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Abstract—Effective feature selection plays a vital role in ante-
rior segment imaging for determining the mechanism involved in
angle-closure glaucoma (ACG) diagnosis. This research focuses on
the use of redundant features for complex disease diagnosis such
as ACG using anterior segment optical coherence tomography im-
ages. Both supervised [minimum redundancy maximum relevance
(MRMR)] and unsupervised [Laplacian score (L-score)] feature
selection algorithms have been cross-examined with different ACG
mechanisms. An AdaBoost machine learning classifier is then used
for classifying the five various classes of ACG mechanism such as
iris roll, lens, pupil block, plateau iris, and no mechanism using
both feature selection methods. The overall accuracy has shown
that the usefulness of redundant features by L-score method in im-
proved ACG diagnosis compared to minimum redundant features
by MRMR method.

Index Terms—Angle-closure glaucoma (ACG), anterior segment
optical coherence tomography (AS-OCT), unsupervised feature se-
lection, redundant features, Laplacian score (L-score), minimum
redundancy maximum relevance (MRMR), machine learning clas-
sifier.

I. INTRODUCTION

G
LAUCOMA is a chronic eye disease, where a loss of

vision occurs as a result of progressive optic nerve and

astrocytes damage caused by high intraocular pressure (IOP)

[1]. It is the second major cause of visual impairment and blind-

ness worldwide with estimated 60.5 million glaucoma cases by

2010 and this number may increase to almost 80 million by

2020 [2]. Early diagnosis of this disease slows down the disease

progression toward the complete vision loss. Due to the com-

plex and diverse nature of disease pathology of glaucoma, its

diagnosis heavily relies on the experience of glaucoma expert

ophthalmologist. It is important to detect glaucoma in its early

stages so that a patient’s vision can be preserved. Detection of

glaucoma is time consuming and need special skills and devices.
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Recent advances in medical image processing have enabled the

development of different image modality-based computer aided

detection systems for glaucoma using various features and clas-

sifier techniques [3]–[8].

Glaucoma can be classified into three major divisions such

as angle-closure glaucoma (ACG), open-angle glaucoma, and

developmental glaucoma. Each of the classes above mentioned

can be further subdivided into primary and secondary categories.

Among these, ACG are chronic and asymptomatic, which is

more prevalent [9]. ACG causes more visual morbidity than

open-angle glaucoma. Optical coherence tomography (OCT)

has proven to be useful in the diagnosis of glaucoma; it uses

near-infrared light to measure the distance of the anatomical

structures within the eye, and is hence convenient due to its

noncontact nature [10].

Anterior chamber angle (ACA) assessment is mostly used for

the detection of ACG. It can be visualized and measured by us-

ing anterior segment OCT (AS-OCT) imaging techniques [11].

AS-OCT provides excellent repeatability and reproducibility for

the measured corneal thickness, ACA, and depth. It has been ob-

served that ACG could be the result of one or more mechanisms

in the anterior segment of the eye and the patients with differ-

ent ACG mechanisms differ in anterior segment measurements

[12]. Analysis of the dimensions of the features obtained by

AS-OCT and their classification into the right mechanisms, us-

ing feature selection and machine learning techniques, would be

useful in the clinical diagnosis of ACG. The supervised feature

selection technique by minimum redundancy maximum rele-

vance (MRMR) method from the anterior segment measure-

ments can determine the predominant angle closure mechanism

with high accuracy [13].

Despite the fact that redundant information has the disad-

vantage such as being more computationally expensive and

requiring larger memory space, the redundant representations

may be more pliable than the nonredundant ones [14]. The

removal of redundant information during the feature selec-

tion affects the precision result in text classification [15]. The

advantage and significant role of redundancy in extracting use-

ful information in signal and image analysis [16], medical im-

age fusion [17], biological data [18], and complex medical

diagnostic applications [19] has been explored. The redundant

multiscale transforms such as undecimated wavelet transform,

ridgelet transform, and curvelet transform which produce re-

dundant information are widely used in many applications such

as signal/image denoising, enhancement, and contour detection

[14]. Since noise is usually unavoidable and spread over a small

number of neighboring samples/pixels, the abovementioned re-

dundant transforms are good for denoising signals/images [20].
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Reliable feature detection from AS-OCT images is impor-

tant for improving the classification accuracy since the detected

features are the basis of glaucoma detection and this has been

less investigated. The motivation behind this study is to explore

two different methods for selection of features from the anterior

segment of the eye and to provide a better understanding of

the use of selected redundant features for machine classification

in improved glaucoma diagnosis. This paper, therefore, gives

useful relevant insights based upon cross examination on the

selected features and allows a detailed analysis to compare the

results in terms of their accuracy and F-measure for possible in-

terpretation. The proposed study is important for understanding

of glaucoma detection, classification, and analysis using redun-

dant features. The subsequent machine learning classification

demonstrates the effectiveness toward different mechanisms of

ACG.

In the rest of this paper, Section II reviews the more spe-

cific literature on ACG and feature selection methods, while the

proposed methodology is presented in Section III. Section IV

discusses the experimental results. A comparative study is care-

fully made with features by the two feature selection algorithms

adopted, and common and similar/redundant features are identi-

fied to confirm the important features toward ACG mechanisms.

The last section draws the conclusion.

II. BACKGROUND

A. ACG and Its Mechanism

In ACG, aqueous outflow is obstructed due to iridocorneal

apposition, which in turn causes a rise in IOP and optic nerve

damage. The blocked drainage canals can be identified by a

closed or narrow angle between the iris and the cornea (see

Fig. 1), upon examination of the anterior segment of the eye [12].

AS-OCT is an imaging system, which is able to image the

anterior segment of the eye using near-infrared light to measure

distance of anatomical structures. From the AS-OCT scans,

several features can be extracted, such as the angle-opening

distance (AOD), trabecular-iris space area (TISA), and angle

recess area (ARA) [21], as illustrated in the schematic diagram

of anterior segment of an eye in Fig. 1.

AOD is defined as the measurement of the distance between

a point of the cornea, which is “x” µm away from the scleral

spur and the opposite point of the iris [22]. Values of “x” used

in the dataset are 500 (AOD_500) and 750 (AOD_750). TISA is

defined as the measurement of the area covering “x” µm located

in the area bounded by the cornea and the iris. Values of “x”

used in the dataset are 500 (TISA_500) and 750 (TISA_750).

ARA is defined as the triangular area bordered by the anterior

iris surface, corneal endothelium, and a line perpendicular to

the corneal endothelium from a point “x” µm anterior to the

scleral spur to the iris surface. Values of “x” used in the dataset

are 500 (ARA_500), 750 (ARA_750), 1000 (ARA_1000), 1500

(ARA_1500), and 2000 (ARA_2000).

The characteristic features in the anterior segment of the

eye that may result in ACG can be categorized into several

mechanisms: thick peripheral iris roll, exaggerated lens vault,

pupil block, and plateau iris [10]. Each mechanism has several

Fig. 1. Anterior segment sketch of an eye with narrow angle between iris and
cornea. Inner figure representing the parameters that are used for quantifying
the ACA; AOD; TISA; TIA; ARA.

Fig. 2. AS-OCT image of an eye with the (a) iris roll mechanism, (b) ex-
aggerated lens vault mechanism, (c) pupil block mechanism, (d) plateau iris
mechanism.

characteristics that can be identified by visual observation of the

AS-OCT images, and will be also detectable by feature selection

algorithms and machine learning classifiers.

The iris roll mechanism [see Fig. 2(a)] can be identified by a

thick iris, which narrows the angle between the iris and cornea

due to the circumferential folds along the periphery of the iris.

The exaggerated lens vault mechanism [see Fig. 2(b)] can be

identified by the lens pushing the iris forward (upward in the

image), hence reducing the angle between the iris and the cornea.

The pupil block mechanism [see Fig. 2(c)] can be identified
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Fig. 3. Block diagram of the proposed method.

by a convex forward iris profile (arched upward in the image)

causing a shallow peripheral anterior chamber. The plateau iris

mechanism [see Fig. 2(d)] can be identified by a sharp rise of

the iris at the periphery, close to the angle wall, before sharply

turning away from the angle wall toward the visual axis.

B. Related Work in Feature Selection

This section focuses on the feature selection methods closely

related to this study, as well as existing research related to

ACG detection from AS-OCT images. There are various fea-

ture selection algorithms in the literature, including the max-

imum dependency-maximum relevance-minimum redundancy

[23], Laplacian score (L-score) [24], Variance and Fisher score

methods [25].

The MRMR feature selection algorithm, proposed by Peng

et al. [23], selects features that are optimal for classification and

its fast computation. It aims to reduce the correlation between

the selected features themselves. The idea is that, if two features

are highly correlated to each other, it would be undesirable to

include them in the selected feature set, despite their relevance

to the target class and, therefore, only the more relevant feature

out of the two correlated features would be selected.

Hence, this requires the calculation of mutual information

of a feature with not only the target class, but with other fea-

tures as well. It is explored that the MRMR feature selection

produces classification error rates that are significantly lower

when compared to other feature selection methods such as max-

dependency and max-relevance, which do not take into account

the correlation between selected features. In their study, exper-

iments were performed from 1 to 50 features. However, con-

sidering the fact that the raw datasets tested had 278 to 9703

features, it might have been useful to know the performance of

the MRMR algorithm beyond 50 features selected.

The L-score feature selection algorithm, proposed by He et al.

[24] selects features by calculating its L-score, which is an in-

dication of its locality preserving power. The algorithm is able

to select features in both supervised and unsupervised settings.

L-score do not handle feature redundancy and require more

computational time. The study reported significantly higher ac-

curacy of the unsupervised L-score algorithm when compared to

the unsupervised variance method [25]. In sorting four features

from the Iris dataset from the UCI ML repository [26], it was

able to achieve the same result as the supervised Fisher score

[24], proving the capability of the L-score algorithm to detect

discriminative features even in the absence of class labels.

The study on the feature selection of anterior segment fea-

tures from AS-OCT images performed by Wirawan et al. [13]

concluded that, using the MRMR feature selection method and

the AdaBoost machine classifier, an accuracy of 84.39% is

achieved using only ten out of the 84 features provided in the

AS-OCT dataset (11.90% of the available features). This ap-

pears to be consistent with the study of the MRMR and its good

performance result at smaller feature subsets [23]. Comparisons

were also made against other machine learning methods, namely

classification tree, support vector machine, Random forest, and

Naı̈ve Bayes classifiers.

It was noted that, while making comparisons between the

different machine learning methods, the AdaBoost-MRMR

method was the only method that did not include the entire

available feature set. All the other machine learning methods,

including AdaBoost without MRMR, were tested using all 84

features. Among the methods that were tested using the entire

set of features, the AdaBoost algorithm was shown to provide

the highest accuracy at 83.03%. A combination of AdaBoost

with MRMR feature selection algorithm was then shown to

boost the accuracy to 84.39%. It could hence be deduced that

having the machine learning algorithm classify the entire set of

provided features may not necessarily yield the best accuracy,

and that classification of selected features could instead provide

better results. Since the previous study [13] focused only on the

MRMR feature selection method which is supervised, another

feature selection method could be studied with the AdaBoost

machine learning algorithm, which was shown to be superior to

the other machine algorithms compared against, in an attempt

to further boost the accuracy of the classification of the mech-

anisms of ACG. A comparative study of the features selected

by the various feature selection algorithms could also be per-

formed for reliability in feature selection and insight derivation

toward glaucoma diagnosis. To the best of our knowledge, a

cross comparison of the features selected by various feature se-

lection algorithms for the identification of meaningful features

and the usefulness of redundant features for improving ACG

detection has not been performed.

III. PROPOSED METHODOLOGY

The proposed methodology for the feature selection and clas-

sification is shown in Fig. 3. As the range of values of input raw

data varies widely, it was normalized before performing any fea-

ture selection. The L-score and MRMR algorithms were then

performed on the normalized data, and six feature lists (super-

vised L-score technique with (1) Binary and (2) Heat kernels,

unsupervised L-score technique with (3) Binary and (4) Heat

kernels, supervised MRMR technique with (5) mutual infor-

mation difference (MID), and (6) mutual information quotient

(MIQ) methods) were generated. The feature rank lists con-

sisted of the 84 features in the data set, arranged in order of the
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importance of the features as determined by L-score and MRMR

algorithms.

The sorted lists of features were then trained by the AdaBoost

machine learning classifier using incremental selection subsets

of Si(S1 ⊂ S2 ⊂······⊂ Sn ), i.e., for each list of 84 features, the

AdaBoost training was performed 84 times with the nth training

run being performed on the top n features in the list, so as to

find the optimal number of top features generated per list. The

AdaBoost algorithm was also run using 100 iterations and with

leave-one-out cross validation to prevent overfitting of training

data.

The performance of the AdaBoost classification based on the

generated feature selected lists were then analyzed by generating

a confusion matrix from the results of the classification, and the

accuracy, F-measure, specificity, and sensitivity are calculated.

Features selected by the algorithms which yielded favorable

accuracy were analyzed and compared to explore the usefulness

of redundant features.

A. L-score Method

As introduced in the previous section, L-score is a feature

selection method that determines the importance of a feature

by the construction of a graph using the sample data points

and identifying which features best represent the structure of

the graph [24]. The L-score algorithm is able to operate in

both unsupervised and supervised contexts. In the unsupervised

approach, a nearest-neighbor graph is constructed using data

points, with an edge placed between two data points that are

deemed to be close to each other using k-nearest neighbors (k-

nn). For example, for a data point xi with k = 5, the five nearest

data points to xi will have an edge placed between them. In

supervised L-score, an edge is placed between two data points

that share the same classification. The edges are then assigned

weights using either of the following methods: Binary and Heat

kernel. The Binary method is a straightforward method where

all edges are assigned a weight of 1, and 0 indicates that there

is no edge between the two data points. Formally, for two data

points xi and xj , Sij = 1 if there is an edge between them.

Otherwise, Sij = 0. In the Heat kernel method, if there is an

edge between two data points xi and xj , and given a suitable

constant t (which was set to a value of 1 in this study), the edge

weight will be calculated as

Sij = e
‖x i −x j ‖2

t . (1)

Otherwise, if there is no weight, then Sij = 0.

After the edge weights have been assigned, the weight matrix

S is then formed which represents the local structure of the

data space. A matrix L, called the graph Laplacian, may also

be defined. For the yth feature using n data points, we can then

define

f y = [fy1 , fy2 , . . . , fyn ]T , D = diag (S1) , 1 = [1, . . . , 1]T .
L = D − S

(2)

Let

f̂ y = f y −
fT

y D1

1
T D1

1. (3)

The L-score for the yth feature may be calculated as

Ly =
f̂

T

y Lf̂ y

f̂
T

y Df̂ y

. (4)

The features will be then sorted by their L-score and provided

to the machine learning classifier.

B. MRMR Method

MRMR [23] is a supervised feature selection algorithm that,

as the name suggests, aims to find features that are most rele-

vant to the target classifications, while reducing the redundancy

between selected features. To find features that are relevant, the

mutual information between a feature and the target classifica-

tion should be maximized. The mutual information between two

variables x and y is defined as

I(x, y) =

∫ ∫

p(x, y) log
p(x, y)

p (x) p(y)
dxdy (5)

where D(F, y) represents the mutual information between a

feature in set F and class y, with set F containing n features

{x1 , x2 , . . . , xn}, the mutual information is defined as

max D(F, y) =
1

|F |

∑

x i ∈F

I(xi , y). (6)

While finding relevant features is important, the MRMR al-

gorithm is based on the idea that similar or correlated features

should not be included in the feature set, regardless of the mutual

information between the features and the target classification,

resulting in a feature set that is compact yet accurate, where

R(F) represents the mutual information between two features

xi and xj (i, j = 1, . . . , n) in set F, the mutual information is

defined as

min R(F ) =
1

|F |2

∑

x i ,xj ∈F

I (xi , xj ) . (7)

The two methods in which MRMR was used in this study are

the combined criteria known as MID and MIQ.

MID is defined as

max Φ (D,R) ,Φ = D (F, y) − R(F ). (8)

MIQ is defined as

max Φ (D,R) ,Φ =
D(F, y)

R(F )
. (9)

In practice, candidate feature sets may be created by using

incremental search methods to find the near optimal features de-

fined by Φ. Hence, in this study, the following implementations

were used

MID : max
xj ∈X−Fm −1

[

I (xj , y) −
1

m − 1

∑

x i

I(xj , xi)

]

. (10)
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Fig. 4. Pseudocode of the AdaBoost algorithm.

MIQ : max
xj ∈X−Fm −1

[

I(xj , y)
1

m−1

∑

x i
I(xj , xi)

]

. (11)

The above incremental algorithms suppose that when we have

Fm−1 , consisting of m–1 features, we will then select the mth

feature from the set {X − Fm−1}, which is done by selecting

the feature that maximizes Φ.

C. Adaboost Classifier

AdaBoost, used in this study, is the primary machine learning

algorithm [27], due to the algorithm being shown to be superior

in classifying ACG mechanisms in [13]. The algorithm works by

boosting a weak learner for a predetermined number of iterations

until a hypothesis is generated. At each iteration, classifications

that have been wrongly labeled by the weak learner are more

heavily weighted, and the weak learner is reapplied. The detailed

procedure of the AdaBoost algorithm is shown in Fig. 4.

D. Performance Analysis

The confusion matrix [28] is used to measure the performance

of a machine learning classifier upon training on a dataset. It

contains information about the classifications predicted by the

machine learning classifier, as well as the actual classification

of the data. Table I shows a confusion matrix for a two-class

classifier. A and D indicate the number of samples that have been

correctly classified into positive and negative samples, respec-

tively. B indicates the number of positive classes that have been

erroneously classified as negative, and C indicates the number of

negative classes that have been erroneously classified as positive

(disease). Since the data in this study consists of five different

classes, 5 × 5 confusion matrices will be predominantly used

in this study.

TABLE I
CONFUSION MATRIX FOR A TWO-CLASS CLASSIFIER

Using the confusion matrix, the performance of the machine

learning classifier can be measured by accuracy, F-measure,

sensitivity, and specificity, which in turn can be derived from

true positives (TP), true negatives (TN), false positives (FP), and

false negatives (FN). A TP occurs when a classifier correctly

classifies a sample into its correct classification. Example: a

“Lens” classification is classified as “Lens.” A TN occurs when a

classifier correctly does not classify a sample into a classification

it should not belong to. Example: a sample that is not “Lens” is

not classified as “Lens.” A FP occurs when a classifier wrongly

classifies a sample. Example: a “Lens” sample is not classified

as “Lens.” A FN occurs when a classifier wrongly classifies a

sample into a classification it should not belong to. Example: a

sample that is not “Lens” is classified as “Lens”. Sensitivity is

the measure of the classifier’s ability to identify positive results

and specificity is the measure of the classifier’s ability to identify

negative results.

Accuracy is used to measure the overall discrimination power

of the classifier. It is a proportion of the total number of predic-

tions made by the classifier that were correct. It can be defined

as

Accuracy =
TP + TN

TP + TN + FP + FN
. (12)

Concerning the statistical significance, the F-measure is also

measured to calculate the test’s accuracy. It is used to mea-

sure the identification of positive class (disease) and it can be

interpreted as a weighted average of the precision and recall

F -measure = 2.

(

p ∗ r

p + r

)

(13)

where “p” is the precision and “r” is the recall of the test to

compute the score. Precision is the number of correct results

divided by the number of all returned results and it can be

defined as

Precision(p) =
TP

TP + FP
. (14)

Recall is the number of correct results divided by the number

of results that should have been returned

Recall(r) = TP/(TP + FN). (15)

F-measure is a composite measure which benefits algorithms

with higher sensitivity and challenges algorithms with higher

specificity. High values of accuracy, F-measure, sensitivity, and

specificity indicate good performance of a machine learning

classifier on the trained data.
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TABLE II
CLASSES OF ACG IN PROVIDED DATASET

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The dataset used in this study consists of data samples pro-

vided by the Department of Ophthalmology in the National

University Hospital (NUH), Singapore. It consists of 156 sam-

ples split into five classes which include the four mechanisms,

as well as a “No mechanism” class, which indicates that the

sample does not contain any of the characteristic features of any

of the mechanisms. Ethics approval was obtained from the re-

view board of NUH and the written consent was obtained from

all subjects prior to AS-OCT imaging.

One eye from each patient (only nasal and temporal quad-

rants) was captured with the images centered on the pupil using

ZEISS Visante Anterior Segment OCT Model 1000 device (Carl

Zeiss Meditec, Inc., Dublin, CA, USA) under standardized dim

illumination conditions (0 lux) in a room that has no windows

and no lights. The scans were obtained with the standard an-

terior segment single-scan protocol, which produces 256 scans

in 0.125 s. Each eye image was captured several times with

undilated state of the pupil and only images with clearly visi-

ble scleral spurs were analyzed qualitatively by three glaucoma

specialists (P. T. K. Chew, M. C. Aquino, and C. C. Sng). They

were categorized into four groups of images based on ACG

mechanism.

When images revealed more than one mechanisms of ACG,

the dominant mechanism of angle closure was established oth-

erwise a consensus on the dominant mechanism of angle closure

was established after consideration among the three specialists.

The customized software (Anterior Segment Analysis Program-

ASAP, NUH, Singapore) [10] was used to quantify the ac pa-

rameters (features). Each sample consists of 84 features and

a classification label. The mechanism classes, as well as their

labels and number of samples per class, are listed in Table II.

Our experiment was conducted using MATLAB Toolbox

from the original authors for feature selections with L-score

method [24] and MRMR method [29]. The classification of the

ACG with the both supervised and unsupervised selected fea-

tures was conducted and evaluated using AdaBoost in MATLAB

8.0 R2012b (The Mathworks Inc., Natick, MA, USA).

The data were first normalized prior to feature selection meth-

ods, to have zero mean and a standard deviation of one. It is use-

ful for ensuring that all features will contribute evenly during

the feature selection and machine learning processes, instead of

having skewed results due to some features having greater vari-

ance than others and being erroneously identified as a significant

feature. The top accuracy and F-measure of the AdaBoost clas-

TABLE III
TOP ACCURACY OF ADABOOST CLASSIFICATION USING LAPLACIAN AND

MRMR ALGORITHM

TABLE IV
ADABOOST ACCURACY COMPARISON BETWEEN THE FEATURE SELECTION

METHODS AT 10 AND 40 FEATURES

sification in each of the six sorted lists of features, as well as the

number of features which yielded the top accuracy, are listed

in Table III. It is noted that the feature lists generated by the

unsupervised L-score algorithm using the Heat kernel criterion

and the MRMR algorithm using the MIQ criterion yielded peak

accuracy and high F-measure results (see Table III).

The L-score algorithm (unsupervised) was able to produce

a higher than average accuracy of 86.66% and F-measure of

70.00% using top 40 features, while the MRMR algorithm

(supervised) was able to produce an accuracy of 84.39% and

F-measure of 65.60% using a small set of top 10 features. The

results from the MRMR algorithm were consistent with the

findings made in [13].

Table IV shows the comparison of accuracies of AdaBoost

training on the top 10 and 40 ranked features of both the un-

supervised L-score using heat kernel (unsupervised L-score)

and MRMR with MIQ (supervised-MRMR) methods. Using

top 10 ranked features, unsupervised L-score giving less accu-

racy (65.23%), which is not a comparable performance with

supervised-MRMR (84.39%). Using top 40 ranked features,

supervised-MRMR giving less accuracy (79.32%), which is a

comparable performance to supervised-MRMR (86.66%). The

detailed performance using top 10 and 40 ranked features of

both unsupervised L-score and supervised-MRMR are given

in Tables V–VIII. The following sections will discuss the cross

comparison between unsupervised L-score (i.e., more redundant

features) using top 40 ranked features and Supervised-MRMR

using top 10 (i.e., less redundant features) and 40 ranked features

which are giving top accuracy and F-measure.
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Fig. 5. Comparison graph between the AdaBoost-L-score and MRMR algorithms (a) Accuracy, (b) F-measure, (c) Sensitivity, (d) Specificity.

A. Results of AdaBoost Algorithm on Feature Selections of

Unsupervised L-score and Supervised MRMR

Fig. 5 shows the comparison of unsupervised L-score and

supervised MRMR. From the graph, it is found that the ac-

curacy, F-measure, sensitivity, and specificity of the unsuper-

vised L-score algorithm grow gradually to a peak of 86.66%,

70.10%, 67.13%, and 91.97%, respectively, at top 40 features

[see Fig. 5(a)–(d)], while the accuracy, F-measure, sensitivity,

and specificity of the supervised-MRMR algorithm were found

to grow quickly to a peak of 84.39%, 65.60%, 64.66%, and

90.00%, respectively at its top ten features [see Fig. 5(a)–(d)].

Beyond these peaks, the accuracy and F-measure of both al-

gorithms were found to dip slightly and eventually stabilize.

The MRMR feature selection algorithm was able to perform

well on a small feature set of 11.90% set (ten out of 84 fea-

tures) of the entire feature, due to the selection of features that

had high relevance to the target class, while reducing features

that may have been correlated with the features already se-

lected. The ten selected features would hence be very significant

in the detection of the ACG mechanism. The peak accuracy for

the features selected by the unsupervised L-score algorithm re-

quired 40 features, or 47.62% of the feature set, but was able to

produce an accuracy of 2.27% higher than the features selected

by the supervised-MRMR algorithm.

The L-score algorithm provided higher accuracy and better

F-measure than MRMR algorithm since the algorithm does not

remove features that are correlated with features that had al-

ready been selected, i.e., the nth and (n+1)th features could

be very correlated with each other. Despite their correlation,

small differences could exist that may influence the machine

learning classification. For example, ARA_500 and ARA_750

TABLE V
ACCURACIES, SENSITIVITIES, AND SPECIFICITIES OF EACH CLASS FROM

UNSUPERVISED L-SCORE RESULTS WITH TOP 10 RANKED FEATURES

would be much correlated due to being measured in the ex-

act same manner only 250 µm apart from each other, but the

difference in measurements 250 µm away could be significant

enough to distinguish between the ACG mechanisms. This is

particularly impressive, considering the fact that the L-score al-

gorithm was unsupervised method, while the MRMR algorithm

required class labels, i.e., a supervised method. This could in-

dicate that the different ACG mechanisms had some inherently

discriminating features that could be detected by the unsuper-

vised L-score algorithm. The accuracy, sensitivity, and speci-

ficity of each class using unsupervised L-score algorithm using

top 40 features is shown in Table V.

It is observed that the weighted accuracy, sensitivity, and

specificity of the unsupervised L-score algorithm results (see

Table VII) are higher than those in the supervised-MRMR re-

sults (see Table VI). Upon closer observation at the accuracies

of the individual classes, it is also observed that classes 2, 4,
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TABLE VI
ACCURACIES, SENSITIVITIES, AND SPECIFICITIES OF EACH CLASS FROM

SUPERVISED MRMR RESULTS WITH TOP 10 RANKED FEATURES

TABLE VII
ACCURACIES, SENSITIVITIES, AND SPECIFICITIES OF EACH CLASS FROM

UNSUPERVISED L-SCORE RESULTS WITH TOP 40 RANKED FEATURES

TABLE VIII
ACCURACIES, SENSITIVITIES AND SPECIFICITIES OF EACH CLASS FROM

SUPERVISED MRMR RESULTS WITH TOP 40 RANKED FEATURES

and 5 (corresponding to the Lens, Pupil Block, and Plateau Iris

mechanisms) had improved accuracy using the unsupervised L-

score algorithm (see Table VII). This suggests that the unsuper-

vised L-score algorithm was able to better identify the features

inherent to these three classes. Class 1 (iris roll) was observed to

have a higher accuracy with the supervised-MRMR algorithm

(see Table VII). However, it should be noted that the sensitivi-

ties of Class 1 in both algorithms were very low (38.89% using

supervised-MRMR and 25.00% using unsupervised L-score al-

gorithm) compared to other classes. It is investigated that the

iris roll mechanism could have a high probability of occurring

(dominant) with other mechanisms, as it has been recognized

that ACG can be a result of one or a combination of a number

of mechanisms (mixed mechanisms) [15].

B. Cross Comparison of Selected Features

In this section, the comparison of features between the unsu-

pervised L-score and the supervised-MRMR algorithm is dis-

cussed and identification of redundant features (common and

similar features) between the two, in hopes of finding features

that are most significant in the detection of ACG mechanisms

are studied. Table IX shows the top 40 features selected by

both algorithms, with the features that contributed to the peak

accuracy shaded in gray.

1) Common Features Between Unsupervised L-score and

Supervised-MRMR Methods: The top 40 features of unsuper-

vised L-score and top 10 features of supervised-MRMR (see

Table IX) had two features in common: “TISA_L500” and

“ARA_R750.” These two features also happened to be in the top

10 features of the L-score set. They would hence be deemed to

be very significant in detection of ACG mechanisms. Comparing

the top 40 features of both the L-score and MRMR set, the fol-

lowing 15 features were observed to be common: ARA_R500,

TISA_L500, ARA_R750, Iris_end_concavity_R, PCA_L

500, ARA_L2000, ACD_iris_R_ML, AC_Area, ARA_R2000,

mean_iris_thickness_R, ACD_LC, Iris_area_PR, LC_C,

Iris_area_ML, and Iris_thickness_R_2000.

2) Similar Features Between Unsupervised L-score and

Supervised-MRMR Methods: Similar features in the selected

feature sets were identified by obtaining the difference of all

the samples between two features and obtaining the variance of

the differences, from which a similarity matrix can be generated

involving all features. A low variance score between the two

features would indicate that the features are highly correlated.

Fig. 6 shows a graph of two features that are highly corre-

lated: “TISA_R750” and “ARA_R750,” with a variance score

of 0.0017. As these two features are measurements of similar

areas measured 750 µm anterior from the right scleral spur to

iris surface, they would be expected to be correlated, albeit with

minor differences. We have investigated through some experi-

ments that below the variance score value 0.15, the maximum

number data points tend to be very close to each other; if not,

they spread out around. So, this study considers any two features

to be similar if they have a variance score of under 0.15.

It was observed that, in the set of 40 features from the

L-score method, there were some other features more simi-

lar to those in the set of ten from MRMR, as displayed in

Table X. From Table X, it is observed that nine of the features

in the unsupervised L-score set were similar to three in the

supervised-MRMR set, indicating that there is a redundancy in

selected features, particularly for the five features in the L-score

set that were similar to ARA_R750.

This is to be expected from the L-score algorithm, as it does

not consider feature-to-feature correlation. None of the top ten

selected features of the MRMR set were similar to each other.

A further study on the similar features in the top 40 of the L-

score set is made in the next section. When comparing the top

40 features of both sets, 14 features in the L-score set were

observed similar to six features in the MRMR set, as shown in

Table XI, indicating that 26 out of 40 features in the L-score set

were common with or similar to 18 out of the top 40 features in

the MRMR set.



ISSAC NIWAS et al.: CROSS-EXAMINATION FOR ANGLE-CLOSURE GLAUCOMA FEATURE DETECTION 351

TABLE IX
TOP FEATURES WHICH YIELDED PEAK ACCURACIES FROM UNSUPERVISED

L-SCORE AND SUPERVISED-MRMR ALGORITHM

Abbreviations: AC-Anterior Chamber; ACD-Anterior Chamber Depth; AOD-Angle-

Opening Distance; ARA-Angle Recess Area; C-Center; CD-Corneal Diameter; DMR-

Dilator Muscle Region; IL-Iridolenticular contact on the Left side; ILC-Iridolenticular

contact in the Center; IR-Iridolenticular contact on the Right side; L-Left side of AS-OCT

image; LC-Left half of anterior Chamber; ML-Mid of iris and Lens; MR-Muscle Region;

PCA-Posterior Ciliary Artery; PL-Peripheral in the Left side; PR-Peripheral on the Right

side; R-Right side of AS-OCT image; RC-Right half of anterior Chamber; SMR-Sphincter

Muscle Region; TISA- Trabecular Iris Space Area.
∗ The detailed description of each feature can be found in [10], [13].

Fig. 6. Example of correlation between two features: TISA_R750 Vs
ARA_R750.

TABLE X
SIMILAR FEATURES IN L-SCORE SET CORRESPONDING TO TOP TEN FEATURES

IN MRMR SET

3) Redundant/Similar Features on the Unsupervised L-score

Set: As discussed in the previous section, several features

in the top 40 of the unsupervised L-score set were identi-

fied to be similar to each other (see Table IX). For exam-

ple, five features “TISA_R500,” “ARA_R500,” “AOD_R500,”

“TISA_R750,” and “ARA_R1000” in the L-score set were found

to be similar to a single feature “ARA_R750” in the supervised-

MRMR set. The feature “ARA_R750” itself was also found

in the L-score set and it is indicated that the L-score set had

six features that were correlated with each other. This section

also details the additional study of progressive removal of these

similar features, and the observation of the resultant accuracies.

The features that were progressively removed, from least im-

portant to most important, were “ARA_R1000,” “TISA_R750,”

“ARA_R750,” “AOD_R500,” and “ARA_R500.” The feature

“TISA_R500,” which was the top feature in the L-score set,

was not removed. As the similar features were progressively

removed, it was found that the accuracy dipped beneath the

peak accuracy where no features were removed, as shown in

Table XII. Hence, it could be concluded that despite the features

being mostly correlated with each other, as long as they are not

perfectly correlated, small differences in the features could still

influence the accuracy and lead to a better classification result.
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TABLE XI
SIMILAR FEATURES IN L-SCORE SET CORRESPONDING TO TOP 40 FEATURES IN

MRMR SET

TABLE XII
ACCURACY FROM REMOVAL OF SIMILAR FEATURES FROM L-SCORE

C. Result Analysis

This study focused on the comparison of two feature selec-

tion algorithms, unsupervised L-score, and supervised-MRMR

for understanding the importance of redundant features for ACG

mechanism. It is observed that the results of classification us-

ing the AdaBoost machine learning algorithm on a dataset of 84

features and 156 samples splits into five classes. The top features

selected by the unsupervised L-score method and supervised-

MRMR method were compared, due to these algorithms pro-

ducing high accuracies or performing on low feature sets. An

analysis of the usefulness of redundant features was performed.

The unsupervised L-score was able to perform classification at a

relatively high accuracy of 86.66% using 40 features (47.62% of

the entire feature set which are redundant), while the supervised-

MRMR method was able to perform classification at an accuracy

of 79.32% using a large set of 40 features and reasonable accu-

racy of 84.39% using a small set of 10 features (11.90% of the

entire feature dataset).

Also, when comparing the F-measure, sensitivity, and

specificity, unsupervised L-score made a significant result

than the supervised-MRMR methods. While observing the

performance of the algorithms based on each of the five classes,

high accuracies, sensitivities, and specificities were observed

in the classification of the lens, pupil block, and plateau iris

mechanisms, with the unsupervised L-score feature selection

algorithm showing improved results over the supervised-

MRMR feature selection algorithm due to its redundant

features. However, specificities were observed to be poor for

the iris roll mechanism and samples with no mechanism type.

This was attributed to a low sample count for both classes, and

in the case of the iris roll class, a probable combination with

other mechanisms may affect the classification.

A cross comparison between the top 40 features of the un-

supervised L-score algorithm and the top 10 features of the

supervised-MRMR algorithm was performed. Two features

were common to both these feature sets, and nine other fea-

tures in the L-score feature set were observed to be similar or

correlated with three features in the MRMR feature set. It was

also observed that the unsupervised L-score feature set con-

tained features that were similar to each other, while there was

no similar redundancy in the supervised-MRMR feature set.

This conforms to the theories behind the unsupervised L-score

and supervised-MRMR algorithms. An experiment performed

on the unsupervised L-score feature set, which involved progres-

sively removing similar features from the feature set, showed

that the accuracies dipped from the peak accuracy upon removal

of the similar features. This suggests that the similar features

which are redundant actually contributed to the peak accuracy,

and could have contained significant differences in influencing

the accuracy, despite being correlated with each other.

V. CONCLUSION

It is resulted that inclusion of redundant features by the L-

score method provides better performance in ACG detection

than less-redundant features selected by MRMR method for

glaucoma detection. From this study, it is explored that the unsu-

pervised L-score feature selection algorithm has the capability to

provide improved accuracy and F-measure with a larger feature

set which consists of redundant features. On the other hand, the

supervised-MRMR feature selection algorithm can be useful in

conjunction with the AdaBoost machine learning classifier in

the detection of ACG mechanisms if a small feature set is desir-

able while producing a reasonable accuracy. Employing redun-

dant information can provide more substantive support for the

complex medical diagnostic conditions, toward improved detec-

tion and classification of ACG mechanism. Hence, the selected

40 features with redundancy by unsupervised L-score method

are more significant and reliable for ACG detection than the

ten less-redundant features selected by the supervised MRMR

method. Practically the unsupervised feature selection will be

more beneficial in medical diagnosis, since the manual label-

ing of the huge number of samples is a more tedious task for
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clinicians. Future study could involve a larger sample size for

training, particularly for the iris roll mechanism and samples

with no mechanism. It could also focus on the correlation be-

tween the mechanism of angle closure identified using feature

selection, and response to treatment which targets each specific

mechanism.
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