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Abstract

This work presents the 2nd Cross-Spectrum
Iris/Periocular Recognition Competition (Cross-
Eyed2017). The main goal of the competition is to
promote and evaluate advances in cross-spectrum iris and
periocular recognition. This second edition registered
an increase in the participation numbers ranging from
academia to industry: five teams submitted twelve methods
for the periocular task and five for the iris task. The bench-
mark dataset is an enlarged version of the dual-spectrum
database containing both iris and periocular images syn-
chronously captured from a distance and within a realistic
indoor environment. The evaluation was performed on an
undisclosed test-set. Methodology, tested algorithms, and
obtained results are reported in this paper identifying the
remaining challenges in path forward.

1. Introduction
The human iris is considered as one of the most accu-

rate biometric characteristics but the accuracy obtained is
highly impacted when the acquisition is done in less con-
strained environments. When it is too challenging to obtain
sufficient quality for reliable iris recognition, the periocular
area becomes an interesting alternative [6, 24]. The peri-
ocular biometric trait includes the surrounding features of
the eye region and facilitates an improved performance for
low quality iris, face or partial face images acquired with
less constrained conditions, such as from a distance or on
the move [24]. Most of the commercial deployments of
iris recognition use images acquired in the Near Infra-Red
(NIR) spectrum as this is regarded to capture the iris pat-

tern details even for heavily pigmented iris. Nevertheless,
in some situations the use of noisy images captured in the
visible (VIS) spectrum has a considerable interest. It is a
fact that pigmentation and specular reflections impact nega-
tively the quality of highly pigmented irises when captured
under VIS light. VIS imaging can highlight the iris texture
with similar quality as compared to under NIR illumina-
tion for light pigmented irises. The choice of a particular
illumination is then based on a trade-off between the image
quality required for the specific recognition system and the
practical aspects of the real-world application. In some sit-
uations, like surveillance and border control, it may happen
that the NIR images captured in the enrolment phase with
controlled conditions should be compared against images
captured under VIS illumination in a less constrained envi-
ronment. The cross-spectral comparison is gaining interest
for ocular traits and others like face [8, 9, 10].

The Cross-Eyed competitions target the iris and periocu-
lar recognition tasks with the additional feature of perform-
ing cross-spectral comparison. Cross-spectral recognition
has gained interest and the state-of-the-art results have un-
derlined how this is a challenging topic in ocular recogni-
tion. Compared to the first edition, this second competition
received a more representative participation from industry
to academia with an increase from 2 teams participating
in the Cross-Eyed2016 edition to 5 teams in this Cross-
Eyed2017 edition. The 5 teams contributed to the perioc-
ular task with a total of 12 methods and 2 teams contributed
with 5 methods to the iris task.

This paper presents the second edition of the Cross-Eyed
competition1 by summarising he methods are summarised
and the results presented. The key contributions of this

1Information available at www.crosseyed.eu.



work are:

• An enlarged database for cross-spectral iris/periocular
recognition distributed to the participants to support
the research on the topic.

• Trustworthy benchmark results are obtained through a
public competition by evaluating the methods submit-
ted by participants on an unknown dataset.

The remainder of the paper presents: an overview of
cross-spectral ocular recognition in Section 2; the details
of the competition in Section 4 and, in Section 3, the bench-
mark dataset. A brief description of the methods submitted
to the competition is given in Section 5 and the results ob-
tained are discussed in Section 6. Finally, in Section 7 the
conclusions and future challenges are envisaged.

2. Cross-Spectral Recognition
Various works have explored multi-spectral and cross-

spectral techniques from different perspectives. Works can
be found that propose to enhance accuracy by combining
data from multispectral iris images [21]; or when informa-
tion from NIR+VIS bands is combined [7]; or by the fusion
of multiple spectra wavelengths [29]. Besides the fusion
of information from different spectra, later works studied
iris cross-spectral comparison [27, 33]. According to [27],
even though the comparisons in near infrared and visible
channels are independently quite accurate, the performance
of cross-spectral iris matching is significantly degraded in
the NIR to VIS comparison and an Equal Error Rate (EER)
value of 34% is reported. More recent works show im-
proved accuracies nevertheless corroborating the idea that
this is a challenging task. An EER of 6.81% for the cross-
spectral comparison NIR versus VIS is presented in [2] im-
proving the value of 27.46% [1] (both values corresponding
to the comparison NIR versus Red channel). A higher value
of 33.89% for EER along with a value of 58.8% for the
Genuine Acceptance Rate (GAR) at False Acceptance Rate
(FRR) equal to 0.01% are reported in [20].

When compared to face and iris, the periocular cross-
spectrum comparison is an even less studied task. The first
study showed how challenging it is by reporting values be-
low 50% for the verification accuracy at 1% FAR in the NIR
to VIS comparison [32]. More recently, the use of Markov
Random Fields and three patch Local Binary Patterns is pro-
posed [28]. In a more recent work, an EER of 1.26% and a
value of 96.04% for Genuine Match Rate (GMR) at 0.01%
False Match Rate (FMR) are obtained by using Binarized
Statistical Image Features along with the χ2 distance met-
ric and simple fusion [26]. An even more challenging prob-
lem involves matching the ocular region of a face image ob-
tained in the VIS spectrum with an iris image obtained in
the NIR spectrum [15].

For the development of new techniques, in any topic
of the biometric field, the existence of suitable databases
is paramount. Multi-spectral iris data is presented in [7]
where each iris snapshot outputs data acquired by four dif-
ferent spectral channels: NIR, R, G and B, perfectly regis-
tered and synchronized. The UTIRIS database [12] com-
prises NIR and VIS images of the same iris however cap-
tured at different times with two devices. The PolyU Cross-
Spectral Iris Database [27] comprises NIR and VIS im-
ages acquired simultaneously. The first periocular cross-
spectrum database [32] comprises images from three indi-
vidual spectra: VIS, night vision, and NIR. The Cross-Eyed
DB [30] presented some novel features by providing im-
ages synchronously acquired in both NIR & VIS spectra
and comprising respective iris and ocular regions.

3. Benchmark dataset: Cross-Eyed DB
The Reading Cross-Spectral Iris/Periocular Dataset

(Cross-Eyed DB) [30, 31] is composed by both VIS
and NIR images captured with a custom developed dual
spectrum imaging sensor, depicted in Figure 1(a), which
acquires NIR and VIS images synchronously by high-
resolution (2K x 2K) machine vision cameras. The main
key features of this database are:

• Cross-spectrum - synchronised NIR + VIS images;

• Images acquired from distance: 1.5 metres;

• Uncontrolled realistic indoor environment;

• Realistic and challenging illumination reflection;

• Variation in ethnicity and eye colour;

• Age range from 18 to 70 years;

• Male/female distribution 65%/35%.

The Cross-Eyed DB is composed by 3 subsets: ocu-
lar, periocular (ocular with masked iris and sclera) and
iris images obtained by manually cropping the face im-
ages. The 175 individuals provided 8 NIR and 8 VIS im-
ages of each eye pattern therefore each dataset is composed
by 5600 eye impressions (given by 175(individuals) ×
2(eyepatterns) × 2(spectra) × 8(images)). The ocular
(and periocular) images are 900 × 800 pixels and the iris
images are 400× 300 pixels. In Figure 1(b), the dual spec-
trum versions of the same eye pattern are shown in its ocu-
lar, periocular and iris variations.

The periocular images are obtained from the ocular im-
ages by positioning a mask on the whole iris and sclera re-
gion (in line with the previous work [23]). The masking
on the iris region is used firstly to ensure that periocular
recognition is not achieved by using captured high quality
iris pattern. This also allows a performance comparison be-
tween iris recognition and recognition using the surround-
ing eye region (periocular) excluding the iris (or even the
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Figure 1. a) Dual Sensor b) Ocular, Periocular and Iris (VIS & NIR) Cross-Eyed DB images examples.

sclera) pattern. Even though it is not likely to find perfect
replicas of the occlusion resulting of the employed mask-
ing in any real-world scenario, the fact is that in real-world
applications it is very common to capture the iris and the
sclera with such low quality that recognition is not possible
based on those regions, whether it is caused by low resolu-
tion, motion blur, high pigmentation of iris or reflections.
The division in training and test sets was made as follows.

• Training set: comprises the images from 120 individ-
uals and was released to the participants to allow the
training of the methods.2

• Test set: comprises the images from 55 subjects and
was not released and was used by the organizers to
evaluate the methods submitted by the participants.

4. Cross-Eyed2017 competition
4.1. Participants

The Cross-Eyed2017 competition received 18 registra-
tions from researchers all over the globe. Among the regis-
tered participants, 6 teams submitted their algorithms.3 In
this paper are presented the results of the methods submitted
by: IDIAP from Switzerland; IIT Indore from India; HH
from Halmstad University, Sweden; NTNU from Norwe-
gian Biometrics Laboratory, Norwegian University of Sci-
ence and Technology, Norway; and Anonymous.

4.2. Evaluation methodology

The Cross-Eyed2017 competition included two interme-
diate submissions and one final submission. The partici-
pants were asked to submit their methods and the organiz-
ers were responsible for running the methods on the selected
datasets and obtain the results. The intermediate evaluations
were meant to stimulate interaction with the event, to give
feedback to the participants about their performance and to

2This dataset is available upon request at www.crosseyed.eu.
3One team did not submit a method compliant to the guidelines so was

not included in the final results nor in this paper and another team did not
wish to have their identity and method description included in this paper.

allow refinement of the algorithms. The intermediate eval-
uations were made on the same set of 20 randomly chosen
subjects. The final evaluation was made on a test dataset
with 55 subjects resulting in 110 unique ocular instances.

The evaluation of the methods was carried out on two
disjoint sets of enrolment and probe data. Firstly, templates
were obtained for all images in both enrolment and probe
sets. Then 2 types of comparisons were made: intra-class
and inter-class comparisons. To perform the comparisons
between the periocular images, the left eye images are com-
pared only with left eye images and the same for the right
side eye images. For the intra-class (same subject com-
parisons), every NIR image is compared against each VIS
image of the same eye pattern. For the inter-class (different
subjects comparisons), 3 random NIR images of one eye
pattern are compared against 3 random VIS images of all
the other eye patterns (of the same side). In the inter-class
comparisons only 3 images are compared (instead of the 8
available) due to the computational effort of comparing all
images.

4.3. Evaluation metrics

To comply with the ISO/IEC standards [13], the Gen-
eralized False Accept Rate (GFAR) and Generalized False
Reject Rate (GFRR) evaluation metrics were used. They
generalize the False Match Rate (FMR) and the False Non-
Match Rate (FNMR) to include the Failure To Acquire
(FTA) and Failure To Enrol (FTE) rates, and are defined as:

GFAR = α× β × FMR (1)
GFRR = FTE + β × FTA+ α× β × FNMR (2)

where α = 1− FTA and β = 1− FTE.
To compare the algorithms, theGFRR@GFAR = 0.01

is used, indicated as GF2. The EER is reported to indicate
the symmetrical accept and reject rates. Also the computa-
tional time for enrolment and comparison is listed for each
algorithm. The processing time for all the submitted algo-
rithms was measured using the same machine (Intel Xeon
CPU E5-2687W v2 @ 3.40GHz dual processors). Most



teams submitted their enrol and matching programs as Win-
dows executables, except IDIAP team that submitted their
algorithms with a open source Python package which can be
only run under Linux environment. It is interesting to com-
pare the processing time among these teams despite differ-
ent formats and programming languages used by the teams.

5. Methods submitted
5.1. HH methods

The HH system exploits the fusion of algorithms based
on Symmetry Patterns (SAFE) [19], Gabor Spectral De-
composition (GABOR) [3], SIFT [5], Local Binary Patterns
(LBP), and Histogram of Oriented Gradients (HOG) [23].
The scores of individual systems are then mapped to a
log-likelihood ratio according to the probabilistic Bayesian
framework [4]. Instead of mapping scores of each system
separately, and then summing all scores together (as in the
earlier contribution [30]), a unique mapping function is now
trained with scores from all the systems to be fused. This
solution is less flexible, since the mapping function is dif-
ferent depending on the systems to be fused, but our exper-
iments show that it results in better recognition results. The
fusion functions are trained with scores obtained by com-
paring images both from the same sensor and from differ-
ent sensors, to cope with same and cross spectrum com-
parisons. Another improvement is that the fusion functions
have been trained using a bigger dataset. The HH algo-
rithms are based on different feature fusions: HH1 (all
features), HH2 (SAFE+GABOR+LBP+HOG) and HH3

(GABOR+LBP+HOG).

5.2. IDIAP methods

The IDIAP team provided 3 periocular recognition
systems4: based on Intersession Variability Modelling
(IDIAP1) and based on Geodesic Flow Kernel with Ga-
bor jets (IDIAP2 and IDIAP3). Built on top of Gaus-
sian Mixture Models (GMM), Intersession Variability Mod-
elling (ISV) proposes to explicitly model the variations be-
tween different modalities by learning a linear subspace in
the GMM supervector space. These variations are compen-
sated during the enrolment and testing time. For this input,
the periocular images are resized to 90×90 pixels and sam-
pled in patches of 12× 12 pixels moving the sampled win-
dow in one pixel. Then each patch is mean and variance nor-
malized and the first 45 DCT coefficients are extracted. The
Universe Background Model (UBM ) is modelled with 512
Gaussians and the dimension of the session variability ma-
trix (U ) is 160. Implementation details of this input can be
found in [25]. The Geodesic Flow Kernel (GFK) models the
source domain and the target domain with d-dimensional

4The source code for these implementations can be obtained in
https://pypi.python.org/pypi/bob.bio.pericrosseye competition.

linear subspaces and embeds them onto a Grassmann man-
ifold. Then a Geodesic Flow [11] between these two sub-
spaces (G) is built and an infinite number of subspaces is
integrated along the flow. A grid of Gabor jets along the pe-
riocular image are used as features. A comparison between
two grids of Gabor jets from visible light and near infra-red
respectively Sn and Tn can be done as simple kernalized
dot product between each jet (n) in the grid as following:∑N

n=1 Sn·G·Tn
N

.
IDIAP also submitted open-source software along with
the submission. Even though this was not a requirement, it
is highly appreciated by all the research community. Fur-
ther, the future editions of this competition will request
the software from all participants as it contributes to repro-
ducible research.

5.3. IIT Indore methods

The two approaches proposed by the IIT Indore team
for cross-spectral periocular matching are based on the fu-
sion of a set of matching scores. The features employed
belong to three categories namely, Local Phase Quantiza-
tion (LPQ) [22] features, Gabor features [14] and Weibull
distribution parameters of the sub-bands obtained through
curvelet-based decomposition [34]. The LPQ and Gabor
features corresponding to the query and enrolled images are
matched using the cosine similarity measure, while the cor-
relation score is computed for the Weibull features. While
the first method (IITIndore1) utilizes all the 3 types of
features, the second method (IITIndore2) utilizes only
LPQ and Gabor features.

5.4. NTNU periocular methods

NTNU ’s approach is built upon keypoint based de-
scriptors: SIFT, SURF and KAZE denoted by NTNU1,
NTNU2 and NTNU3 respectively. Unlike the traditional
approaches of using these descriptors, where the keypoints
are automatically detected, NTNU employs a standard set of
keypoints on the periocular image. The descriptors obtained
from those keypoints are matched using a new matching al-
gorithm which is based on region-bounded matching. For
every descriptor computed, the matching is carried out with
the descriptors in the neighbourhood of 10 pixels along two
dimensions of the image. Further, all the images are scaled
to an uniform size of 480 × 480 pixels and pre-processed
using the block-based CLAHE for improving the details in
the image before extracting the features.

5.5. NTNU iris methods

NTNU ’s approaches for the iris task are based on the
texture features obtained from Binarized Statistical Image
Features (BSIF). The BSIF filters, learnt using natural im-
ages, have proven their reliability in vast image classifica-



tion problems [16, 17]. To extract the iris region, a coarse
iris localisation technique based on [18] is employed. The
responses from the multiple BSIF filters are concatenated
as histograms that are further compared using the χ2 dis-
tance metric. Two algorithms, represented as NTNU2 and
NTNU4, are based on BSIF features; the algorithm repre-
sented as NTNU1 uses a grid based SIFT descriptor and
the NTNU2 is based on the SURF features, both as de-
scribed in the Section 5.4.

Table 1. Performance of periocular methods (GF2, EER, enrol-
ment time TE and comparison time TC ).
Rank Periocular Method GF2 [%] EER [%] TE [sec.] TC [sec.]

1 HH1 0.74 0.82 17.95 0.45
2 NTNU1 1.86 1.59 0.84 1.23
3 IDIAP2 2.03 1.65 7.18 2.91
4 IDIAP3 2.03 1.55 6.95 2.14
5 NTNU2 4.19 2.75 0.81 1.19
6 NTNU3 5.94 3.21 1.09 1.00
7 IITIndore1 6.09 4.53 9.89 6.19
8 IDIAP1 6.24 3.46 2.80 2.49
9 IITIndore2 6.48 5.20 8.41 6.54
10 HH2 14.87 9.16 17.18 0.06
11 HH3 16.28 10.65 15.63 0.04
12 Anonymous 45.448 12.25 10.73 0.02

Table 2. Performance of iris methods (GF2, EER, enrolment time
TE and comparison time TC ).

Rank Iris Method GF2 [%] EER [%] TE [sec.] TC [sec.]

1 NTNU4 0.00 0.05 57.98 0.06
2 NTNU3 8.43 5.58 1.01 1.08
3 NTNU1 8.81 6.19 0.87 1.31
4 Anonymous 10.63 7.84 1.69 0.07
5 NTNU2 12.77 7.95 59.09 0.05

6. Results and discussion

The evaluation of the methods is comprised of enrolment
and probe template comparison and was carried out on two
disjoint sets of enrolment and probe data. The first step was
to obtain the templates for all images in both enrolment and
probe sets. Then 2 types of comparisons were made: intra-
class and inter-class. For the intra-class (or same subject
comparisons), every NIR image is compared against each
VIS image of the same eye pattern. For the inter-class (or
different subjects comparisons), 3 random NIR images of
one eye pattern are compared against 3 random VIS im-
ages of all the other eye patterns. In the inter-class com-
parisons only 3 random images (instead of the 8 available)
are compared due to the computational effort of comparing
all images. For the sake of equity on the comparison, all
the submitted methods were evaluated using the same set of
images.

Tables 1 and 2 report the ranked performance of the peri-
ocular and iris algorithms, respectively. Observing Table 1,
it can be noted that the best result for the periocular task
was achieved by the HH1 method with a GF2 value of
0.74%. When compared to the other HH methods, it’s per-
formance is significantly better. These 3 HH methods are
in all very similar and it can be inferred that this difference
is due to the use of the SIFT features (which may also jus-
tify the higher computational time of the comparison step
due to the increased size of the features). The second best
method, NTNU1, provides a GF2 value of 1.86% which is
followed closely by the third and fourth methods (IDIAP2

and IDIAP3) with 2.03%. Nevertheless, it should be high-
lighted the NTNU1’s significantly smaller processing time
for enrolment. Both methods by the IITIndore team pro-
vide GF2 values in the order of 6% and when compared to
the methods more close to them, NTNU3 and IDIAP1,
it can be noted that their processing times for enrolment
and comparison are significantly higher. Regarding the
iris task, observing Table 2, it can be noted that the best
method, NTNU4, provided an impressive GF2 value of
0.00%. However, its complexity leads to a high compu-
tational time in the template extraction step. After the first
ranked, the following methods present much higher error
rates: the second method is NTNU3 with 8.43%.

In Figure 2, the DET curves for both tasks are depicted.
These curves represent the values of the false non-match
rate as a function of the false match rate or in other words,
depict the false negatives rate for each value of the false pos-
itives rate. Regarding the periocular task, Figure 2(a), it can
be observed in these curves that the majority of the methods
present a quick decay in the results from GF2 to GF3, ex-
ception to be made for the best method, HH1, which pre-
serves a very low FNMR rate for all values of FMR. Re-
garding the iris task, Figure 2(b), only two of the methods
present a significant increase from GF3 to GF4, the other
three out of five methods show comparatively lower values
of FNMR for smaller values of FMR.

A comparison between the DET curves of the results ob-
tained in the first and second editions is presented in Fig-
ure 3 for each task. Regarding the periocular task, in the
Cross-Eyed2016 competition 2 teams participated with 5
methods and in the Cross-Eyed2017 this number increased
to 12. The comparison is made for the 2 best and 2 worst
methods in both editions in Figure 3(a). Regarding the iris
task, in the Cross-Eyed2016 competition only 1 team par-
ticipated with 3 methods and in Cross-Eyed2017 2 teams
participated with a total of 5 methods. The best and worst
methods from each edition are compared in Figure 3(b).
It can be noted that the method’s accuracy improved for
most the cases, exception to be made for the best periocu-
lar method of 2016 which performance, though closely fol-
lowed, was not overcome by the two best methods of 2017.



(a) Periocular methods (b) Iris methods

Figure 2. DET curves of the periocular and iris methods.

(a) Periocular 2 best and 2 worst methods 2016-2017 (b) Iris best and worst methods 2016-2017

Figure 3. Cross-Eyed2016 versus Cross-Eyed2017

7. Conclusions

This paper presented the second competition on cross-
spectral periocular and iris recognition. This competition
and the released training dataset will promote the research
on this relatively new topic and provide a valuable dataset
of ocular images to the biometric research community. The
use of this database will prevail beyond the competition,
giving an opportunity for creating spectrum-independent al-
gorithms and evaluating them in experiments. In both pe-
riocular and iris tasks, the GF2 values obtained by the best
methods are very promising. HH1 algorithm obtained ap-
proximately 99% followed by 4 methods with values of
GF2 lower than 5%, for the periocular task. Regarding the
iris task, the NTNU4 iris method reached 100.00% GF2

value. Nevertheless, in an overall analysis of all results ob-
tained and the rise of the false non-match rate depicted in
the DET curves, it is clear that the cross-spectrum compar-
ison posed a serious challenge to the participants. The re-
sults obtained in the two editions of this competition show
beyond doubt that this is a not fully investigated problem
and much improvement is still expected. The contributions
made by the participants in this initiative will open the way
to an increased usability of iris/periocular recognition tech-
nologies on generic devices and diverse scenarios. It can
be noted that many submissions have employed fusion ap-
proaches. There are not single-algorithm based submissions
tailored for the problem indicating the necessity for contin-
uing research in this topic.



8. Acknowledgements
This work is supported by: FastPass and PROTECT

EU projects (grant agreements 312583 and H2020-700259);
the Swedish Research Council, and the CAISR and
SIDUS-AIR programs of the Swedish Knowledge Founda-
tion; the Research Council of Norway (grant IKTPLUSS
248030/O70); the Swiss National Science Foundation
(SNSF) under the HFACE project, the Norwegian SWAN
project and the European Community’s Seventh Framework
Programme (FP7) under grant agreement 284989 (BEAT)
and the Swiss Center for Biometrics Research and Testing.

References
[1] M. A. M. Abdullah, J. A. Chambers, W. L. Woo, and S. S.

Dlay. Iris biometrie: Is the near-infrared spectrum always
the best? In 2015 3rd IAPR Asian Conference on Pattern
Recognition (ACPR), pages 816–819, Nov 2015.

[2] M. A. M. Abdullah, S. S. Dlay, W. L. Woo, and J. A. Cham-
bers. A novel framework for cross-spectral iris matching.
IPSJ Transactions on Computer Vision and Applications,
8(1):9, 2016.

[3] F. Alonso-Fernandez and J. Bigun. Near-infrared and
visible-light periocular recognition with gabor features using
frequency-adaptive automatic eye detection. IET Biometrics,
4(2):74–89, 2015.

[4] F. Alonso-Fernandez, J. Fierrez, D. Ramos, and J. Ortega-
Garcia. Dealing with sensor interoperability in multi-
biometrics: the UPM experience at the biosecure multimodal
evaluation 2007. In Proc. SPIE BTHI, volume 6944, page 12,
2008.

[5] F. Alonso-Fernandez, P. Tome-Gonzalez, V. Ruiz-Albacete,
and J. Ortega-Garcia. Iris recognition based on SIFT fea-
tures. In Proc. BIDS, pages 1–8, 2009.

[6] S. Bharadwaj, H. S. Bhatt, M. Vatsa, and R. Singh. Perioc-
ular biometrics: When iris recognition fails. In Biometrics:
Theory Applications and Systems (BTAS), 2010 Fourth IEEE
International Conference on, pages 1–6. IEEE, 2010.

[7] C. Boyce, A. Ross, M. Monaco, L. Hornak, and X. Li. Multi-
spectral iris analysis: A preliminary study. In Proc. CVPRW,
page 12, 2006.

[8] Z. Cao and N. A. Schmid. Heterogeneous sharpness for
cross-spectral face recognition. In SPIE Defense+ Security,
pages 102020Q–102020Q. International Society for Optics
and Photonics, 2017.

[9] Z. Cao, N. A. Schmid, and X. Li. Image disparity in
cross-spectral face recognition: mitigating camera and atmo-
spheric effects. In SPIE Defense+ Security, pages 98440Z–
98440Z. International Society for Optics and Photonics,
2016.

[10] J. M. Dawson, S. C. Leffel, C. Whitelam, and T. Bourlai.
Collection of Multispectral Biometric Data for Cross-
spectral Identification Applications, pages 21–46. Springer
International Publishing, Cham, 2016.

[11] B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow
kernel for unsupervised domain adaptation. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),
pages 2066–2073. IEEE, 2012.

[12] M. S. Hosseini, B. N. Araabi, and H. Soltanian-Zadeh. Pig-
ment melanin: Pattern for iris recognition. IEEE Trans. Instr.
Measur., 59(4):792–804, April 2010.

[13] International Organization for Standardization. ISO/IEC
19795-1:2006 - Biometric performance testing and reporting
– Part 1: Principles and framework, 2006, rev. 2011.

[14] A. K. Jain, N. K. Ratha, and S. Lakshmanan. Object detec-
tion using gabor filters. Pattern recognition, 30(2):295–309,
1997.

[15] R. Jillela and A. Ross. Matching face against iris images
using periocular information. In Proc. ICIP, pages 4997–
5001, 2014.

[16] J. Kannala and E. Rahtu. BSIF: Binarized statistical image
features. In Proc. ICPR, pages 1363–1366. IEEE, 2012.

[17] Kiran B. Raja, R. Raghavendra, M. Stokkenes, and C. Busch.
Multi-modal authentication system for smartphones using
face, iris and periocular. In Proc. ICB, pages 143–150, 2015.

[18] Kiran B. Raja, R. Raghavendra, V. K. Vemuri, and C. Busch.
Smartphone based visible iris recognition using deep sparse
filtering. Pattern Rec. Lett., 57(0):33 – 42, 2015.

[19] A. Mikaelyan, F. Alonso-Fernandez, and J. Bigun. Periocu-
lar recognition by detection of local symmetry patterns. In
Proc IEB-SITIS, pages 584–591, 2014.

[20] P. R. Nalla and A. Kumar. Toward more accurate iris recog-
nition using cross-spectral matching. IEEE Transactions on
Image Processing, 26(1):208–221, 2017.

[21] H. Ngo, R. Ives, J. Matey, J. Dormo, M. Rhoads, and
D. Choi. Design and implementation of a multispectral iris
capture system. In Proc. ACSSC, pages 380–384, 2009.

[22] V. Ojansivu and J. Heikkilä. Blur insensitive texture clas-
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