, since they are
commonly defined on a specific type of Riemannian man-
ifold that respects a non-Euclidean geometry [1], [2], [8],
the above kernel function formulation will fail. So, it has to
be generalized to Riemannian manifolds. For this purpose,
given two elements yi,yj on a Riemannian manifold, we
formally define a generalized kernel function for them as:

Ky(yi,yj) = exp(−d2(yi,yj)/2σ
2
y). (6)

The kernel function performed on Riemannian repre-
sentations actually takes the form of a Gaussian function
(note that we also study the linear kernel case in the supple-
mentary material). The most important component in such
a kernel function is d(yi,yj), which defines the distance
between one pair of Riemannian points on the underlying
Riemannian manifold. Next, this distance is discussed for
three typical Riemannian representations, i.e., Grassman-
nian data, affine Grassmannian data and SPD data.

1) For Grassmannian representations

As studied in [1], [3], [8], [40], [51], each Riemannian
representation on a Grassmann manifold G(d,D) refers to
a d-dimensional linear subspace of RD . The linear subspace
can be represented by its orthonormal basis matrix U that is
formed by the d leading eigenvectors corresponding to the
d largest eigenvalues of the covariance matrix of one Eu-
clidean data set. On a Grassmann manifold, one of the most
popular Riemannian metrics is the projection metric [51].
Formally, for one pair of data yi,yj on the Grassmannian,
their distance is measured by the projection metric:

d(yi,yj) = 2−1/2‖UiU
T
i −UjU

T
j ‖F , (7)

where ‖ · ‖F denotes the matrix Frobenius norm.

2) For affine Grassmannian representations

In contrast to the Grassmannian representation, each
affine Grassmannian point is an element on an affine Grass-
mann manifold, which is the space of d-dimensional affine
subspaces named affine Grassmann manifold AG(d,D).
Therefore, each Riemannian representation on AG(d,D) is
an affine subspace spanned by an orthonormal matrix U

adding the offset µ (i.e., the mean) from the origin. On the
affine Grassmann manifold, [1] defined a similarity function
as tr(UiU

T
i UjU

T
i )+µT

i (I−UiU
T
i )(I−UjU

T
j )µj between

pairs of data points. Alternatively, we extend the similarity
function to a distance metric between two Riemannian data
yi,yj on the affine manifold as:

d(yi,yj) = 2−1/2(‖UiU
T
i −UjU

T
j ‖F

+ ‖(I −UiU
T
i )µi − (I −UjU

T
j )µj‖F ),

(8)

where I ∈ R
D×D is the identity matrix.

3) For SPD representations

Each SPD representation is an element of the manifold
of Symmetric Positive Definite (SPD) matrices C of size
D × D. As studied in [2], [43], [44], [47], the set of SPD
matrices yields a Riemannian manifold S

D
+ when endowing

a specific Riemannian metric. One of the most commonly
used SPD Riemannian metrics is the Log-Euclidean metric
[44] due to its effectiveness in encoding the true Riemannian

geometry by reducing the manifold to a flat tangent space
at the identity matrix. Formally, on the Riemannian SPD
manifold, the Log-Euclidean distance metric between two
elements yi,yj is given by classical Euclidean computations
in the domain of SPD matrix logarithms as:

d(yi,yj) = ‖ log(Ci)− log(Cj)‖F , (9)

where log(C) = U log(Σ)UT with C = UΣUT being the
eigen-decomposition of the SPD matrix C.

Similar to our prior work [21], we denote the proposed
CERML working in the three studied settings by CERML-
EG, CERML-EA and CERML-ES, respectively. By studying
the Riemannian metrics defined in Eq.7, Eq.8 and Eq.9,
the kernel function corresponding to the specific type of
Riemannian manifold can be derived by employing Eq.6.
However, according to Mercer’s theorem, only positive defi-
nite kernels yield valid RKHS. To achieve this, by employing
the approach developed in [43], we can easily prove the
positive definiteness of these Gaussian kernels defined on
the resulting Riemannian manifolds. As for the details to
prove their positive definiteness, readers are referred to [43].

3.2 Objective Function

From Eq.2, Eq.3, Eq.52, we find that the CERML contains
two parameter transformation matrices Wx,Wy . In order
to learn a discriminant metric between heterogeneous data,
we formulate the objective function of this new framework
to optimize the two matrices Wx,Wy in the following:

min
Wx,Wy

J(Wx,Wy)

= min
Wx,Wy

{D(Wx,Wy) + λ1G(Wx,Wy) + λ2T (Wx,Wy)},

(10)
where D(Wx,Wy) is the distance constraint defined on
the collections of similarity and dissimilarity constraints.
G(Wx,Wy) and T (Wx,Wy) are, respectively, a geometry
constraint and a transformation constraint, both of which
are regularizations defined on the target transformation
matrices Wx,Wy . λ1 > 0, λ2 > 0 are balancing parameters.

Distance constraint D(Wx,Wy): This constraint is de-
fined so that the distances between the Euclidean data and
the Riemannian data – with the similarity (/dissimilarity)
constraints – are minimized (/maximized). In this paper, we
adopt a classical expression of the sum of squared distances
to define this constraint as:

D(Wx,Wy) =
1

2

m
∑

i=1

n
∑

j=1

A(i, j)d2(xi,yj),

A(i, j) =

{

1, if lxi = lyj ,

−1, if lxi 6= lyj ,

(11)

where A(i, j) indicates if the heterogeneous data xi and yj

are relevant or irrelevant, as inferred from the class label. To
balance the effect of similarity and dissimilarity constraints,
we normalize the elements of A by averaging them over the
total number of similar/dissimilar pairs respectively.

Geometry constraint G(Wx,Wy): This constraint aims
to preserve Euclidean geometry and Riemannian geome-
try for the Euclidean and Riemannian points, respectively.
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Thus, it can be defined as: G(Wx,Wy) = Gx(Wx) +
Gy(Wy), which are Euclidean and Riemannian geometry
preserving items formulated as:

Gx(Wx) =
1

2

m
∑

i=1

m
∑

j=1

Ax(i, j)d
2
x(xi,xj),

Ax(i, j) =











aij , if lxi = lxj and k1(i, j),

−aij , if lxi 6= lxj and k2(i, j),

0, else,

(12)

Gy(Wy) =
1

2

n
∑

i=1

n
∑

j=1

Ay(i, j)d
2
y(yi,yj),

Ay(i, j) =











aij , if lyi = lyj and k1(i, j),

−aij , if lyi 6= lyj and k2(i, j),

0, else,

(13)

where aij = exp(‖x̂i−x̂j‖
2/σ2), x̂ indicates Euclidean data

x or Riemannian data y. k1(i, j) (k2(i, j)) means data zi is
in the k1 (k2) neighborhood of data zj or data zj is in the k1
(k2) neighborhood of data zi.

Transformation constraint T (Wx,Wy): Since Euclidean
distance will be used in the target common subspace where
all dimensions are treated uniformly, it is reasonable to
require the feature vectors satisfy an isotropic distribution.
Thus, this constraint can be expressed in terms of unit
covariance:

T (Wx,Wy) =
1

2
(‖W T

x Kx‖
2
F + ‖W T

y Ky‖
2
F ), (14)

where ‖ · ‖F is the Frobenius norm.

3.3 Optimization Algorithm

To optimize the objective function Eq.10, we develop an
iterative optimization algorithm, which first applies the
Fisher criterion of Fisher Discriminant Analysis (FDA) [52]
to initialize the two transformation matrices Wx,Wy , and
then employs a strategy of alternately updating their values.

Before introducing the optimization algorithm, we first
rewrite Eq.53, Eq.12 and Eq.13 in matrix formulation as:

D(Wx,Wy) =
1

2
(W T

x KxB
′

xK
T
x Wx +W T

y KyB
′

yK
T
y Wy

− 2W T
x KxAKT

y Wy),
(15)

Gx(Wx) = W T
x KxBxK

T
x Wx −W T

x KxAxK
T
x Wx

= W T
x KxLxK

T
x Wx,

(16)

Gy(Wy) = W T
y KyByK

T
y Wy −W T

y KyAyK
T
y Wy

= W T
y KyLyK

T
y Wy,

(17)

where B
′

x, B
′

y , Bx and By are diagonal matrices

with B
′

x(i, i) =
∑n

j=1
A(i, j), B

′

y(j, j) =
∑m

i=1
A(i, j),

Bx(i, i) =
∑m

j=1
Ax(i, j), By(i, i) =

∑n
j=1

Ay(i, j).

Initialization. We define the within-class template Aw

and between-class template Ab for A in Eq.53 as:

Aw(i, j) =

{

1, if lxi = lyj ,

0, if lxi 6= lyj ,
Ab(i, j) =

{

0, if lxi = lyj ,

1, if lxi 6= lyj .
(18)

By substituting Eq.18 into Eq.15, the within-class
template Dw(Wx,Wy) and between-class template
Db(Wx,Wy) for D(Wx,Wy) in Eq.53 can be computed as:

Dw(Wx,Wy) =
1

2
(W T

x KxB
′w
x KT

x Wx +W T
y KyB

′w
y KT

y Wy

− 2W T
x KxZ

wKyW
T
y ),

(19)

Db(Wx,Wy) =
1

2
(W T

x KxB
′b
x KT

x Wx +W T
y KyB

′b
y KT

y Wy

− 2W T
x KxZ

bKyW
T
y ).

(20)

Likewise, we achieve the within-class and between-class
templates for Gx and Gy in Eq.12 and Eq.13 respectively
denoted by Gw

x , Gb
x, Gw

y , Gb
y . For the sake of clarity, more

details are given in the supplementary material.

Then we can initialize Wx and Wy by maximizing the
sum of between-class templates while minimizing the sum
of within-class templates with the Fisher criterion of the
traditional Fisher Discriminant Analysis (FDA) [52]:

max
Wx,Wy

{Db(Wx,Wy) + λ1G
b(Wx,Wy)},

s.t. Dw(Wx,Wy) + λ1G
w(Wx,Wy) = 1,

(21)

where Gb(Wx,Wy) = Gb
x(Wx,Wy) + Gb

y(Wx,Wy),
Gw(Wx,Wy) = Gw

x (Wx,Wy) + Gw
y (Wx,Wy). By trans-

forming Eq.21 into matrix formulation, the function for
initialization can be further simplified as:

maxW TM bW , s.t.W TMwW = 1,

⇒ M bW = λMwW ,
(22)

where M b =

[

KxR
b
xK

T
x −KxZ

bKT
y

−Ky(Z
b)TKT

x yRb
yK

T
y

]

,Mw =
[

KxR
w
xK

T
x −KxZ

wKT
y

−Ky(Z
w)TKT

x yRw
y K

T
y

]

, W T = [W T
x ,W

T
y ]. Ob-

viously, Eq.22 is a standard generalized eigenvalue problem
that can be solved using any eigensolver.

Alternately updating. We substitute Eq.15, Eq.16, Eq.17
into the objective function J(Wx,Wy) in Eq.10 to derive its
matrix form. By differentiating J(Wx,Wy) w.r.t. Wx and
setting it to zero, we have the following equation:

∂Q(Wx,Wy)

∂Wx
= KxB

′

xK
T
x Wx −KxZKT

y Wy

+ 2λ1KxLxK
T
x Wx + 2λ2KxK

T
x Wx = 0.

(23)
Then by fixing Wy , the solution of Wx can be achieved as:

Wx = (Kx(B
′

x+2λ1Lx+2λ2I)K
T
x )

−1KxAKT
y Wy. (24)

Likewise, the solution of Wy when Wx is fixed, can be
obtained as

Wy = (Ky(B
′

y+2λ1Ly+2λ2I)K
T
y )

−1KyAKT
x Wx. (25)

We alternate the above updates of Wx and Wy for sev-
eral iterations to search an optimal solution. While it is hard
to provide a theoretical proof of uniqueness or convergence
of the proposed iterative optimization, we empirically found
our objective function Eq.10 can converge to a desirable
solution after only a few tens of iterations. The convergence
characteristics are studied in more detail in the experiments.
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4 APPLICATION TO VIDEO-BASED FACE RECOG-

NITION

In this section we present the application of the proposed
Cross Euclidean-to-Riemannian Metric Learning (CERML)
to the three typical tasks of video-based face recognition,
i.e., V2S, S2V and V2V settings.

4.1 V2S/S2V Face Recognition

As done in several state-of-the-art techniques [2], [4], [5],
[8], [12], [19], [36], we represent a set of facial frames
within one video with their appearance mean and vari-
ation model aforementioned (e.g., linear subspace) simul-
taneously. Therefore, the task of V2S/S2V face recogni-
tion can be formulated as the problem of matching Eu-
clidean representations (i.e., feature vectors) of face images
with the Euclidean data (i.e., feature mean) and Rieman-
nian representation (i.e., feature variation) of faces from
videos. Formally, the Euclidean data of a face image is
written as X = {x1,x2, . . . ,xm},xi ∈ R

D1 with labels
{lx1 , l

x
2 , . . . , l

x
m}. The Euclidean data of videos are repre-

sented by Y = {y1,y2, . . . ,yn},yj ∈ R
D2 , with la-

bels {ly1 , l
y
2 , . . . , l

y
n}, while their Riemannian data are Z =

{z1, z2, . . . , zn}, zj ∈ M sharing the labels with their Eu-
clidean data. In the following, we describe the components
of the proposed CERML framework for this task.

Distance metric. The distance metric Eq.2 in Sec.3.1 is
instantiated for V2S/S2V face recognition as:

d(xi,yj) + dxi, zj)

=
√

(W T
x Kx.i

−W T
y Ky.j

)T (W T
x Kx.i

−W T
y Ky.j

)

+
√

(W T
x Kx.i

−W T
z Kz.j )

T (W T
x Kx.i

−W T
z Kz.j ).

(26)

Objective function. The objective function Eq.10 in
Sec.3.3 takes the form:

min
Wx,Wy,Wz

J(Wx,Wy,Wz)

= min
Wx,Wy,Wz

{D(Wx,Wy,Wz) + λ1G(Wx,Wy,Wz)

+ λ2T (Wx,Wy,Wz)},
(27)

where the distance constraint D(Wx,Wy,Wz) =
D(Wx,Wy) + D(Wx,Wz), the geometry constraint
G(Wx,Wy,Wz) = Gx(Wx) + Gy(Wy) + Gz(Wz),
the transformation constraint T (Wx,Wy,Wz) =
1

2
(‖W T

x KX‖2
F
+ ‖W T

y KY ‖2
F
+ ‖W T

z KZ‖
2
F
).

Initialization. In the initialization function Eq.22, the
optimization algorithm in Sec.3.3 is instantiated with the
matrix M b,Mw as:

M b =





KxR
b
xK

T
x −KxA

b
xyK

T
y −KxA

b
xzK

T
z

−Ky(A
b
xy)

TKT
x KyR

b
yK

T
y 0

−Kz(A
b
xz)

TKT
x 0 KzR

b
zK

T
z



 ,

(28)

Mw =





KxR
w
xK

T
x −KxA

w
xyK

T
y −KxA

w
xzK

T
z

−Ky(A
w
xy)

TKT
x KyR

w
y K

T
y 0

−Kz(A
w
xz)

TKT
x 0 KzR

w
z K

T
z



 .

(29)

Alternately updating. The analytical solutions Eq.24 and
Eq.25 in the Sec.3.3 can be rewritten as:

Wx = (Kx(2B
′

x + 2λ1Lx + 2λ2I)K
T
x )

−1

(KxAxyK
T
y Wy +KxAxzK

T
z Wz),

Wy = (Ky(B
′

y + 2λ1Ly + 2λ2I)K
T
y )

−1KyAxyK
T
x Wx,

Wz = (Kz(B
′

z + 2λ1Lz + 2λ2I)K
T
z )

−1KzAxzK
T
x Wx.

(30)

4.2 V2V Face Recognition

Similar to the case of V2S/S2V face recognition, each facial
video sequence is commonly represented by the appearance
mean of its frames and their pattern variation. Therefore,
the task of V2S/S2V face recognition can be expressed
as the problem of fusing the Euclidean data (i.e., feature
mean) and the Riemannian representation (i.e., feature vari-
ation such as linear subspace) of video sequences of faces.
Formally, the Euclidean data of videos are represented by
Y = {y1,y2, . . . ,yn},yj ∈ R

D2 , with labels {ly1 , l
y
2 , . . . , l

y
n},

while the Riemannian representations of such videos are
Z = {z1, z2, . . . , zn}, zj ∈ M sharing the labels with the
Euclidean data. To adapt the proposed CERML framework
to this task, we now define its components.

Distance metric. The distance metrics Eq.3 and Eq.52 in
Sec.3.1 are implemented for V2V face recognition as:

d(yi,yj) + d(zi, zj)

=
√

(W T
y Ky.i

−W T
y Ky.j

)T (W T
y Ky.i

−W T
y Ky.j

)

+
√

(W T
z Kz.i −W T

z Kz.j )
T (W T

z Kz.i −W T
z Kz.j ).

(31)

Objective function. The objective function Eq.10 in
Sec.3.3 is instantiated as:

min
Wy,Wz

J(Wy,Wz)

= min
Wy,Wz

{D(Wy,Wz) + λ1G(Wy,Wz) + λ2T (Wy,Wz)},

(32)
where the distance constraint D(Wy,Wz) = D(Wy) +
D(Wz), the geometry constraint G(Wy,Wz) = Gy(Wy) +
Gz(Wz), the transformation constraint T (Wy,Wz) =
1

2
(‖W T

y KY ‖2
F
+ ‖W T

z KZ‖
2
F
).

Initialization. The initialized objective function Eq.22
in the optimization algorithm in Sec.3.3 is instantiated by
defining the matrix M b,Mw as:

M b =

[

KyR
b
yK

T
y −KyA

bKT
z

−Kz(A
b)TKT

y KzR
b
zK

T
z

]

, (33)

Mw =

[

KyR
w
y K

T
y −KyA

wKT
z

−Kz(A
w)TKT

y KzR
w
z K

T
z

]

. (34)

Alternately updating. The analytical solutions Eq.24 and
Eq.25 in Sec.3.3 can be derived as:

Wy = (Ky(B
′

y + 2λ1Ly + 2λ2I)K
T
y )

−1KyAKT
z Wz,

Wz = (Kz(B
′

z + 2λ1Lz + 2λ2I)K
T
z )

−1KzAKT
y Wy.

(35)
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videostills
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Fig. 3. Example still images and video frames from two internet video
face databases YTC (a), YTF (b) and two surveillance-like video face
databases PaSC (c), COX (d).

5 EXPERIMENTAL EVALUATION

To study the effectiveness of the proposed CERML, we
conduct evaluations for the three typical tasks of video-
based face recognition being – Video-to-Still (V2S), Still-to-
Video (S2V) and Video-to-Video (V2V) face recognition –
on four challenging video face databases. These databases
are YouTube Celebrities (YTC) [53], YouTube Face DB (YTF)
[54], Point-and-Shoot Challenge (PaSC) [55] and COX face
database [56].

The YTC [53] and the YTF [54] are both popular inter-
net video face databases. Both of them are collected from
YouTube. The YTC database consists of 1,910 video clips
of 47 different celebrities. The video frames often exhibit a
large variation of pose and illumination, as well as degrada-
tions such as noise or compression effects (see Fig.3 (a)). The
YTF, another internet video face database, contains 3,425
videos of 1,595 different persons. As shown in Fig.3 (b),
there are again large variations in pose, illumination, and
expression. Therefore, the YTF databases are very challeng-
ing for verifying faces from these internet videos.

The PaSC [55] and COX [56] are designed to simulate
more of a video surveillance system. The PaSC database
[55] was collected for the problem of face recognition from
stills and videos captured by point-and-shoot cameras in the
context of social networks. This database includes 9,376 still
images of 293 people balanced in terms of distance to the
camera, alternative sensors, frontal versus not-frontal views,
and varying location (see Fig.3 (c)). There are also 2,802
videos for 265 people, a subset of the 293 in the still image
portion of the PaSC. The COX captures 3,000 videos and
1,000 still images of 1,000 different persons with 3 different
camcorders located in different positions. As shown in Fig.3
(d), most of the video frames are of low resolution and low
quality, with blur, and captured under poor lighting.

5.1 V2S/S2V Face Recognition

Video-to-Still (V2S) and Still-to-Video (S2V) face recognition
matches still face images against video sequences of faces.
To evaluate our proposed method in these two video-based

face recognition scenarios, we employ two standard video
face databases being PaSC [55] and COX [56].

5.1.1 Dataset Setting

On the PaSC, the facial region is cropped from the given
video frame based on the eye coordinates, as in [55]. The
cropped facial region is aligned and scaled to a size of
224×224 pixels. Following the work of others [4], [10], [57],
we use the approach of [15] to extract state-of-the-art deep
face feature from the normalized face images. In the eval-
uation of V2S face verification on this database, the target
signature set contains still images and the query signature
set contains video sequences. The target set includes 4,688
images of 293 people while the query set contains 2,801
videos of 265 people. Since the videos are grouped into the
sets of control and handheld videos respectively, the V2S
evaluation on the PaSC consists of two tests: Video (control)-
Still and Video (handheld)-Still.

For the COX database, we use the face detection and the
positions of the eyes provided by the work in [56]. In the
scenario of V2S/S2V face recognition, we implement two
types of feature extractions. In the first setting, we rotate and
crop each face image to a normalized image of size 48× 60.
On the face images, we extract grayscale features. In the
other setting, as done on the PaSC, we also extract state-of-
the-art deep face features by the approach of [15]. In the V2S
evaluation, the target set contains still images of the persons
with known identities, while the query samples are video
clips of faces to be recognized. In contrast, the target set of
the S2V scenario conversely contains videos of faces while
the queries are still face images. There are 3 testing sets of
videos, each of which contains 700 videos from 700 subjects.
Therefore, in total 6 tests (i.e., V1-S, V2-S, V3-S, S-V1, S-V2,
S-V3, where Vi is the i-th video testing set) are conducted.

5.1.2 Method Setting

In the evaluation of V2S/S2V face recognition, besides
to the deep learning method VGGDeepFace [15] that re-
ported the state of the art on YTF, we also compare our
proposed approach with two categories of state-of-the-art
metric learning methods as listed in the following. The
homogeneous (Euclidean) metric learning approaches learn
the single-view metric between Euclidean features of video
frames/still images, and adopt the maximal pooling on the
matching between images and frames within one video. The
heterogeneous metric learning methods learn the cross-view
metric among the Riemannian representations of videos,
their Euclidean features and the Euclidean features of still
images. As KPLS, KCCA and KGMA are all both designed
to analyze heterogeneous data, we feed them with our
proposed Euclidean-to-Grassmannian (EG), Euclidean-to-
AffineGrassmannian (EA) and Euclidean-to-SPD (ES) het-
erogeneous data, which are also the inputs of our CERML.

1) Homogeneous (Euclidean) metric learning methods:
Neighborhood Components Analysis (NCA) [22],
Information-Theoretic Metric Learning (ITML)
[23], Local Fisher Discriminant Analysis (LFDA)
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TABLE 1

V2S/S2V face recognition results (%) on PaSC and COX using gray/deep features. Here EG, EA and ES represent Euclidean-to-Grassmannian,

Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matching cases, respectively. Con and han mean the control and handheld settings.

Methods
PaSC (deep) COX (gray/deep)

V(con)-S V(han)-S V1-S V2-S V3-S S-V1 S-V2 S-V3

VGGDeepFace [15] 68.62 65.29 –/79.10 –/77.53 –/79.03 –/59.31 –/65.21 –/74.29

NCA [22] 68.91 67.48 39.14/79.83 31.57/74.21 57.57/80.69 37.71/72.01 32.14/69.39 58.86/79.51

ITML [23] 67.25 65.33 19.83/82.43 18.20/73.49 36.63/86.53 26.66/73.03 25.21/61.57 47.57/82.29

LFDA [24] 72.44 69.86 21.41/66.58 22.17/55.29 43.99/72.86 40.54/78.25 33.90/68.14 61.40/84.15

LMNN [25] 71.12 67.12 34.44/83.25 30.03/72.19 58.06/83.25 37.84/76.12 35.77/70.26 63.33/80.92

PSDML [26] 66.15 63.61 12.14/65.09 9.43/58.16 25.43/80.05 7.04/54.15 4.14/49.16 29.86/78.57

KPLS [29]-EG 42.29 41.21 21.83/46.19 18.50/44.90 30.89/44.67 15.01/49.77 12.41/50.31 25.63/55.07

KPLS [29]-EA 44.42 42.30 21.54/47.31 19.19/46.94 29.41/37.96 15.73/45.97 12.51/47.10 24.54/41.41

KPLS [29]-ES 44.27 42.08 20.21/46.26 16.21/45.16 27.23/42.16 14.83/46.21 11.61/46.21 23.99/43.63

KCCA [27]-EG 58.08 55.71 32.51/73.53 28.87/70.94 48.43/78.79 30.16/73.03 27.34/70.60 44.91/78.59

KCCA [27]-EA 61.87 60.58 30.33/75.03 28.39/72.34 47.74/75.94 28.49/74.63 26.49/72.26 45.21/74.79

KCCA [27]-ES 61.36 60.11 38.60/80.87 33.20/76.63 53.26/81.94 36.39/80.00 30.87/76.76 50.96/81.40

KGMA [32]-EG 60.05 58.18 32.41/75.24 28.96/72.91 48.37/79.93 30.06/75.19 27.57/72.57 44.99/80.06

KGMA [32]-EA 64.87 63.58 30.60/79.33 28.34/76.19 47.74/79.94 28.54/78.63 26.20/76.06 45.27/78.54

KGMA [32]-ES 63.76 62.32 41.89/80.91 38.29/76.53 52.87/81.90 38.03/80.00 33.29/76.69 50.06/81.41

CERML-EG 63.34 60.92 32.63/85.71 33.89/82.51 49.33/87.23 43.29/88.80 41.19/85.69 58.71/90.99

CERML-EA 67.95 66.16 38.77/86.40 37.57/83.13 53.93/86.76 43.93/88.97 41.56/85.84 57.34/90.26

CERML-ES 70.64 68.91 51.41/86.21 49.81/82.66 64.01/86.64 52.39/88.93 49.39/85.37 65.19/89.64

[24], Large Margin Nearest Neighbor (LMNN)
[25] and Point-to-Set Distance Metric Learning
(PSDML) [26];

2) Heterogeneous metric learning methods:
Kernel Partial Least Squares (KPLS) [29], Kernel
Canonical Correlation Analysis (KCCA) [27] and
Kernel Generalized Multiview Linear Discriminant
Analysis (KGMA) [32].

For fair comparison, we tune the key parameters of the
comparative methods according to the suggestions from the
original works. For NCA, the maximum number of line
searches is set to 5. For ITML, the lower/upper bound
distance is set to the mean distance minus/plus standard
variance, and its other parameters are set to the default
values designed in its released code. In LFDA, the neigh-
borhood number k is set to 7. For LMNN, the number of
neighborhood is set to 5, the maximum iteration number is
set to 500, the portion of training samples in validation is
30%. For PSDML, we set the regularization parameter as
κ = 0.8, the number of negative pairs per sample k = 6. For
KPLS and KGMA, the numbers of the factors are set with
the class number of training data. For the proposed method
CERML, we set the parameters λ1 = 0.01, λ2 = 0.1, the
neighborhood number k1 = 1, k2 = 20, the kernel widths
σs are all specified from the mean distances respectively on
the training multi-view data, and the number of iterations is
set to 20. As studied in our previous work [21], we find that
adding the cross-view kernels (see the supplementary mate-
rial for their definitions) into the original single-view kernels
does improve the V2S/S2V face recognition. Thus, we use
the proposed cross-view kernels in [21] to concatenate the
EG/EA/ES kernels for CERML. For the comparisons be-
tween single-view and cross-view kernel cases, readers are
referred to the supplementary material.
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Fig. 4. V2S/S2V face recognition results (%) of the proposed CEMRL
dealing with different representations of videos for PaSC (deep fea-
ture) and COX (gray feature). Here, CERML-E, CERML-G, CERML-A,
CERML-S, CERML-EG, CERML-EA, CERML-ES respectively indicate
videos are represented by mean, subspace, affine subspace, SPD ma-
trix, mean+subspace, mean+affine subspace, mean+SPD matrix. Note
that CERML-G/A/S is the proposed method in our prior work [21].

5.1.3 Results and Analysis

We summarize the V2S/S2V face recognition results on the
PaSC and COX databases in Tab.1, where each reported
result on COX is the mean rank-1 identification rate over
ten random runs of testing, while the presented results on
PaSC are rank-1 verification rates at a false acceptance rate
(FAR) = 0.01. In addition, we present comparisons in terms
of running time in the supplementary material.
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Fig. 5. Convergence characteristics of the optimization algorithm of the
proposed CERML-ES in the task of V2S face recognition on COX. Here,
the 10 lines indicate the results of the 10 random V1-S testings on COX.
The value ’1’ in x-axis is the case of the initialization.

As shown in Tab.1, besides to comparing the metric
learning methods on gray features (/deep features), we also
study the state-of-the-art deep learning method VGGDeep-
Face [15]. From the results, we can achieve some observa-
tions. Particularly, on PaSC, the homogeneous (Euclidean)
metric learning methods generally outperform the existing
heterogeneous metric learning methods. Nevertheless, by
designing more sophisticated heterogeneous metric learn-
ing, our proposed CERML can achieve the results compa-
rable with the state-of-the-art on this database. On COX,
in most of tests, the exiting heterogeneous metric learning
methods KCCA and KGMA coupled with our proposed het-
erogeneous data model are comparable with state-of-the-art
homogeneous metric learning. In contrast, in the two tests
of V3-S and S-V3, since the videos typically record more
frontal face images with little variations, KCCA and KGMA
cannot take advantage of the variation modeling on videos
and thus are outperformed by the competing Euclidean
metric learning approaches. In spite of this challenge, the
proposed CERML achieves state-of-the-art results on all
the COX tests. Especially, coupling with the deep features,
the improvements of CERML over the existing state-of-the-
art methods LMNN and KGMA are around 9% and 7%,
respectively, on average. By comparing the deep learning
method VGGDeepFace on COX and PaSC, we find that the
CERML consistently makes a certain level of improvements
(about 10% on average) when using deep features. This
verifies that our proposed first- and second-order pooling
scheme can improve V2S/S2V face recognition.

Besides, we also present the performances of our CERML
with different video models working on PaSC (deep feature)
and COX (gray feature) in Fig.4. It can be found that
jointly exploiting the first-order pooling (i.e., mean) and
the second-order pooling (i.e., linear subspace, affine sub-
space, covariance matrix) significantly beats their separate
exploitation, which was investigated in our prior work [21],
in most of cases. This further validates the effectiveness of
the extended CERML method.

In Fig.5 we also report the convergence characteristics
of the optimization algorithm of the proposed CERML-ES
for the task of V2S/S2V face recognition on COX. As can be
seen from Fig.5, the objective function Eq.27 of the proposed

CERML is able to converge to a stable and desirable solution
after about 20 iterations. This mainly attributes to the well-
designed initialization strategy (i.e., an initialization with
the well-studied Fisher criterion) and the alternate updating
on the parameter transformation matrices. In other words,
adopting a good initialization strategy and regularizing the
change in the transformation matrices will help to avoid the
failure of convergence.

5.2 V2V Face Recognition

Video-to-Video (V2V) face recognition queries a video se-
quence against a set of target videos. In order to evaluate
the proposed method working on such face recognition sce-
nario, we use four publicly available video face databases,
i.e., YTC [53], YTF [54], PaSC [55] and COX [56].

5.2.1 Dataset Setting

For the YTC dataset, we resized each face image to a 20×20
image as was also done in [2], [19], and pre-processed the
resulting image with histogram equalization to eliminate
lighting effects. As done in the last evaluation, we extract
both of gray-level features and deeply learned features
with VGGDeepFace [15] from each face image. Following
the prior works [2], [19], [58], [59], we conduct ten-fold
cross validation experiments, i.e., 10 randomly selected
gallery/probe combinations. In each fold, one person has
3 randomly chosen videos for the gallery and 6 for probes.

By employing the provided data of the YTF, we directly
crop and normalize the face images from videos, and extract
both gray features ande deep features from the normalized
face images. For this database, we follow the standard
evaluation protocol [54] to perform standard, ten-fold, cross
validation, V2V face identification tests. Specifically, we
utilize the officially provided 5,000 video pairs, which are
equally divided into 10 folds. Each fold contains 250 intra-
personal pairs and 250 inter-personal pairs.

For the PaSC dataset, based on the metadata provided
in [55], we crop each face image to a color image of size
224 × 224. Similar to the V2S evaluation on PaSC, the
work [15] is employed to extract deep face features on
the normalized face images. For the V2V evaluation, there
are two video face verification tests: control-to-control and
handheld-to-handheld experiments. In both of them, the
target and query sigsets contain the same set of videos. The
task is to verify a claimed identity in the query video by
comparing with the associated target video. Since the same
1,401 control/handheld videos serve as both the target and
query sets, the ‘same video’ comparisons are excluded.

The COX database, for V2V identification evaluations,
has 3 videos per subject respectively from 3 camcorders.
Therefore, they can generate 6 experiments. The 10 random
partitions of the 300/700 subjects are designed for training
and testing. In the V2V face recognition testing, each video
face frame is normalized to a grayscale image. Similar to
its V2S/S2V evaluation, we not only extract gray features,
but also use deep features with the deep learning method of
VGGDeepFace [15].
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5.2.2 Method Setting

In this evaluation, we compare the proposed CERML with
three state-the-art deep learning methods being DeepFace
[13], FaceNet [14], VGGDeepFace [15] and DisDeepFace
[17]. Besides, we also study three groups of state-of-the-
art Riemannian metric learning methods. The first category
of methods first model videos with linear subspaces lying
on a Grassmann manifold and then learn a Grassmannian
metric for comparing two linear subspaces. The second
group of methods first represents videos with affine sub-
spaces residing on an Affine Grassmann manifold and then
compute/learn the Riemannian metric for matching two
affine subspaces. The third kind of methods first employs
SPD matrices to represent videos and learns a Riemannian
metric on the SPD manifold for comparing SPD data.

1) Grassmannian metric learning methods:
Discriminative Canonical Correlations (DCC) [60],
Grassmann Discriminant Analysis (GDA) [8], Grass-
mannian Graph-Embedding Discriminant Analysis
(GGDA) [40], Projection Metric Learning (PML) [10];

2) Affine Grassmannian computing/metric learning
methods:
Affine Hull based Image Set Distance (AHISD) [61],
Convex Hull based Image Set Distance (CHISD)
[61], Set-to-Set Distance Metric Learning (SSDML)
[26];

3) SPD Riemannian metric learning methods:
Localized Multi-Kernel Metric Learning (LMKML)
[19], Covariance Discriminative Learning (CDL) [2].

In order to achieve a fair comparison, the key parameters
of each method are empirically tuned according to the
recommendations in the original works. For MSM/AHISD,
the first canonical correlation or leading component is ex-
ploited when comparing two subspaces. For the first group
of methods DCC/GDA/GGDA, the dimensionality of the
resulting discriminant subspace is tuned from 1 to 10. For
GDA/GGDA, the final dimensionality is set to c − 1 (c
is the number of face classes in training). For AHISD, the
leading component is exploited when comparing two affine
subspaces. For SSDML, its key parameters are tuned and
empirically set as: λ1 = 0.001, λ2 = 0.5, the numbers
of positive and negative pairs per sample are 10 and 20
respectively. In GGDA, the combination parameter β is
tuned around the value of 100. For LMKML, the widths
of Gaussian kernels are tuned around the mean distance.
For our CERML, similar to the V2S/S2V evaluation, the
regularization parameters are set as λ1 = 0.01, λ2 = 0.1, the
neighborhood number k1 = 1, k2 = 20, the kernel widths σs
are equal to the mean distances on the training multi-view
data, and the number of iterations is set to 20.

5.2.3 Results and Analysis

The V2V face recognition tests on the four video face
databases are summarized in Tab.2 and Tab.3, where each
accuracy on YTC and COX is the mean rank-1 identification
rate over ten random runs of testing, while the results
on YTF and PaSC are mean verification rates and rank-1

TABLE 2

V2V face recognition results (%) on YTC and YTF using gray/deep

features. Here EG, EA and ES are the Euclidean-to-Grassmannian,

Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matchings.

Methods YTC (gray/deep) YTF (gray/deep)

DeepFace [13] –/– –/91.4

FaceNet [14] –/– –/95.1

VGGDeepFace [15] –/83.74 –/91.78

DisDeepFace [17] –/– –/94.9

DCC [60] 68.85/86.15 68.28/92.52

GDA [8] 65.02/86.44 67.00/89.20

GGDA [40] 66.56/86.54 66.56/91.60

PML [10] 66.69/86.98 67.30/92.58

AHISD [61] 66.37/81.49 64.80/90.74

CHISD [61] 66.62/74.88 66.30/90.00

SSDML [26] 68.85/85.59 65.38/88.26

CDL [2] 69.72/85.98 64.94/90.65

LMKML [19] 68.13/85.16 64.39/89.53

CERML-EG 68.08/87.62 69.42/93.36

CERML-EA 69.57/88.01 68.89/94.06

CERML-ES 72.38/88.51 68.36/93.44
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Fig. 6. V2V face recognition results (%) of the proposed CEMRL dealing
with different representations of videos using gray features for YTC, YTF,
COX and deep features for PaSC. Here, CERML-E, CERML-G, CERML-
A, CERML-S, CERML-EG, CERML-EA, CERML-ES respectively indi-
cate videos are represented by mean, subspace, affine subspace, SPD
matrix, mean+subspace, mean+affine subspace, mean+SPD matrix.

verification rates at FAR = 0.01, respectively. Besides, the
running time of the competing methods are also presented
in the supplementary material.

From the results on the internet video face databases
YTC and YTF in Tab.2, it can be observed that the three
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TABLE 3

V2V face recognition results (%) on PaSC and COX using gray/deep features. Here EG, EA and ES indicate Euclidean-to-Grassmannian,

Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matching, respectively. Con and han represent the control and handheld settings.

Methods
PaSC (deep) COX (gray/deep)

V(con)-

V(con)

V(han)-

V(han)
V2-V1 V3-V1 V3-V2 V1-V2 V1-V3 V2-V3

VGGDeepFace [15] 78.82 68.24 –/92.24 –/87.54 –/91.63 –/92.34 –/92.47 –/95.96

DCC [60] 75.83 67.04 62.53/95.86 66.10/95.57 50.56/93.00 56.09/94.29 53.84/96.86 45.19/96.29

GDA [8] 71.38 67.49 68.61/95.11 77.70/95.87 71.59/95.16 65.93/94.41 76.11/96.10 74.83/96.26

GGDA [40] 66.71 68.41 70.80/95.81 76.23/96.30 71.99/95.61 69.17/95.34 76.77/96.66 77.43/96.61

PML [10] 73.45 68.32 71.27/95.57 78.91/95.43 73.24/93.29 64.62/95.86 78.26/97.13 78.15/97.00

AHISD [61] 53.93 45.11 53.03/92.85 36.13/95.57 17.50/95.43 43.51/93.57 34.99/92.43 18.80/94.71

CHISD [61] 60.54 47.00 56.90/92.43 30.13/94.57 15.03/93.43 44.36/91.57 26.40/94.06 13.69/94.57

SSDML [26] 65.32 56.23 60.13/77.43 53.14/90.71 28.73/89.57 47.91/70.43 44.42/85.43 27.34/87.57

CDL [2] 72.69 65.44 78.43/95.53 85.31/97.61 79.71/96.40 75.56/95.96 85.84/97.33 81.87/96.51

LMKML [19] 70.41 66.15 56.14/94.73 44.26/95.16 33.14/96.37 55.37/93.81 39.83/96.12 29.54/96.28

CERML-EG 80.11 77.37 87.59/97.77 92.41/98.07 88.54/97.39 83.21/97.66 92.09/98.59 91.16/97.77

CERML-EA 77.71 75.03 87.14/98.26 91.94/98.33 88.30/97.60 82.81/97.97 92.03/98.49 91.16/97.66

CERML-ES 79.92 76.92 90.31/98.17 94.83/98.27 91.51/97.46 87.06/97.71 95.13/98.31 93.89/97.64
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Fig. 7. Convergence behaviors of the optimization algorithm of the pro-
posed CERML-ES in the task of V2V face recognition for COX. Here, the
10 lines respectively indicate the results of the 10 random V2-V1 tests
on COX. The value ’1’ along the x-axis is the case of the initialization.

existing types of Riemannian metric learning achieve com-
parable V2V face recognition accuracies. This demonstrates
that the Riemannian representations, i.e., linear subspace
and SPD matrix, employed by such Riemannian metric
learning methods typically encode approximately the same
information in terms of variations of videos for video-based
face recognition. In contrast, the proposed CERML simul-
taneously exploits the mean and the variation, resulting in
more robust face recognition. Hence, CERML generally out-
perform all the competing methods on the two databases.
In addition, by studying the behavior of the state-of-the
deep learning methods, we observe that our CERML can
be comparable with or even surpass them.

The evaluations on the two surveillance-like video face
databases PaSC and COX are reported in Tab.3. Approxi-
mately the same conclusions can be drawn from the results
on the two datasets. On PaSC, the three affine Grassmannian
learning methods are generally outperformed by the other
two kinds of Riemannian metric learning methods. This
may be because AHISD and CHISD exploit the appropriate
distance metric between Riemannian representations with-

out employing the label information of the training data. Be-
sides, SSDML just treats each video with an affine combina-
tion of frames without considering its Riemannian structure,
and thus yields worse performances on PaSC. By fusing the
mean and the variation information on videos, our CERML-
EG performs the best with improvements of about 4% and
10% over the state-of-the-art method DCC in the two tests
on PaSC, respectively. On COX, lower performances are also
achieved by the three affine Grassmannian metric learning
methods for the same reasons mentioned above. Compared
with the existing Riemannian metric learning methods, the
proposed CERML can achieve the state-of-the-art in all the
V2V face recognition tests on COX. Specifically, whenever
using gray features or deep features, CERML always reaches
some improvements over the existing state-of-the-art metric
learning methods. Furthermore, we find that the proposed
CERML with deep features has an average gain of 5% over
the state-of-the-art deep learning method VGGDeepFace on
the PaSC and COX databases.

In addition, we also report the performances of our
CERML with different video models working on YTC, YTF,
PaSC and COX in Fig.6. As can be seen, simultaneously
exploiting the mean appearance and pattern variance typ-
ically performs better than exploiting them separately. This
further demonstrates the effectiveness of fusing Euclidean
and Riemannian representations in the proposed metric
learning scheme in our CERML.

In the end, we present the convergence behavior of the
optimization algorithm of the proposed CERML-ES in the
scenario of V2V face recognition on COX (see Fig.7). As seen,
the objective function Eq.32 of the algorithm can converge
to a desirable value after tens of iterations.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel heterogeneous
metric learning framework that works across a Euclidean
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space and a Riemannian manifold to match/fuse Euclidean
and Riemannian representations of videos. The proposed
method offers a unified framework for three typical tasks
of video-based face recognition. Our extensive experimental
evaluations have clearly shown that the new technique can
achieve the state-of-the-art on four challenging video face
datasets in the three video-based face recognition tasks.

Our work contributes to learn a cross-view metric from
a Euclidean space to a Riemannian manifold, by exploiting
the Riemannian metric learning scheme of kernel embed-
ding which introduces several intrinsic drawbacks (e.g., un-
desirable scalability) of traditional kernel learning methods
as well. For future work, studying how to improve the
proposed framework with other more effective Riemannian
metric learning schemes such as manifold-to-manifold em-
bedding would be very interesting.
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7 SUPPLEMENTARY MATERIAL

This Supplementary Material provides extra details on the
following:

• APPENDIX A: Detail of the initialization of the pro-
posed CERML.

• APPENDIX B: Comparison of using linear kernels
and RBF kernels.

• APPENDIX C: Benefit of exploiting the cross-view
(Euclidean-to-Riemannian) kernels.

• APPENDIX D: Running time of the proposed
CERML and the comparative methods.

APPENDIX A

DETAIL OF THE INITIALIZATION OF THE PROPOSED

CERML

In this section, we present more details of the initialization
of our optimization algorithm. Specifically, we define the
within-class and between-class templates for A, Ax and Ay

in Eq.11, Eq.12 and Eq.13 respectively in the main paper as:

Aw(i, j) =

{

1, if lxi = lyj ,

0, if lxi 6= lyj .
(36)

Ab(i, j) =

{

0, if lxi = lyj ,

1, if lxi 6= lyj .
(37)

Aw
x (i, j) =

{

dij , if lxi = lxj and k1(i, j),

0, else.
(38)

Ab
x(i, j) =

{

dij , if lxi 6= lxj and k2(i, j),

0, else.
(39)

Aw
y (i, j) =

{

dij , if lyi = lyj and k1(i, j),

0, else.
(40)

Ab
y(i, j) =

{

dij , if lyi 6= lyj and k2(i, j),

0, else.
(41)

By substituting Eq.36 and Eq.37 into Eq.11 (in the main
paper), the within-class Dw(Wx,Wy) and between-class
templates Db(Wx,Wy) for D(Wx,Wy) can be achieved as

Dw(Wx,Wy) =
1

2
(W T

x KxB
′w
x KT

x Wx +W T
y KyB

′w
y KT

y Wy

− 2W T
x KxZ

wKyW
T
y ).

(42)

Db(Wx,Wy) =
1

2
(W T

x KxB
′b
x KT

x Wx +W T
y KyB

′b
y KT

y Wy

− 2W T
x KxZ

bKyW
T
y ).

(43)

Likewise, using Eq.38, Eq.39 and Eq.12 (in the main
paper) can achieve the within-class Gw

x (Wx) and between-
class templates Gb

x(Wx) for Gx(Wx), while employing
Eq.40, Eq.41 and Eq.13 (in the main paper) can obtain

the within-class Gw
y (Wy) and the between-class templates

Gw
y (Wy) for Gy(Wy):

Gw
x (Wx) = W T

x KxB
w
x K

T
x Wx −W T

x KxZ
w
x KT

x Wx

= W T
x KxL

w
xK

T
x Wx.

(44)
Gb

x(Wx) = W T
x KxB

b
xK

T
x Wx −W T

x KxZ
b
xK

T
x Wx

= W T
x KxL

b
xK

T
x Wx.

(45)

Gw
y (Wy) = W T

y KyB
w
y K

T
y Wy −W T

y KyZ
w
y KT

y Wy

= W T
y KyL

w
y K

T
y Wy.

(46)
Gb

y(Wy) = W T
y KyB

b
yK

T
y Wy −W T

y KyZ
b
yK

T
y Wy

= W T
y KyL

b
yK

T
y Wy.

(47)

Then we can initialize Wx and Wy by maximizing
the sum of between-class templates while minimizing the
sum of within-class templates as the Fisher criterion of the
traditional Fisher Discriminant Analysis (FDA) [52]:

max
Wx,Wy

{Db(Wx,Wy) + λ1G
b(Wx,Wy)},

s.t. Dw(Wx,Wy) + λ1G
w(Wx,Wy) = 1.

(48)

where Gb(Wx,Wy) = Gb
x(Wx,Wy) + Gb

y(Wx,Wy)
Gw(Wx,Wy) = Gw

x (Wx,Wy) + Gw
y (Wx,Wy). Substitute

Eq.42-Eq.47 into Eq.48 to obtain

max

[

Wx

Wy

]T [

KxR
b
xK

T
x −KxA

bKT
y

−Ky(A
b)TKT

x KyR
b
yK

T
y

] [

Wx

Wy

]

s.t.

[

Wx

Wy

]T [

KxR
w
xK

T
x −KxA

wKT
y

−Ky(A
w)TKT

x KyR
w
y K

T
y

] [

Wx

Wy

]

= 1.

(49)
where Rb

x = Bb
x + 2λ1L

b
x, Rb

y = Bb
y + 2λ1L

b
y , Rw

x = Bw
x +

2λ1L
w
x Rw

y = Bw
y + 2λ1L

w
y . Equivalently, the optimization

function can be further simplified to:

maxW TM bW , s.t.W TMwW = 1.

⇒ M bW = λMwW .
(50)

where matrix M b =

[

KxR
b
xK

T
x −KxZ

bKT
y

−Ky(Z
b)TKT

x yRb
yK

T
y

]

,Mw =
[

KxR
w
xK

T
x −KxZ

wKT
y

−Ky(Z
w)TKT

x yRw
y K

T
y

]

, W T = [W T
x ,W

T
y ].

Obviously, the final objective function is a standard
generalized eigenvalue problem that can be solved using
any eigensolver.

APPENDIX B

COMPARISON OF USING LINEAR KERNELS AND RBF

KERNELS

As the RBF kernel is one of the most common kernels, we
merely employ it as a special case for Eq.5 and Eq.6 in
the main paper. In addition to it, there are many popular
kernels such as linear kernel, which is able to be applied
to our metric learning framework as well. In the material,
we conduct some experiments to suggest using these two
kernels can achieve approximately the same performances
for the COX V2S/S2V and V2V evaluations as shown in
Tab.4 and Tab.5.
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TABLE 4

V2S/S2V face recognition results (%) of the proposed CERML-EG/EA/ES with linear and RBF kernel settings and using deep features on the COX

database. Here EG, EA and ES are the Euclidean-to-Grassmannian, Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matchings.

Methods V1-S V2-S V3-S S-V1 S-V2 S-V3

CERML-EG (linear) 85.36 82.19 87.19 88.93 85.60 90.29

CERML-EG (RBF) 85.71 82.51 87.23 88.80 85.69 90.99

CERML-EA (linear) 86.17 83.60 87.71 89.30 85.61 90.79

CERML-EA (RBF) 86.40 83.13 86.76 88.97 85.84 90.26

CERML-ES (linear) 84.67 81.29 85.96 86.57 83.50 86.97

CERML-ES (RBF) 86.21 82.66 86.64 88.93 85.37 89.64

TABLE 5

V2V face recognition results (%) of the proposed CERML-EG/EA/ES with linear and RBF kernel settings and using deep features on the COX

database. Here EG, EA and ES are the Euclidean-to-Grassmannian, Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matchings.

Methods V2-V1 V3-V1 V3-V2 V1-V2 V1-V3 V2-V3

CERML-EG (linear) 97.84 98.10 97.40 97.63 98.57 97.81

CERML-EG (RBF) 98.77 98.07 97.39 97.66 98.59 97.77

CERML-EA (linear) 98.03 98.09 97.54 97.73 98.63 97.90

CERML-EA (RBF) 98.76 98.33 97.60 97.97 98.49 97.66

CERML-ES (linear) 98.39 98.33 98.77 98.04 98.71 97.93

CERML-ES (RBF) 98.71 98.27 97.46 97.71 98.31 97.64

APPENDIX C

BENEFIT OF EXPLOITING THE CROSS-VIEW

(EUCLIDEAN-TO-RIEMANNIAN) KERNELS

For V2S/S2V face recognition, in addition to employing the
single-view kernels for Euclidean and Riemannian repre-
sentations, we also defined cross-view kernels to concate-
nate the single-view kernels. As a result, the final kernels
coupled in our proposed CERML method is defined as:

K̂x = [Kx,Kxy], K̂y = [Ky, (K
′

xy)
T ], where Kx,Ky are

the single-view kernels, Kxy is the cross-view kernel. As the
definition of the single-view kernels, we take the form of
Gaussian function to define the cross-view kernel function:

Kxy(xi,yj) = exp(−d2xy(xi,yj)/2σ
2
xy) (51)

The most important component in such kernel func-
tion is dxy(xi,yj), which defines a distance between one
pair of Euclidean and Riemannian data on the underly-
ing Euclidean space and Riemannian manifold. According
to the type of the involved Riemannian manifold, it is
expected to define the cross-view metric in three differ-
ent heterogeneous matching/fusing cases, i.e., Euclidean-
to-Grassmannian (EG), Euclidean-to-AffineGrassmannian
(EA) and Euclidean-to-SPD (ES) cases, in the following.

For Eucliean-to-Grassmannian case:

In Nearest Feature Subspace (NFS) classifier [?], the sets
are modeled as linear subspaces, which reside on Grass-
mann manifold. The NFS calculates the distance between
Euclidean point xi and the linear subspace representation
Uj in the following:

dxy(xi,yj) = ‖xi −UjU
T
j xi‖F . (52)

For Eucliean-to-AffineGrassmannian case:
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Fig. 8. V2S/S2V face recognition results (%) of the proposed CEMRL
dealing with different representations of videos on PaSC (deep fea-
ture) and COX (gray feature). Here, CERML-EG, CERML-EA, CERML-
ES respectively indicates videos are represented by mean+subsapce,
mean+affine subspace, mean+SPD matrix. CERML-EG-s, CERML-EA-
s, CERML-ES-s are the cases with single-view kernel while the other
three cases are those adding cross-view kernels.

K-local Hyperplane Distance Nearest Neighbor (HKNN)
algorithm [?] models the sets as affine subspaces lying on
affine Grassmann manifold. It defines the distance between
the Euclidean point xi and the affine subspace Aj as:

dxy(xi,yj) = min
α

‖(Ujα+ µj)− xi‖2. (53)

where α is a vector of coordinates for the points within Aj .

For Euclidean-to-SPD case:
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TABLE 6

Running time (seconds) in the task of V2S/S2V face recognition on COX. Here EG, EA and ES indicate the Euclidean-to-Grassmannian,

Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matchings.

Methods NCA ITML LFDA LMNN PSDML KPLS-EG KPLS-EA KPLS-ES KCCA-EG

Train 10040.59 2520.41 79.28 470.11 1350.55 644.29 2547.62 468.94 639.51

Test 0.14 1.57 0.14 0.14 0.34 0.94 3.24 0.63 0.94

Methods KCCA-EA KCCA-ES KGMA-EG KGMA-EA KGMA-ES CERML-EG CERML-EA CERML-ES

Train 2542.95 464.16 645.42 2548.83 470.07 754.13 2657 578.86

Test 3.24 0.63 0.94 3.24 0.63 0.94 3.24 0.63

TABLE 7

Running time (seconds) in the task of V2V face recognition on COX. Here EG, EA and ES represent the Euclidean-to-Grassmannian,

Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matchings.

Methods DCC GDA GGDA AHISD CHISD SSDML CDL LMKML CERML-EG CERML-EA CERML-ES

Train 189.79 118.06 168.67 N/A N/A 7012.80 431.79 92968.91 260.94 944.72 251.07

Test 8.79 0.29 0.36 8.85 27.46 3.23 5.77 1.07 0.21 1.53 0.20

Classical Mahalanobis Distance (MD) can be used to
define the distance between the Euclidean point xi and the
covariance matrix Cj , which is commonly treated a SPD
matrix and thus residing on SPD manifold:

dxy(xi,yj) =
√

(xi − µj)TC
−1

j (xi − µj). (54)

where µj is the mean of the samples in the set.

To validate the benefit of employing cross-view kernels
aforementioned for the proposed CERML, as shown in Fig.8,
we present the detailed results of the proposed CERML
methods with or without using the cross-view kernels in
the evaluations of V2S/S2V face recognition on PaSC [55]
and COX [56].

From these comparisons, we can draw the same conclu-
sion that our proposed CERML adding cross-view kernel
typically perform better than that only using single-view
kernel, demonstrating the superiority of our CERML with
cross-view kernel working in the task of V2S/S2V face
recognition.

APPENDIX D

RUNNING TIME OF THE EVALUATED METHODS

In this section, we tabulates the training and testing time
of the competing methods working in the three video-based
face recognition scenarios on an Intel(R) Core(TM) i7-3770M
(3.40GHz) PC. Note that the running time of the comparing
methods includes the computation of the involved Rieman-
nian representations such as SPD representations.

In the evaluation of V2S/S2V face recognition, we com-
pare the following state-of-the-art Euclidean/Riemannian
metric learning methods:

1) Homogeneous (Euclidean) metric learning methods:
Neighbourhood Components Analysis (NCA) [22],
Information-Theoretic Metric Learning (ITML)
[23], Local Fisher Discriminant Analysis (LFDA)

[24], Large Margin Nearest Neighbor (LMNN)
[25] and Point-to-Set Distance Metric Learning
(PSDML) [26];

2) Heterogeneous metric learning methods:
Kernel Partial Least Squares (KPLS) [29], Kernel
Canonical Correlation Analysis (KCCA) [27] and
Kernel Generalized Multiview Linear Discriminant
Analysis (KGMA) [32].

In Tab.6, the running times (seconds) of the comparative
methods in the task of V2S/S2V face recognition on COX are
presented. In this table, training time is reported to study
the running speed of the evaluated method working on the
training data. For testing, we report the average classifica-
tion time for recognizing 1 probe subject from 700 gallery
subjects. As seen, the two Euclidean metric learning meth-
ods NCA and ITML and the four Euclidean-to-Riemannian
metric approaches KPLS-EA, KCCA-EA, KGMA-EA and
CERML-EA require comparatively more time for training.
Excluding these techniques, the running time of other meth-
ods including our CERML are comparable.

In the evaluation of V2V face recognition, we compare
the following state-of-the-art Riemannian metric learning
methods:

1) Grassmannian metric learning methods:
Discriminative Canonical Correlations (DCC) [60],
Grassmann Discriminant Analysis (GDA) [8], Grass-
mannian Graph-Embedding Discriminant Analysis
(GGDA) [40];

2) Affine Grassmannian metric learning methods:
Affine Hull based Image Set Distance (AHISD) [61],
Convex Hull based Image Set Distance (CHISD)
[61], Set-to-Set Distance Metric Learning (SSDML)
[26];

3) SPD Riemannian metric learning methods:
Localized Multi-Kernel Metric Learning (LMKML)
[19], Covariance Discriminative Learning (CDL) [2].

In Tab.7, the running times (seconds) of the competing
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methods in the scenario of V2V face recognition on COX
are presented. In this table, training time is only required by
supervised methods. For testing, we report the classification
time for recognizing 1 probe subject from 700 gallery sub-
jects. As seen, the Riemannian metric learning methods SS-
DML, LMKML and CERML-EA need much more time than
other competing methods in training, while DCC, AHISD
and CHISD runs much lower than others in testing. Besides
to them, the running times of other methods including our
CERML are comparable working on COX.




