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Abstract

Background: Vocal learning is a central functional constituent of human speech, and recent studies showing that adult male
mice emit ultrasonic sound sequences characterized as ‘‘songs’’ have suggested that the ultrasonic courtship sounds of
mice provide a mammalian model of vocal learning.

Objectives: We tested whether mouse songs are learned, by examining the relative role of rearing environment in a cross-
fostering experiment.

Methods and Findings: We found that C57BL/6 and BALB/c males emit a clearly different pattern of songs with different
frequency and syllable compositions; C57BL/6 males showed a higher peak frequency of syllables, shorter intervals between
syllables, and more upward frequency modulations with jumps, whereas BALB/c males produced more ‘‘chevron’’ and
‘‘harmonics’’ syllables. To establish the degree of environmental influences in mouse song development, sons of these two
strains were cross-fostered to another strain of parents. Songs were recorded when these cross-fostered pups were fully
developed and their songs were compared with those of male mice reared by the genetic parents. The cross-fostered
animals sang songs with acoustic characteristics - including syllable interval, peak frequency, and modulation patterns -
similar to those of their genetic parents. In addition their song elements retained sequential characteristics similar to those
of their genetic parents’ songs.

Conclusion: These results do not support the hypothesis that mouse ‘‘song’’ is learned; we found no evidence for vocal
learning of any sort under the conditions of this experiment. Our observation that the strain-specific character of the song
profile persisted even after changing the developmental auditory environment suggests that the structure of these
courtship sound sequences is under strong genetic control. Thus, the usefulness of mouse ‘‘song’’ as a model of mammalian
vocal learning is limited, but mouse song has the potential to be an indispensable model to study genetic mechanisms for
vocal patterning and behavioral sequences.
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Introduction

Many animals, including humans, use vocal signals to

communicate with conspecifics. Song is a long, complex

vocalization of several acoustic elements arranged in specific

sequences [1]. [2]. While most mammals, birds [3], and frogs [4]

tested show only genetically regulated patterns of vocalizations,

several rare groups of birds (songbirds, parrots, hummingbirds)

and mammals (whales, bats and humans) also learn vocalizations.

They learn them through social imitation, with different degrees of

innate constraints depending on the species [5,6]. In most species,

vocal learning occurs mainly during juvenile development. In

zebra finches, for instance, approximately 30 days after hatching,

young males start producing unstructured sounds. The onset of

vocal learning after exposure to a song model from a tutor, usually

the father, is marked by the rapid emergence of structured sounds.

To learn a song, the bird has to compare these sounds with a

memory template of the song model using auditory feedback [7].

Learning songs is achieved by transforming and differentiating

prototype sounds until they resemble the different syllables of the

song model. This type of vocal learning for which neural and

molecular substrates have been well documented [3] is similar to

human spoken language learning [7].

The mouse, Mus musculus, is a genetically and neurochemically

well-described mammalian organism. Mice emit ultrasonic

vocalizations with frequencies higher than 30 kHz, which is far
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beyond the human audible range [8]. Mice produce ultrasonic

vocalizations in 2 social contexts: first, pups’ production of

‘‘isolation calls’’ in cold conditions or when they are separated

from the dam [9,10]; second, males emitting ‘‘ultrasonic

vocalizations’’ in the presence of females or when they are

stimulated by the female’s urinary pheromones [11]. Recent

studies have demonstrated that ultrasonic song vocalizations of

male mice have behavioral features similar to those of bird songs,

including discrete syllables with temporal sequencing, repeated

phrases, and variability among individuals [12].

The B6D2F1strain of male mice showed individual differences

in syllable usage and the temporal structure of their songs as

reported by Holy and Guo [12]. Furthermore, mating has been

shown to change the quality and quantity of male ultrasonic

vocalization [13]. These findings lead to the hypothesis that male

mouse songs may have an experience-dependent phenotype.

However, the influence of social environments during the early

developmental period, in which songbirds learn the prototype of

songs from their tutors as clearly shown by cross-fostering studies

[14], has not been examined.

To elucidate genetic and environmental effects on mouse songs,

we conducted a cross-fostering study to understand the effects of

the social experience during the juvenile developmental period on

song development. First, we compared 2 strains of inbred C57BL/

6 and BALB/c males and found that these 2 strains of male mice

emitted a different pattern of songs with regard to frequency, inter-

syllable intervals, and syllable composition. C57BL/6 males

showed a higher peak frequency of syllables and more frequen-

cy-modulated syllables with 1 or multiple jumps and short- and

upward syllables, whereas BALB/c males produced more

chevron-, flat-, and harmonics-syllables. None of these strain-

specific parameters were affected by cross-fostering. Therefore,

developmental social environments appear to have no significant

role in adult male songs of mice. In other words, mouse songs do

not seem to involve imitative learning.

Results

Strain differences in ultrasonic songs
Song parameters. When a male subject encountered a

female, he emitted complex ultrasounds. Sound spectrograms

demonstrated that B6 males showed a peak at 70–80 kHz, and

BALB males at 50–60 kHz (Fig. 1a and Audio S1 and S2). The

comparison between B6 and BALB mice revealed that the average

peak frequency of syllables was lower in BALB males (Mann–

Whitney test, p,0.005), the average interval between syllables was

longer in BALB males (Mann–Whitney test, p,0.005), but the

number and duration of syllables (Fig. 1b) emitted in the 3-min test

did not differ significantly (B6, 240645 times/min; BALB,

257632 times/min).

Syllable category analysis. According to previous studies

[15], each syllable was identified as 1 of 10 distinct categories:

‘‘upward,’’ ‘‘flat,’’ ‘‘chevron,’’ ‘‘complex,’’ ‘‘more jumps,’’

‘‘downwards,’’ ‘‘short,’’ ‘‘wave,’’ ‘‘one jump,’’ or ‘‘harmonics’’.

The resulting pie graph indicated strain differences in the

distribution of syllable categories (Fig. 1c). MANOVA, with the

strain as the main factor and the probabilities of each syllable

occurrence (10 in total) as dependent variables, revealed a

significant between-group difference (F(9,3) = 69.7, p,0.0001). A

post hoc t-test showed strain differences in 8 of the 10 syllable

categories (Fig. 1c). B6 mice produced more ‘‘upward,’’ ‘‘short,’’

‘‘one jump,’’ and ‘‘more jumps’’ syllables than BALB/c mice

(p,0.05, t-test). In contrast, BALB/c mice produced more ‘‘flat,’’

‘‘chevron,’’ ‘‘complex,’’ and ‘‘harmonics’’ syllables (p,0.05, t-test).

Sequential analyses of syllables. The sequential patterns of

B6 and BALB mice songs are shown in Fig. S2. All 10 syllable

categories were included in the analysis. Because these patterns

were overly complicated for rigorous analysis, the syllable

categories were lumped into 2 large types, namely, syllables with

jumps (A) and other syllable types (B). The gap (more than 0.25 s)

between each syllable bout is represented by Z. B6 and BALB

mice showed distinct transitional patterns of the song syllables.

MANOVA, with the strain as the main factor and the probabilities

of each syllable transition (8 in total) as dependent variables,

revealed a significant strain difference in the transition patterns

(F(7,5) = 4.92, p,0.05). Post hoc t-tests showed a greater

occurrence of transitions from types A to A, A to B, B to A, A

to Z, and Z to A in B6 than in BALB mice, whereas BALB mice

showed more B to B self-transition compared to B6 mice (Fig. 1d).

Comparison between the fostered groups and naturally-
reared sons

Sonograms. Sound spectrograms demonstrated that B6-sons

and B6-foster males showed a peak at 70–80 kHz, whereas BALB

mice showed a peak at 50–60 kHz (Fig. 2 and Audio S3, S4, S5

and S6).

Song parameters. We compared songs between fostered

groups, and found that the main strain differences we quantified

were not affected by fostering. BALB cross-fostered males still

showed a lower peak frequency (F(1,20) = 106.5, p,0.0001) and

longer inter-syllable intervals (F(1,20) = 9.67, p,0.01) than B6-

fostered males (Fig. 3). The syllable duration and the number of

syllables emitted in the 3-min test were equivalent in all groups

(B6-son, 225656 times/min; B6-foster, 242645 times/min;

BALB-son, 225633 times/min; BALB-foster, 249637 times/

min).

Syllable category analysis. MANOVA revealed a

significant effect of strain (F(9,9) = 25.9, p,0.0001), but not of

fostering (F(9,9) = 0.91, p = 0.55) or an interaction of strain and

fostering (F(9,9) = 0.41, p = 0.89). Regardless of fostering

experience, B6 mice produced more ‘‘short,’’ ‘‘one jump,’’ and

‘‘more jumps’’ syllables than BALB mice (Fig. 4, p,0.05). In

contrast, BALB mice produced more ‘‘flat,’’ ‘‘chevron,’’

‘‘complex,’’ and ‘‘harmonics’’ syllables (Fig. 4, p,0.05). The

proportions of syllables within each category are shown in Fig. 5

which indicates that the differences in the appearance of syllable

categories were mainly dependent on the strain of the mice.

Sequential analyses of syllables. Regardless of fostering,

B6 and BALB mice showed distinct transitional patterns of the

song syllables, and these characteristics were displayed by cross-

fostered males. MANOVA revealed a strain difference

(F(6,12) = 24.6, p,0.0001), but no fostering effect

(F(6,12) = 0.655, p = 0.687) and no interaction between these

(F(6,12) = 1.56, p = 0.241). A Bonferonni post hoc test revealed

that sons of BALB mice showed a greater occurrence of B to B self-

transitions, B to Z and Z to B transitions as well as a lower

occurrence of A to A self-transitions, A to B, B to A, A to Z, and Z

to A transitions compared to sons of B6 and B6-foster male mice

(p,0.05, Fig. 6). BALB-foster mice demonstrated a greater

occurrence of B to B self-transitions and a lower occurrence of

A to A, A to B, B to A, A to Z, and Z to A transitions compared to

sons of B6 and B6-foster mice (p,0.05, Fig. 6).

Discussion

In the present study, we revealed that B6 and BALB male mice

showed distinct patterns and sound profiles of songs when

encountering a female. Our syllable categories are similar to those

Examining Learning in Mice Songs
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Figure 1. Strain-specific characteristics of male mice songs. (a) Sound spectrograms of ultrasonic songs in B6 (upper) and BALB (lower) male
mice. B6 males showed a higher peak frequency of syllables ranging from 70–110 kHz, shorter intervals between syllables, and more upward
frequency modulations with jumps (arrows), whereas BALB males produced more ‘‘chevron’’ and ‘‘harmonics’’ syllables (arrow head). (b) The mean
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reported in earlier studies [12,15–17]. The average peak frequency

of syllables was higher in B6 mice, and the average interval

between syllables was shorter in B6 mice. In addition, B6 mice

produced more ‘‘upward,’’ ‘‘short,’’ ‘‘one jump,’’ and ‘‘more

jumps’’ syllables than BALB mice; whereas BALB mice produced

more ‘‘flat,’’ ‘‘chevron,’’ ‘‘complex,’’ and ‘‘harmonics’’ syllables.

By using the cross-fostering procedure, we further showed that

these strain differences remained even after the pups were cross-

fostered to another strain of parents, suggesting that the strain-

specific song profile is determined by genetic factors and is

independent of the juvenile social auditory environment.

Studies of the natural history of mice have demonstrated that a

pair of male and female mice lives in a nest together with their

juveniles [18]. In the laboratory the female goes into estrus around

the time of delivery as indicated by an increase in estrogen levels,

the so-called postpartum estrus [19,20]. The odor of female urine

stimulates the males to sing [12]; therefore, the pups can be

exposed to male songs especially when the mother comes into the

round of the reproductive cycle. Since the mouse can hear from at

least postnatal day 10 [21], pups in the juvenile period have

sufficient opportunity to be exposed to adult male songs. To be

sure, we recorded in the laboratory one pair of B6 and one pair of

BALB male and female continuously every day for three weeks

after pup delivery, and found that the pair generated over 200

seconds of vocalizations each day, and these were always during

the dark period (unpublished data). Thus, although not directly

measured, we believe that the male mice in the cross fostering

studies sang during the cross-fostering period. In this study, the

fostered mice were housed in mixed strains of the same age in the

post-weaning period, to standardize the possibility of hearing songs

from littermates. If the strain differences reported in Fig. 1 had

been the result of learning, our methods would have ensured that

this rearing condition was sufficient to establish such strain

differences. In fact, this is a general breeding condition utilized by

Figure 2. Sonograms of ultrasonic songs in fostered males. Sonograms of ultrasonic songs recorded from B6-son, B6-foster, BALB-son, and
BALB-foster male mice. Cross-fostered mice showed similar patterns to those of normally reared mice, and the effects of the rearing environment
were not obvious. B6-son and B6-foster mice showed a higher peak frequency of syllables, shorter intervals between syllables, and more upward
frequency modulations with jumps (arrows), whereas BALB-son and BALB-foster males produced more ‘‘chevron’’ and ‘‘harmonics’’ syllables (arrow
head).
doi:10.1371/journal.pone.0017721.g002

syllable peak frequency and inter-syllable interval significantly differed between B6 and BALB mice, but syllable duration was not. Data are expressed
as mean 6 SEM; *p,0.05 between strains. (c) Pie graphs showing percentages of the 10 categories of song syllables in B6 and BALB mice.
Percentages were calculated in each strain as the number of syllables in each category for each subject/total number of syllables analyzed in each
subject. The number of total syllables analyzed was: 6179 for B6 mice and 6244 for BALB mice. B6 mice produced more ‘‘short,’’ ‘‘one jump,’’ and
‘‘more jumps’’ syllables than BALB mice, whereas BALB mice produced more ‘‘flat’’, ‘‘chevron’’, ‘‘complex’’, and ‘‘harmonics’’ syllables; *p,0.05
between strains. (d) In the sequential analysis, we divided all syllable types into 2 categories, namely, A (syllables with frequency jumps) and B
(syllables without jumps). Z indicates silent gaps longer than 0.25 s. Circles represent the percentage of syllable types, and the thickness of the arrows
represents the transition probabilities. The sequential analyses of syllables demonstrated strain-specific patterns; B6 mice showed more transition
from A to A, A to B, A to Z, B to A, and Z to A than BALB mice and BALB mice showed more B to B self transition compared to that in B6 mice; *p,0.05
between strains.
doi:10.1371/journal.pone.0017721.g001
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most laboratories [22]. Therefore, our procedures should have

been able to detect the effect of cross-fostering rearing environ-

ments, but we did not observe any of such effects.

Several studies have demonstrated that female mice show

attraction to male songs [23,24]. In these studies, however, a 2-

choice test presenting 2 types of songs was not conducted;

therefore, it remains a question whether female mice have a

preference for a specific character of songs, as shown in songbirds

[25]. Furthermore, female mice have been shown to respond to

synthetic 70 kHz ultrasounds presented behind a devocalized male

mouse [24] and to pup vocalizations [9], in which the observed

syllable categories are similar to adult male songs [26]. In a recent

study, female mice were shown to be able to distinguish between a

familiar male song and an unfamiliar one based on the social

experience of a short-term encounter and showed investigative

behavior toward the unfamiliar song, implying that female mice

can distinguish the individual profile of the songs [27]. These

results suggest that a certain level of ultrasound complexity is

sufficient to attract female mice, although the value of learning

songs for male mice to achieve reproductive success remains

unclear.

Recent studies have demonstrated that ultrasonic vocalization of

mouse pups is affected by genes related to neuropsychiatric

disorders such as Autism [15,28]. These genetic approaches could

reveal the genes that regulate ultrasonic vocalization in mice. For

example, the function of Foxp2, a transcription factor shown to be

related to a human language disorder [29], is involved in pup

isolation calls. When human-type FoxP2 was inserted into the

Figure 3. Song parameters of fostered males. Song parameters in B6-son, B6-foster, BALB-son, and BALB-foster male mice. The distribution
histogram of the peak frequency (a) and intervals (b), but not the duration (c), of the syllables demonstrated significant strain differences, regardless
of the fostering. Mean peak frequency (d) and interval (e) significantly differed between genetic B6 and BALB groups. Data are expressed as mean 6

SEM; *p,0.05 vs. B6-son and B6-foster mice.
doi:10.1371/journal.pone.0017721.g003
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mice genome, isolation call pitch increased [30]. In addition, when

FoxP2 was knocked out [31] or a FoxP2 mutation corresponding

to the human language disorder was knocked in [32], the number

of isolation calls decreased. However, these transgenic mice were

tested with maternal separation-induced pup ultrasound vocaliza-

tions, not with male courtship songs. Therefore, it is of interest to

test whether these genetically modified mice would show the

quantitative and qualitative differences in adult male songs we

observed. The complexity of the song pattern itself raises an

interest in understanding the neural and molecular mechanisms

controlling song in mammals.

Here we showed that imitative vocal learning is not involved in the

strain specificity of mouse songs. Vocal learning requires two

independent processes. First, the animal must have voluntary control

over the vocal output. Second, the animal should be able to match its

vocal output with the externally acquired auditory memory. For the

first process, the existence of the direct motor pathway connecting

the oro-facial motor cortex and the medullar phonatory and

respiratory areas, including the nucleus ambiguus, has been

suggested as an anatomical substrate responsible for vocal plasticity

[3]. In fact, this cortico-bulber pathway for vocal plasticity exists in

humans but not in non-human primates [33]. This pathway is also

Figure 5. Distribution pattern of the song syllables in fostered males. Pie graphs showing the percentages of the 10 categories of song
syllables in B6-son (a), BALB-son (b), B6-foster (c), and BALB-foster (d) mice. Percentages were calculated in each strain as the number of syllables in
each category for each subject/total number of syllables analyzed in each subject. The total syllables determined are as follows: 5487 syllables; B6-
son; 6414 syllables, B6-foster; 4973 syllables, BALB-son; 6963 syllables, BALB-foster.
doi:10.1371/journal.pone.0017721.g005

Figure 4. Appearance ratio of the song syllables in fostered males. The appearance ratio of each of the 10 syllable categories in B6-son, B6-
foster, BALB-son, and BALB-foster mice. Genetic B6 groups produced more ‘‘short,’’ ‘‘one jump,’’ and ‘‘more jumps’’ syllables than BALB/c mice,
whereas genetic BALB groups produced more ‘‘flat,’’ ‘‘chevron,’’ ‘‘complex,’’ and ‘‘harmonics’’ syllables. Data are expressed as mean 6 SEM; *p,0.05
vs B6-son and B6-foster mice.
doi:10.1371/journal.pone.0017721.g004
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found in oscine songbirds such as the zebra finch and the canary but

not in pigeons [34]. Since humans and oscine songbirds are vocal

learners and non-human primates and pigeons are vocal non-

learners, the existence of this pathway coincides with vocal learning.

Arriaga et al. reported singing-related gene expression in mice

cingulated, motor cortex and basal ganglia [35]. They also reported

the existence of the cortico-bulber pathway for vocal plasticity in

mice [36], which should be related to the observed vocal complexity

of the mouse song. Our data, which show no effect of the auditory

environment by tutors on mouse song, may appear contradictory to

these findings. However, vocal plasticity alone does not guarantee

vocal learning, since vocal-auditory matching is also required for

vocal learning to occur. A certain degree of voluntary vocal

plasticity may be necessary in animals with complex vocalizations to

maintain a stable performance even without learning. It may be

interesting to examine the anatomical pathways in animals with

complex vocalizations but without learning abilities, including sub-

oscines [37] and gibbons [38]. Further, even though there was no

clear evidence of vocal learning in the mice examined in this study,

there may be other factors that modulate the phonetic and

sequential variability of male songs. It is often assumed that highly

variable songs are suggestive evidence of vocal learning. As seen

from our sonograms and sequence analyses, mice songs are highly

variable yet we find evidence that they are innate. This variability

could be generated by a random pattern generator independent of

learning or by some hormonal influence [39]. In either case, our

findings indicate that the presence of variability does not

automatically mean the presence of vocal learning.

Conclusion
Our results show that the auditory environment does not affect

song phenotypes in mice, and, thus, vocal learning does not appear to

be involved in mouse songs. Nevertheless, mouse song is a very

complex behavior, with at least 10 categories of vocal tokens and

complex note-to-note transition rules. Even if this phenotype is largely

controlled by genetic factors and only limited learning is involved, we

can still pose interesting questions regarding the genetic encoding of

acoustic categories and the neural mechanisms involved in sequence

generation. Thus, the mouse song should remain an important model

in which to study the biological basis of complex communicative

behavior, including spoken human language.

Materials and Methods

Animals
BALB/cAJcl (BALB) and C57BL/6JJcl (B6) mice were originally

obtained from Japan Clea Co. Ltd. (Japan Clea, Yokohama, Japan)

and bred in our laboratory. Food and water were given ad libitum,

and all the animals were kept at a constant temperature (2361uC)

and humidity (40%610%) under a 12-h light:dark cycle (light on at

0600). All experiments were conducted in accordance with the

guideline of the "Policies Governing The Use of Live Vertebrate

Animals" by Azabu University, and were approved by The Ethical

Committee for Vertebrate Experiments (ID# 070418).

Pairing and cross-fostering
A male and a female mouse of the same strain were pair-housed

in a cage (17.5 cm 624.5 cm 612.5 cm) for breeding. When the

female was pregnant, delivery was examined every 6–8 hours.

When newly born pups were found at the same time in both strains

of parents, a part of the litter was reciprocally cross-fostered to

parents of the other strain of mice (B6-foster and BALB-foster). The

control mice were handled in the same manner as fostered pups but

returned to their own parents (B6-son and BALB-son). All litters

were left undisturbed until weaning (postnatal day (PD) 21). After

PD21, they were housed with males of the non-cross fostered

controls of the different strain until ultrasound recording at 10–20

weeks of age (Fig.7). The number of animals and litters (animals/

litters) used in this experiment were as follows: B6 (6), BALB (7), B6-

son (5/4), B6-foster (5/3), BALB-son (5/4), and BALB-foster (6/5).

Because it is known that mating can affect the vocal morphology of

male songs, we separately analyzed strain differences between B6

and BALB mice in sexually experienced males and strain and

environmental effects between cross-fostered and naturally reared

B6 and BALB mice in sexually inexperienced males.

Ultrasound recording
All experiments were carried out in a soundproof chamber

(Muromachi Kikai, Tokyo, Japan) under a red dim light, from 1300

to 1700 hours. Ultrasonic sounds were detected using a condenser

microphone (UltraSoundGate CM16/CMPA, Avisoft Bioacoustics,

Berlin, Germany) designed for recordings between 10 and 200 kHz.

The microphone was connected to an A/D converter (Ultra-

SoundGate 116, Avisoft Bioacoustics, Berlin, Germany) with a

sampling rate of 300 kHz and acoustic signals were transmitted to a

sound analysis system (SASLab Pro, Avisoft Bioacoustics, Berlin,

Germany). During the recording, a subject male mouse was

individually housed in a test cage (12.5 cm 620.0 cm 611.0 cm)

and kept there for at least 2 h for habituation. The test cage was

placed in the soundproof chamber, and a female mouse,

devocalized by unilateral sectioning of the inferior laryngeal nerve

[23], was introduced into the test cage. The ultrasound was

recorded for 3 min, and the data were later analyzed.

Figure 6. Sequential analysis of syllables in fostered males.
Sequential analyses of syllables demonstrated strain-specific patterns;
BALB-son mice showed a greater occurrence of B to B self transitions,
and B to Z and Z to B transitions, as well as a lower occurrence of A to A
self-transitions and A to B, B to A, A to Z, and Z to A transitions
compared to B6-son and B6-foster mice. BALB-foster mice demonstrat-
ed greater occurrence of type B to B self-transitions and a lower
occurrence of A to A, A to B, B to A, A to Z, and Z to A transitions
compared to B6-son and B6-foster mice. Circles represent the
percentage of syllable types, and the thickness of the arrows represents
the transition probabilities; *p,0.05 vs. B6-son and B6-foster mice.
doi:10.1371/journal.pone.0017721.g006
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Ultrasound analysis
Spectrograms were generated with an FFT-length of 1024 points

and a time-window overlap of 75% (100% frame, Hamming

window). The spectrogram was produced at a frequency resolution

of 488 Hz and a time resolution of 1 ms. A lower cut-off frequency

of 20 kHz was used to reduce background noise outside the relevant

frequency band. Parameters analyzed for each subject included the

number of syllables, duration of syllables, and qualitative and

quantitative analyses of sound frequencies measured in terms of

frequency at the maximum of the spectrum.

Waveform patterns of calls collected from every group (B6, 6179

syllables; BALB, 6244 syllables; B6-son, 5487 syllables; B6-foster,

6414 syllables; BALB-son, 4973 syllables; BALB-foster, 6963

syllables) were analyzed in detail. Each syllable was identified as 1

of 10 distinct categories, based on internal pitch change, length, and

shape, according to previously reported categories with minor

modifications (Fig. S1) [14]. The classification of the 10 categories of

ultrasonic vocalization syllables is described in the Results section.

The frequency of appearance of each category was compared

between the groups. In order to confirm the categorization, a

likelihood ratio test examining whether there was a systematic

difference between the 2 blind experimenters was performed by a

generalized linear model that consisted of an explanatory variable

(number of syllables) and 3 response variables (2 operators, 11

categories of syllables, and 6 mice). No significant difference was

found between the 2 operators (quasi-Poisson error, log link, total

number of all syllables in each mouse as offset, F(1,115) = 0.13,

p = 0.72). The occurrence of each syllable was compared between

groups using MANOVA, followed by a Bonferonni post-hoc test.

Sequential analysis of syllables
The prevalence of a syllable type was defined as follows on the

basis of a previous study [14]: the syllable types with jumps (1 jump,

more jumps) were denoted as A, with all other syllable types denoted

as B, and the gap (more than 0.25 s) was Z. One-to-one transition

probabilities between these 3 categories were analyzed and

indicated by diagrams (Eureka version 1.0 http:// sites.google.

com/site/eurekawiki/). The occurrence of each transition type was

compared between groups using MANOVA, followed by a

Bonferonni post-hoc test.

Supporting Information

Figure S1 Song syllable characteristics. Ten categories

were defined as follows. Upward: duration of 5–50 ms, frequency

increaseof more than 5 kHz from starting point to end.

Downward: duration of 5–50 ms, frequency decrease of more

than 5 kHz from starting point to end. Flat: duration of 5–35 ms,

frequency difference of less than 5 kHz between starting point and

end. Short: duration of less than 5 ms, frequency difference of less

than 5 kHz between starting point and end. Chevron: duration of

15–80 ms, frequency increase of more than 5 kHz from starting

point to frequency peak and frequency increase or decrease of

more than 5 kHz from frequency peak to end (*; frequency peak).

Wave: duration of 15–100 ms, frequency increase or decrease of

more than 5 kHz from starting point to the first frequency peak (or

bottom) and containing 1 frequency peak and 1 frequency bottom

(*; frequency peak and bottom). Complex: duration of 30–150 ms,

frequency increase or decrease of more than 5 kHz from starting

point to the first frequency peak (or bottom) and containing more

than 3 frequency peaks and/or frequency bottoms that differ from

each other by more than 5 kHz in frequency (*; frequency peak

and bottom). One jump: duration of 10–50 ms and containing 1

frequency gap (#; frequency gap, less than 1 ms and more than

5 kHz frequency difference). More jumps: duration of 15–100 ms

and containing more than 2 frequency gaps (#; frequency gap).

Harmonics: duration of 10–100 ms and containing more than 2

Chevron, Wave, Complex, One jump, or More jumps syllables in

parallel with a main syllable that has the highest dB count.

(TIF)

Figure S2 Sequential analysis of syllable types in B6 and
BALB mice. The sequential analyses of 10 categories of syllables

demonstrated a very complicated transition both in B6 (upper) and

BALB (lower) mice. a: upward, b: downward, c: flat, d: short, e:

chevron, f: wave, g: complex, h: one jump, i: more jumps, j:

harmonics, Z: gap.

(TIF)

Audio S1 B6 male song.

(WAV)

Figure 7. Timeline of the cross-fostering procedure. This figure illustrates the case of cross-fostering from BALB to B6. When newly born pups
were found at the same time in both strains of parents, a part of the litter was reciprocally cross-fostered to parents of the other strain of mice. The
control mice were handled in the same manner as fostered pups but returned to their own parents. All litters were left undisturbed until weaning
(PD21). After weaning,they were housed with males of the non-cross fostered controls of the different strain until ultrasound recording at 10–20
weeks of age.
doi:10.1371/journal.pone.0017721.g007
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Audio S2 BALB male song.
(WAV)

Audio S3 B6-son male song.
(WAV)

Audio S4 B6-foster male song.
(WAV)

Audio S5 BALB-son male song.
(WAV)

Audio S6 BALB-foster male song.
(WAV)
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