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Information processing in the brain is thought to rely on the convergence and divergence

of oscillatory behaviors of widely distributed brain areas. This information flow is captured

in its simplest form via the concepts of synchronization and desynchronization and related
metrics. More complex forms of information flow are transient synchronizations and

multi-frequency behaviors with metrics related to cross-frequency coupling (CFC). It is

supposed that CFC plays a crucial role in the organization of large-scale networks and
functional integration across large distances. In this study, we describe different CFC

measures and test their applicability in simulated and real electroencephalographic (EEG)
data obtained during resting state. For these purposes, we derive generic oscillator

equations from full brain network models. We systematically model and simulate the

various scenarios of CFC under the influence of noise to obtain biologically realistic
oscillator dynamics. We find that (i) specific CFC-measures detect correctly in most cases

the nature of CFC under noise conditions, (ii) bispectrum (BIS) and bicoherence (BIC)

correctly detect the CFCs in simulated data, (iii) empirical resting state EEG show a
prominent delta-alpha CFC as identified by specific CFC measures and the more classic

BIS and BIC. This coupling was mostly asymmetric (directed) and generally higher in the
eyes closed (EC) than in the eyes open (EO) condition. In conjunction, these two sets of

measures provide a powerful toolbox to reveal the nature of couplings from experimental

data and as such allow inference on the brain state dependent information processing.
Methodological advantages of using CFC measures and theoretical significance of delta

and alpha interactions during resting and other brain states are discussed.

Keywords: cross-frequency coupling, the virtual brain, bispectrum, bicoherence, simulation, resting state, full brain

model, connectome

INTRODUCTION

“Almost all biological systems exhibit significant non-linear

behavior” (Sigl and Chamoun, 1994). The non-linear nature

is imminent in electrophysiological brain activity as measured

by Electroencephalography (EEG) or Magnetoencephalography

(MEG; Elbert et al., 1994; Birbaumer et al., 1995; Müller et al.,

2003a; Allefeld et al., 2009) and results in characteristics such as

multistability, bifurcations, deterministic chaos, and multiscale

behaviors. Even at rest (in the absence of an explicit task), the

human brain shows temporally coherent activity (Deco et al.,

2008, 2009; Ghosh et al., 2008) of a surprising degree of com-

plexity. This so-called “resting state” activity and its underlying

coupling dynamics can be captured at different scales (from a

single cortical area to multiple cortical areas and whole brain

dynamics) and frequencies using both neuroimaging techniques

(fMRI and PET) and EEG/MEG recordings (Biswal et al., 1995;

Greicius et al., 2003; Müller et al., 2003a,b; Damoiseaux et al.,

2006; Venables et al., 2009). Moreover, the EEG (and MEG) is a

complex signal containing different frequency components inter-

acting with each other. Classic power spectral analyses based on

(fast) Fourier Transform (FFT) or different time-frequency trans-

forms (e.g., wavelet, Hilbert, or Gabor transform) display ampli-

tude modulations within the defined frequencies across time.

Corresponding complex transformations of the signal provide

information about phase changes but they fail identifying the

relationships among different frequencies or frequency compo-

nents. However, it is the cross-frequency coupling (CFC) between

different frequency bands that has been hypothesized to be the

carrier mechanism for the interaction of local and global pro-

cesses and hence being directly related to the integration of

distributed information. In the early 1960s, bispectral analysis

was first introduced by geophysicists (cf. Sigl and Chamoun,

1994) to study the interfrequency coupling of geophysical sig-

nals. These algorithms have then been used also in neurosciences,

especially during the last decade in the EEG literature (Sigl and

Chamoun, 1994; Witte et al., 2000; Hagihira et al., 2001; Schack

et al., 2001a,b, 2002; Miller et al., 2004; Isler et al., 2008).

DIFFERENT TYPES OF CROSS-FREQUENCY COUPLING (CFC)

Recently, Jensen and Colgin (2007) described different forms

of cross-frequency interactions: (i) power to power, (ii) phase

to phase, (iii) phase to frequency, and (iv) phase to power.

There is an increasing evidence that the last type of CFC, so-

called phase-amplitude modulation, occurs very often and was

found both in animals and humans in the entorhinal and pre-

frontal cortices, in the hippocampus, and distributed cortical

areas (Mormann et al., 2005; Cohen, 2008; Osipova et al., 2008;

Tort et al., 2008, 2009, 2010; Cohen et al., 2009a,b; Colgin et al.,

2009; Axmacher et al., 2010a,b; Voytek et al., 2010). According to

this CFC, “gamma oscillations might emerge at a particular phase
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of the theta cycle and thereby recruit cell assemblies involved

in processing at that time” (Jensen and Colgin, 2007). Bruns

and Eckhorn (2004) investigated also cross-frequency amplitude

modulations by means of envelope-to-envelope and envelope-to-

signal correlations using subdural electrodes in epileptic patients

during a visual delayed-match-to-sample task. They found a

pronounced task-related increase of the gamma-delta envelope-

to-signal correlation (with a correlational delay of 40 ms) between

superior and inferior occipital visual areas possibly reflecting a

short-term memory encoding process. In contrast, envelope-to-

envelope correlation showed event-, but not task-related changes

of intra-areal and no changes of inter-areal coupling (Bruns

and Eckhorn, 2004). De Lange et al. (2008) investigated cross-

frequency amplitude correlation during motor imagery and

found interactions between central and precentral alpha/beta

oscillations and occipito-parietal gamma oscillations. In addition

to the mentioned above cross-frequency (CF) modulations, Witte

et al. (2008) described two more CFC types: envelope to frequency

and frequency to frequency. In the data-based EEG burst simula-

tions using coupled Duffing oscillators, the authors (Witte et al.,

2008) found strong envelope-envelope and envelope-frequency

CFC in the delta (0.5–2.5 Hz) and the alpha (7–11 or 8–12 Hz)

bands and quadratic coupling using bicoherence (BIC) between

delta and alpha bands.

THETA-GAMMA OSCILLATORY COUPLING

Neurophysiological evidence suggests that oscillations in theta

and gamma band are simultaneously modulated during percep-

tion and memory (Jensen and Colgin, 2007; Colgin et al., 2009;

Tort et al., 2009). Recently, more and more evidence suggests that

corresponding CFC between these frequency bands plays a crucial

role in this and other processes, e.g., neuronal computation, com-

munication, and learning (Schack et al., 2002; Schack and Weiss,

2005; Canolty et al., 2006; Jensen and Colgin, 2007; Cohen, 2008;

Tort et al., 2008, 2009; Doesburg et al., 2009; Canolty and Knight,

2010; Kendrick et al., 2011). In the study of Schack et al. (2002),

increased power in the theta and the gamma frequency bands was

accompanied by strong phase coupling by means of cross- BIC

between theta frequency at Fz and gamma frequency at F3 and

Fp1, respectively, for memorizing number words. The suggestion

that this is an amplitude modulation of gamma oscillations by

slow frequency oscillations (e.g., theta) was supported by coher-

ence analysis between the envelope of gamma frequencies and

the raw EEG. In another study of Schack and Weiss (2005), the

CFC between theta and gamma oscillations was investigated using

n:m phase synchronization algorithms based on Gabor expan-

sion function. Besides the higher spectral power, phase locking

and 1:1 phase synchronization measured by phase locking index

(PLI) and phase coherence (PC) in both the theta and the gamma

frequency bands, successful encoding of nouns was also accom-

panied by increased CFC or 1:6 phase synchronization at selected

electrodes (within the time interval of 200–250 ms) and between

them (within the time intervals of 250–350 and 400–500 ms).

A phase to power CFC between theta and gamma oscillations

was also reported in epilepsy patients during a continuous word

recognition paradigm in the rhinal cortex and hippocampus.

Interestingly, the theta-gamma CFC in the rhinal cortex was more

pronounced for correct rejections than for hits, while this CFC

pattern in the hippocampus was inversely more pronounced for

hits than for correct rejections (Mormann et al., 2005). Using

intracranial recordings in human epilepsy patients, Axmacher

et al. (2010a) showed (i) that simultaneous maintenance of mul-

tiple items in working memory is accompanied by theta-gamma

phase-amplitude CFC in the hippocampus, and (ii) that mainte-

nance of an increasing number of items is associated with modu-

lation of beta/gamma power by lowering theta frequency phase.

In other words, modulating influence of the lower theta phase

on the beta/gamma activity provides for higher working mem-

ory load. Recently, Belluscio et al. (2012) found that theta-gamma

phase-amplitude modulation in the CA1 region of rat hippocam-

pus was accompanied by theta-gamma phase-phase modulations,

at least for slow (30–50 Hz) and midfrequency (50–90 Hz) gamma

oscillators.

DELTA-THETA/DELTA-ALPHA OSCILLATORY COUPLING

AND OTHER CFCs

Besides the cross low-frequency/high-frequency coupling (e.g.,

theta-gamma), there is evidence (Lakatos et al., 2005; Schack

et al., 2005; Cohen, 2008; Isler et al., 2008) that CFC exists also

between the low-frequency bands (e.g., delta-theta, delta-alpha,

and theta-alpha). Isler et al. (2008) reported increase in power

and coherence in the delta band elicited by novel sounds in an

auditory novelty oddball task accompanied by CFC measured by

BIC for delta-theta (1:3) and delta-alpha (1:4) relationships in

widespread fronto-central, right parietal, temporal, and occipital

regions. At the same time, globally synchronized delta oscilla-

tions were phase coupled in terms of cross-bicoherence (cBIC)

to theta oscillations in central regions and to alpha oscillations

in right parietal and posterior regions. Using CF m:n phase syn-

chronization index (PSI), Schack et al. (2005) found an increase

in upper alpha-theta phase synchronization between right poste-

rior and left anterior sites in a memory scanning task. The authors

suggested that this CFC reflects the interplay between the cen-

tral executive functions (theta) and the reactivation of long-term

memory codes in short-term memory (upper alpha). In a com-

petitive decision-making task Cohen et al. (2009b) found that

alpha and beta amplitude in human medial frontal cortex was

modulated by delta and theta phase; the strength of this modu-

lation differed also between losses and wins, suggesting that this

CF phase-amplitude coupling might reflect a coding mechanism

of feedback valence information.

Recently, Lakatos et al. (2005) introduced a hypothesis about

the “hierarchical” organization of EEG oscillations suggesting

that the amplitude of the oscillations at characteristic frequency

is modulated by the oscillatory phase at lower frequency. In par-

ticular, they found that delta (1–4 Hz) phase modulates theta

(4–10 Hz) amplitude, and theta modulates gamma (30–50 Hz)

amplitude in primary auditory cortex of awake macaque mon-

keys (Lakatos et al., 2005). Interestingly, in full-term newborns,

n:m phase synchronization between two delta rhythms (1–1.5 and

3.5–4.5 Hz) was reported (Wacker et al., 2010).

Osipova et al. (2008) reported also about phase to power CFC

between alpha and gamma MEG oscillations during rest with

eyes closed (EC). Interestingly, there was no peak in the gamma
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frequency band and gamma activity was only evident when stud-

ied in relation to the alpha phase. In another MEG study (Palva

et al., 2005), marked cross-frequency n:m phase synchrony was

found among oscillations with frequencies from 3 to 80 Hz. In

particular, enhanced CF phase synchrony among alpha, beta,

and gamma frequency oscillations was present during continuous

mental arithmetic tasks demanding the retention and summa-

tion of items in the working memory. This enhancement of CF

phase synchrony is considered as a candidate mechanism for

the integration of spectrally distributed processing (Palva et al.,

2005). Gamma amplitude modulation (40–80 Hz) by the phase

of the alpha band oscillations (8–12 Hz) was found in the nucleus

accumbens of human patients undergoing deep brain stimula-

tion surgery during a simple reward task (Cohen et al., 2009a).

Recently, it was provided evidence that posterior alpha oscil-

lations (8–13 Hz) constitute a mechanism for prioritizing and

ordering unattended visual input. This mechanism is suggested

to be based on alpha-gamma phase-amplitude CFC, whereby

gamma amplitude-modulated activity that is phase locked to the

alpha-phase keeps competing unattended representations apart in

time (Jensen et al., 2012). In a study with implanted subdural elec-

trocorticographic grids in two patients with intractable epilepsy

performing different visual and non-visual tasks (Voytek et al.,

2010), it was found that high gamma amplitude (80–150 Hz) is

modulated in a non-visual task by anterior frontal theta phase and

in a visual task by the occipital alpha phase. Thus, the modulation

of high gamma activity through theta and alpha phase varied in

these patients as a function of brain area and task modality. The

fact that high-frequency power can be modulated by the phase

of multiple brain rhythms simultaneously provide evidence that

CFC may constitute a mechanism for selection between commu-

nicating cell assemblies (Canolty and Knight, 2010; Voytek et al.,

2010).

INFORMATION FLOW WITHIN AND BETWEEN CELL

ASSEMBLIES

Beginning 1920s, Karl Lashley started with his historical works

about memory traces (engrams) in cerebral cortex and showed

that distribution of active and inactive synapses can be an evi-

dence for learning processes (Lashley, 1924, 1931). Lashley’s

student, D. O. Hebb, developed his so-called Theory of Cell

Assemblies (Hebb, 1949) on the basis of the Lorente de No’s

concept of reverberatory circuits. These circuits have been consid-

ered as the mechanism of activity maintenance after the stimulus

effect was reversed. Besides the properties of fast firing and exci-

tation persistence, cell assemblies can be considered as “closed

systems” oscillating synchronously at different frequencies with

strong information flow within each cell assembly and much

smaller information flow between them. In order to prevent

“the transition from an ‘Einfall’ to an ‘Anfall’ (transition from

an idea to a seizure) in an excitatory neuronal network or, as

Braitenberg poetically states, to ‘discover and isolate ideas . . . ’,

reinforce ideas, ‘and keep them separately’ (Braitenberg and

Schüz, 1991, p. 205)” (cited by Birbaumer et al., 1995, p. 451), cell

assemblies must possess their own automatic threshold control.

Separate cell assemblies communicate with each other to integrate

single information flows and ideas into a common network or

thinking process. In terms of dynamic systems, these metaphoric

descriptions can be rephrased as convergence or divergence of

flows in state space allowing for a full dynamic description (Jirsa

and Kelso, 2005; Perdikis et al., 2011). One of the mechanisms

underlying such an integration or communication between dif-

ferent cell assemblies might be the CFC, allowing accurate timing

between different oscillatory rhythms, selective and dynamic con-

trol of distributed functional cell assemblies (cf. Canolty et al.,

2010), and promotion of different dimensions of brain integra-

tion (Varela et al., 2001; Buzsáki and Draguhn, 2004; Allen et al.,

2011).

CROSS-FREQUENCY MEASURES

BISPECTRUM AND BICOHERENCE

Bispectral analysis is an advanced signal processing technique

based on high-order statistics (HOS). This technique, analyz-

ing multiplicative connections between two rhythms, generating

a third frequency component, and quantifying quadratic non-

linearities and deviation from normality, may be used to inves-

tigate non-linearities within the signal [in the case of bispectrum

(BIS) or bicoherence (BIC)] or between the signals [in the case

of cross-bispectrum (cBIS) or cross-bicoherence (cBIC)] arising

from inter-frequency coupling within and between the signals,

respectively (Sigl and Chamoun, 1994; Schack et al., 2002; Miller

et al., 2004; Isler et al., 2008).

BIS is a higher-order extension of power spectral estimation.

A conventional power spectrum decomposes the power of a time

series over frequency. In contrast, the BIS decomposes the third

moment (skewness) of a time series over frequencies. Specifically,

BIS estimates the relationship between oscillatory components

of the signal or more precisely between the oscillations at two

basic frequencies, f1 and f2, and a harmonic component at the

frequency f1 + f2. The BIS incorporates both phase and power

information, and can be calculated for each frequency triplet (f1,

f2, and f1 + f2). The estimated BIS can be used to detect asymmet-

ric non-linearities in a time series and to detect phase coupling

between frequency components. But because the magnitude of

the BIS is influenced by the amplitude of the signal, it is not a

pure measure of the degree of phase coupling. Instead, normal-

ized BIS called BIC can be used for this purpose. BIC is defined as

a ratio of the BIS to the square root of the real triple product com-

puted from the power spectrum (see Methods); thus, the ratio

is independent of signal amplitude and BIC is, therefore, con-

sidered as a pure measure of the degree of phase coupling (Sigl

and Chamoun, 1994; Schack et al., 2002). BIC ranges between

0 and 1, with 0 indicating no phase coupling and 1 indicating

complete phase coupling between two frequency components. All

this is also true for cross-BIS (cBIS) and cross-BIC (cBIC) with

the difference that the CFC in this case is estimated between two

signals.

OTHER SPECIFIC CFC ESTIMATES

Taking into account the main characteristics of the signal(s), six

different CFC measures may be obtained: (i) power to power, (ii)

phase to phase, (iii) phase to power, (iv) power to frequency, (v)

phase to frequency, and (vi) frequency to frequency (cf. Jensen

and Colgin, 2007). These CFC measures reflect different aspects

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 78 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Jirsa and Müller Cross-frequency coupling in brain networks

of CFC, which are schematically presented in Figure 1. Together

with BIC and BIS, these CFC measures give a relatively com-

plete picture about cross-frequency interdependencies within and

between the signals.

Power to power CFC indicates how amplitude modulations in

one frequency depend on amplitude modulations in the other fre-

quency (compare envelopes of signals X and Y1 in Figures 1A,B,

respectively). This type of CFC was developed to investigate cou-

pling between different high-frequency oscillations (e.g., beta,

gamma) showing similar (low-frequency) amplitude modula-

tions (Bekisz and Wrobel, 1999; Bruns et al., 2000; Bruns and

Eckhorn, 2004). The advance of this technique consist in detect-

ing not only coupling between different frequencies but also

coupling within the same frequency, which could not be found

using conventional coherence measures because of large temporal

or phase jitter (Bruns et al., 2000).

Phase to phase CFC is a measure for n:m synchronization and

shows the degree of the true phase coupling between the frequen-

cies within and between the signals (compare phases of signals X

and Y2 in Figures 1A,C, respectively; the phase relation is 1:3 in

this case). This type of CFC is a pure phase coupling measure and

is amplitude-independent. This so-called n:m synchrony indicates

phase locking on n cycles of one oscillation to m cycles of another

oscillation (Rosenblum et al., 1996; Tass et al., 1998). As men-

tioned by Rosenblum and colleagues (Rosenblum et al., 1996),

“the phenomenon of phase synchronization is a characteristic fea-

ture of autonomous continuous-time system.” In this regard, the

phase synchronization and especially the cross-frequency phase

synchronization is an excellent candidate for neural temporal

coding supporting dynamic information flow in the brain.

Phase to power CFC reflects amplitude modulations in one

frequency (normally in the high frequency, e.g., signal Y3 in

FIGURE 1 | Different types of the cross-frequency coupling. (A) Signal X

at a given constant frequency fluctuating in the amplitude over time (red line).

(B) Power to power CFC: Signal Y1 at about 5 times higher frequency than in

the signal X showing slow amplitude modulations over time like signal X (red

line). (C) Phase to phase CFC: Signal Y2 showing 3:1 phase to phase

coupling with signal X. One oscillation period of signal X corresponds to three

periods of signal Y2. (D) Phase to power CFC: Signal Y3 with fast amplitude

modulations, which are related or coupled with the phase of the signal X.

(E) Phase to frequency CFC: Signal Y4 with frequency modulations, which

are coupled with phase changes of signal X. (F) Power to frequency CFC:

Signal Y5 with frequency modulations, which are coupled with the slow

amplitude modulations of signal X (red line). (G) Frequency to frequency

CFC: Signal Y6 with slower frequency modulations than in the signal Y5. The

different types of CFC are not mutually exclusive (ref. Jensen and Colgin,

2007). It can be seen for instance, that slow amplitude modulations of Signal

X are coupled not only with the amplitude changes of the signal Y1 but also

with frequency changes of signals Y5 and Y6, which are at the same time

coupled in their frequency modulations.
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Figure 1D) dependent on the phase of the other frequency

(low frequency, e.g., signal X in Figure 1A). Besides the previ-

ous CFC, the phase to power coupling is the most commonly

used or the best-studied type of coupling (e.g., the mentioned

above theta-gamma CFC). Like the cross-frequency phase syn-

chronization, also the phase to power CFC is a good candidate

for the neural temporal coding, with the difference that (and

especially when) specific amplitude modulations (normally high-

frequency modulations, e.g., gamma) of one oscillation take

place in specific time windows or phase state of another oscilla-

tion (normally low-frequency oscillation, e.g., theta). Moreover,

in terms of neural coding, it can be considered as an inte-

gration mechanism between the two types of coding (i.e., rate

and temporal code), whilst amplitude modulations represent

the rate coding and phase course reflects the temporal coding.

Furthermore, in some cases (e.g., Hebbian learning), when fir-

ing rate decreases or will be replaced by temporally more accurate

firing, it will be considered as transforming a rate code into a

temporal code (Mehta et al., 2002). As recently shown (Jensen

et al., 2012), the phase of ongoing alpha oscillation, inhibiting

neuronal processing, modulates neuronal excitability in form of

gamma activity in the way that neural firing and corresponding

gamma amplitude modulations occur during the falling phase

of alpha oscillation. So, it is assumed that “alpha activity pro-

vides a clocking mechanism that controls neuronal processing

reflected by activity in the gamma band” (Jensen et al., 2012,

p. 200).

Power to frequency CFC indicates changes in the frequency

induced by changes in the amplitude of the signal or envelope

(compare envelope of signal X and frequency modulations of

signal Y4 in Figures 1A,E, respectively). This type and also the

next two types of CFC, where frequency is one of the interaction

components, have been poorly investigated until recently. We can

only refer to the study of Witte et al. (2008), where this type of

CFC was addressed. Instantaneous frequency (IF) is defined in

this case as the phase changes in time (see Methods for details).

As observable in Figure 1, these signal modulations or coupling

types cannot be detected by other CFC measures but they seem

to play a crucial role in the systems with high dynamic changes,

which can only be explained by frequency/phase entrainment

(Witte et al., 2008). Furthermore, amplitude-frequency modula-

tions can be attributed to so-called auto resonance, when change

in the drive frequency causes a corresponding change in the

oscillation amplitude, which leads to entrainment or sustained

phase locking of the driving and the oscillator frequency (Witte

et al., 2008). It is also well known that the frequency modula-

tion as compared with the amplitude modulation allows a higher

dynamic range of the information signal and is less suscepti-

ble to interference or disturbances. However, these aspects of

the information processing have not been investigated well in

neurosciences until now.

Phase to frequency CFC indicates changes in the frequency

induced by the phase of the signal (compare phase of signal X

and frequency modulations of signal Y5 in Figures 1A,F, respec-

tively). This type of CFC can also have a high scientific relevance

adding further important information regarding CF interaction

as these aspects have not been studied until now.

Frequency to frequency CFC reflects changes in the one fre-

quency range induced through changes in the other frequency

range (compare frequency modulations of signals Y5 and Y6 in

Figures 1F,G, respectively). Also this type of CFC can provide

additional information about interacting systems or cell assem-

blies and extend our understanding of the cross-frequency neural

communication.

SIMULATION DATA: REDUCED OSCILLATORS FROM FULL

REALISTIC BRAIN NETWORKS

To test and validate the CFC measures, we phenomenologically

derive the mathematical form of generic oscillator equations from

a full brain network. The purpose of this derivation is to motivate

the influences of certain structural and architectonic elements of

full brain networks on generic oscillator equations and then solely

discuss the latter in the context of our simulations. Full brain

network models comprise neural population models at each net-

work node modeling the activity of a brain region. The nodes are

connected via large-scale connectivity matrices, the so-called con-

nectome. Traversing the scale of description from the full brain

network to reduced oscillator models will impose constraints on

the choice of the parameters. The parameters will in general not

be freely adjustable, but will interdepend and lie on so-called

manifolds in parameter spaces. The manifolds are hypersurfaces

that constrain the possible combinations of parameters. For the

purposes of this study, we keep the parameters unconstrained

and choose a specific parameter combination capable of gener-

ating a dynamic behavior regarding its CFC. A phenomenological

modeling of this sort will allow us to introduce noise into the

model system and generate more realistic situations, which we

can then put to the test using our battery of CFC measures.

We lose, however, the possibility to interpret the parameters in

the reduced model physiologically. Marder and Goaillard (2006)

pointed out that such parameter manifolds may comprise sur-

prisingly large ranges and may be shaped in a complex manner.

As a consequence, sometimes the use of average parameters may

not only be a bad approximation, but may indeed provide incor-

rect results, since the average parameter values may actually not

be on the constraining manifold and hence display a different

dynamic behavior (than those on the manifold). This evidence

demonstrates that the fitting of models for specific parameters

is only of limited value, rather the determination of parameter

ranges and the respective manifolds in the parameter spaces is

asked for. In the subsequent discussion, we will demonstrate how

the phenomenological oscillator models are motivated from the

large-scale brain network. We then freely change the parameters

to generate various types of CFC relevant for the discussion in this

article.

The network nodes of a full brain network are neural mass

models typically derived from neuron interactions using a mean-

field approach. Common assumptions in mean-field modeling

are that explicit structural features or temporal details of neu-

ronal networks (e.g., spiking dynamics of single neurons) are

irrelevant for the analysis of complex mesoscopic dynamics,

and the emergent collective behavior is only weakly sensitive to

the details of individual neuron behavior (Breakspear and Jirsa,

2007). Basic mean field models capture changes of the mean
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firing rate (Brunel and Wang, 2003), whereas more sophisti-

cated mean field models account for parameter dispersion in

the neurons and the subsequent richer behavioral repertoire of

the mean field dynamics (Assisi et al., 2005; Stefanescu and

Jirsa, 2008, 2011; Jirsa and Stefanescu, 2011). These approaches

demonstrate a relatively new concept from statistical physics that

macroscopic physical systems obey laws that are independent

of the details of the microscopic constituents they are built of

(Haken, 1983). These and related ideas have been exploited in

neurosciences (Kelso, 1995; Buzsaki, 2006). Thus, our main inter-

est lies in deriving the mesoscopic laws that drive the observed

dynamical processes at the macroscopic scale in a systematic

manner.

In the framework of “The Virtual Brain” (TVB,

www.thevirtualbrain.org) we develop full brain network

models by incorporating biologically realistic large scale cou-

pling of neural populations at salient brain regions that is

mediated by long-range neural fiber tracts as identified with

diffusion tensor imaging (DTI) based tractography together with

mean-field models as local node models. Various mean-field

models are available in TVB, reproducing typical features of

mesoscopic population dynamics (see Sanz Leon et al., 2013,

for details). Each network node is governed by its own intrinsic

population dynamics in interaction with the dynamics of all

other network nodes. This interaction happens through the

connectivity matrix via specific connection weights obtained

from DTI and time delays due to signal transmission delays.

The general evolution equation (see Jirsa, 2009) captures these

architectonic features through a stochastic integral-differential

equation of a network of connected neural populations derived

from mean field approaches using coupled neurons. Noise

plays a crucial role for the brain dynamics, and hence for brain

function (McIntosh et al., 2010), and is typically introduced

additively where the type of noise and its spatial and temporal

correlations can be specified independently. Though the evo-

lution equation in TVB captures all the relevant features of

connectivity and neural mass modeling, it is far from obvious

how to systematically control the actual nature of the CFCs

systematically and independently within the framework of

TVB. Different network parameter manipulations will affect

various forms of CFC in a non-unique manner. Hence, to allow

for a systematic discussion of a generative evolution equation

with and without noise, but still sufficiently motivated by the

original TVB philosophy, we follow the steps of Jirsa (2009),

where the full brain network equation comprised full local

connectivity, but only one long-range two-point connection

with signal transmission delay. Jirsa (2009) considered the effects

of the time delay explicitly, which we will though ignore here

(equivalent to the assumption of the time delay being small

with regard to the time scale of the oscillator dynamics). Jirsa

(2009) reduced this model system to two non-linearly coupled

oscillators with state variables, x1(t) and x2(t) and performed a

linear stability analysis of their equilibrium state. Here, we are

interested in their non-linear oscillatory behavior and hence take

a modified approach as follows: we preserve all non-linearities

in the original non-linear oscillator equations as described by

Jirsa (2009) and formally decompose the state variables x1(t)

and x2(t) into their amplitudes, r1(t) and r2(t) and phases, ϕ1(t)

and ϕ2(t). Then we perform a Taylor decomposition in the

amplitudes and a Fourier decomposition in the phases to obtain

the following set of equations:

ṙi(t)= ri(t)−
∑

j

aijr
2
j (t)ri(t)−

∑

j,n,m

bijnm sin(nϕi(t)−mϕj(t))ri(t)

ϕ̇i(t)=ωi(1 +
∑

j

cjrj(t)) −
∑

j,n,m

dijnm sin(nϕi(t) − mϕj(t)) (1)

where we kept only the leading orders of terms in phase and

amplitude as relevant for our discussion. Here, we used a gen-

eral formulation of the coupled phase-amplitude equations for

an arbitrary number N of oscillators with indices i,j = 1, . . . , N

and where n,m = 0, . . ., are the orders of the Fourier expan-

sions of the fully non-linear oscillator equations in (Jirsa, 2009);

ωi is the oscillation frequency and aij, bijnm, cj , and dijnm are

constant coefficients. All parameter values are defined in the

Methods. The latter coefficients can be expressed in principle

through the architectural elements including connectivity, sig-

moidal response function and local neural node dynamics, but

these expressions will be generally complicated and not unique.

As we here choose the parameters freely (see Methods below),

all terms absent in Equation 1 can be considered to have been

set to zero. In the stochastic version, the above equations con-

tain linearly added white Gaussian noise. We used the Euler

Maruyama algorithm to solve the equations (Kloeden and Platen,

1992).

METHODS

SIMULATION DATA

To test the validity and performance of the different types of

CFC, we applied different CFC measures to simulated data. The

parameter choice for each instance of CFC was motivated only by

considerations from non-linear dynamics theory (see for instance

Strogatz, 1994) with the intent to maximize a desired CFC effect.

No consideration was given to potential co-dependencies of coef-

ficients in Equation 1 on the same structural substrate (connec-

tivity, or others). The eigenfrequencies for all simulations were

ω1 = 32π and ω2 = 32π/5. The other parameter choices have

been selectively made for the various forms of CFC:

• Power to power: amplitude modulations in one frequency

depend on amplitude modulations in the other frequency.

Parameters: a11 = a12 = a22 = 1, all others are zero.

• Phase to phase: phases are directly interdependent. Parameters:

a11 = a22 = 1, d1215 = −170, d2151 = −42, all others are zero.

• Phase to power: amplitude modulations in the high frequency

depend on the phase of the small frequency. Parameters: a11 =
a22 = 1, b1201 = −15, all others are zero.

• Power to frequency: changes in the frequency induced by

changes in the amplitude of the signal or envelope. Parameters:

a11 = a22 = 1, c1 = 0.9, all others are zero.

• Phase to frequency: changes in the frequency are induced by the

phase of the signal. Parameters: a11 = a22 = 1, d1201 = −22π,

all others are zero.
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Figure 2 displays the two oscillators of the five CFC types and

a case of uncoupled oscillators. The left column illustrates the

time series in absence of noise, the right column in presence

of noise. Frequency to frequency coupling was omitted in this

presentation, since it has a particularity compared to the other

forms of coupling, that is the notion of frequency is not in a

unique relation with the amplitudes, r1(t) and r2(t), and phases,

ϕ1(t) and ϕ2(t). The frequency can be computed in various

ways and will introduce a new state variable, which, by defini-

tion, will change the nature of the dynamic system and does

not fall into the framework we have developed in Equations 1.

For these reasons we choose to omit the discussion of this

coupling here.

EEG RECORDING DURING RESTING STATE

Participants

All participants were volunteers and were recruited through

announcements on Saarland schools (Gymnasiums) and Saarland

University. For participation in the study, all subjects were paid

7.5 Euro per hour. All the subjects were right-handed, had no

FIGURE 2 | Simulated data representing different types of CF

interactions in absence and in presence of noise. (A) Power to power

modulation. (B) Phase to phase modulation. (C) Phase to power modulation.

(D) Phase to frequency modulation. (E) Power to frequency modulation.

(F) Uncoupled oscillators. The left column displays the time series in absence

of noise, the right column in presence of noise.
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reported history of head or neurological disorders, and none

were on medication. The sample consisted of twenty young adults

(mean age = 23.2, SD = 1.4, age range = 20–25 years, 5 females).

Procedure

The EEG measurement began with a 3-min relaxation phase

[1.5 min with EC and 1.5 min with eyes open (EO)]. Instructions

for the resting states were given on the computer display and were

presented as follows: “A cross will be shown in the middle of the

screen for a minute and a half. Please focus on the cross and relax”

[for the EO condition] and “Keep your EC for a minute and a half

and relax” [for the EC condition]. The rest phases were then fol-

lowed by the auditory oddball task. The data of the task condition

will not be presented here.

EEG recordings and analyses

The EEG was recorded from 58 Ag/AgCl electrodes using an

elastic cap (Electrocap International) with a sampling rate of

500 Hz in a frequency band ranged between 0.5 and 100 Hz.

The left mastoid was used as a reference and the right mas-

toid was recorded as an active channel. The data were also

re-referenced off-line to an average of the left and right mas-

toids for further analysis. The electrodes were placed according

to the international 10-10 system. For data analyses, only 21

electrode locations from the 10-20 system were used to avoid

volume conduction effects between electrode sites located close

together. Vertical and horizontal electrooculogram (EOG) was

recorded for control of eye blinks and eye movements. The EEG

recordings were high pass filtered at 1 Hz and corrected for eye

movements using the Gratton and Coles algorithm (Gratton

et al., 1983). Blink artifacts were rejected based on gradient

criterion, i.e., maximal allowed voltage step (50 µV), and dif-

ference criterion, i.e., maximal allowed absolute difference of

two values in the segment (200 µV), and also by visual inspec-

tion. The EEG was down-sampled to 250 Hz and segmented

based on division in equal sized non-overlapping segments of

4096 ms length (1024 data points) for the rest intervals with

EC and EO.

Spectral power and coherence, bispectrum and bicoherence

Spectral power was calculated using the fast Fourier transform

(FFT) according to the following equation:

X(f ) =

N−1
∑

k = 0

X′
t(k) exp

(

−j2πkf
fs

)

N
(2)

where N is the number of frequency bins and fs is the sampling

rate. The FFT of the signals was calculated using 256 frequency

bins with 0.98 Hz frequency resolution. We used a 128 point

Blackman window, with 75% overlap. This procedure was also

used for calculation of coherence and bispectral measures. Before

calculation, EEG time series were normalized or adjusted to a zero

mean value in order to exclude from analysis any signal offset

arising from electrode half-cell potentials.

Spectral coherence between two time series at a certain fre-

quency was calculated using the complex FFT according to the

following equation:

CXY

(

f
)

=
∣

∣SXY

(

f
)
∣

∣

2

SXX

(

f
)

SYY

(

f
) (3)

where SXY

(

f
)

= SX

(

f
)

· S∗
Y

(

f
)

is the cross-spectrum for the

channels X and Y, and SXX

(

f
)

and SYY

(

f
)

are respective auto-

spectra.

The single-sided BIS of a univariate time series was computed

using the FFT-based method according to the following equation:

BIS
(

fm, fn
)

=
∣

∣

〈

X
(

fm
)

· X
(

fn
)

· X∗ (

fm + fn
)〉∣

∣ (4)

where < · > denotes averaging or the expectation value, X(f )

is the Fourier transform of the time series Xt , and X∗(f1 + f2)

indicates the complex conjugate of X(f1 + f2). In the case of the

cBIS, calculating CFC between two electrodes, the triple product

is defined as:

cBIS
(

fm, fn
)

=
∣

∣

〈

X
(

fm
)

· Y
(

fn
)

· Y∗ (

fm + fn
)〉

∣

∣ (5)

When calculating BIC (CFC within one electrode or channel) or

cBIC (CFC between two electrodes or channels), the BIS and the

cBIS are normalized by the real triplet product:

BIC
(

fm, fn
)

=
∣

∣

〈

X
(

fm
)

· X
(

fn
)

· X∗ (

fm + fn
)〉∣

∣

√

〈

∣

∣X
(

fm
)

· X
(

fn
)∣

∣

2 ·
∣

∣X
(

fm + fn
)∣

∣

2
〉

(6)

and

cBIC
(

fm, fn
)

=
∣

∣

〈

X
(

fm
)

· Y
(

fn
)

· Y∗ (

fm + fn
)〉

∣

∣

√

〈

∣

∣X
(

fm
)

· Y
(

fn
)∣

∣

2 ·
∣

∣Y
(

fm + fn
)∣

∣

2
〉

, (7)

correspondingly.

It can be seen that cBIS and cBIC are asymmetric measures that

means that cBISXY (f1, f2) �= cBISYX (f1, f2) and also cBICXY (f1,

f2) �= cBICYX(f1, f2). We used this property of the cBIS and cBIC

to estimate directedness of the coupling, which is given when

the information flow from one electrode to another electrode

at the frequency f1 is much stronger than the information flow in

the inverse direction at the frequency f2. If the information flow

is similar or equal in both directions the coupling is defined as

bidirectional.

In contrast to spectral power, (cross-)BIS depends like spectral

coherence on both amplitude of the signal(s) and the degree of

phase coupling between the frequencies, whereas BIC (cBIC) is a

pure measure of the phase coupling.

Specific cross-frequency coupling measures based on the Hilbert

transform

As mentioned in the introduction, CFC can be at least of six dif-

ferent forms or types: (i) power to power, (ii) phase to phase,

(iii) phase to power, (iv) power to frequency, (v) phase to fre-

quency, and (vi) frequency to frequency. We present here only

the first five CFC-measures, the frequency to frequency CFC will
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be omitted here. In the literature, different terms for CFC will

be used in synonymous order, e.g., power to power = envelope-

to-envelope = amplitude-to-amplitude or phase to power =
phase-to-envelope = phase-to-amplitude etc. We decided to use

the term “power” in all the cases to avoid misunderstandings or

confusions.

To investigate these types of CFC, we used two different

approaches: (i) based on calculation of PSI as described by Cohen

(2008) for phase-amplitude coupling, and (ii) based on calcula-

tion of correlation coefficient between different cross-frequency

components as described by Bruns and Eckhorn (2004) for

envelope-to-envelope. Phase to phase CFC (or n:m phase syn-

chronyzation) was calculated as described elsewhere (Tass et al.,

1998; Rosenblum et al., 1999; Schack et al., 2005; Schack and

Weiss, 2005; Witte et al., 2008). In addition, we extended the

Cohen-algorithm for calculation of power to power CFC. All

these algorithms were adapted and applied on the basis of Hilbert

transform as described by Cohen (2008) and were calculated both

within the signals (X or Y) and between them (XY).

At the first step, the epoch of the raw EEG data were band

pass filtered in 16 different frequency ranges (fc [flow − fup]: (1)

2 Hz [0.5–3.5 Hz]; (2) 3 Hz [1–5 Hz]; (3) 4 Hz [2–6 Hz]; (4) 5 Hz

[3–7 Hz]; (5) 7 Hz [4.5–9.5 Hz]; (6) 8 Hz [5–11 Hz]; (7) 9 Hz

[6–12 Hz]; (8) 10 Hz [6–14 Hz]; (9) 11 Hz [7–15 Hz]; (10) 12 Hz

[8–16 Hz]; (11) 14 Hz [10–18 Hz]; (12) 18 Hz [14–22 Hz]; (13)

24 Hz [20–28 Hz]; (14) 28 Hz [24–32 Hz]; (15) 36 Hz [32–40 Hz];

(16) 70 Hz [65–75 Hz]) and then applied to the complex Hilbert

transform. The instantaneous power and phase time series were

extracted from the transformed data.

On the basis of instantaneous phases extracted from the

Hilbert-transformed raw EEG signals given as: �X(fm, t) =
arg[φX(fm, t)] and �Y (fn, t) = arg[φY (fn, t)], correspondingly,

the n:m phase synchronization between two oscillations at the

center frequencies fm and fn were determined. The generalized

phase difference (��) according to n · fm = m · fn was calcu-

lated by:

��X

(

fm, fn, t
)

= n · �X

(

fm, t
)

− m · �X

(

fn, t
)

,

mod2π (within the electrode) (8)

��XY

(

fm, fn, t
)

= n · �X

(

fm, t
)

− m · �Y

(

fn, t
)

,

mod2π (between the electrodes) (9)

The n:m PSI was then defined by:

PSIX

(

fm, fn, t
)

=
∣

∣

∣

〈

ej·��X(fm, fn, t)
〉∣

∣

∣
, j =

√
−1

(within the electrode) (10)

PSIXY

(

fm, fn, t
)

=
∣

∣

∣

〈

ej·��XY (fm,fn,t)
〉∣

∣

∣
, j =

√
−1

(between the electrodes) (11)

where < · > denotes the averaging across time, in contrast to

usual methods determining phase synchronization across trials.

At the second step, the power time series were normalized,

detrended, or mean subtracted to remove DC-component and

then also applied to the complex Hilbert transform. In this

way, instantaneous phase of power time series was extracted.

These time series were then used to determine power to power

and phase to power coupling. For these purposes, PSI was cal-

culated according to Equation 10 or 11 from instantaneous

phases of power time series for calculation of the power to

power CFC, and from instantaneous phase of the raw signal

and instantaneous phase of normalized power time series, for

calculation of the phase to power CFC (for details, see Cohen,

2008).

Power to power CFC was also investigated using correla-

tion method (Bruns and Eckhorn, 2004; Witte et al., 2008). For

this purpose, the correlation between the CFC components was

calculated by the following equation:

ρ
(k)
X

(

fm, fn, t
)

=

∑

(

A
(k)
X

(

fm, τ
)

· A
(k)
Y

(

fn, τ
)

)

√

E
(k)
X

(

fm, τ
)

· E
(k)
Y

(

fn, τ
)

, (12)

where k is the number of data points in the segment,

A
(k)
X

(

fm, τ
)

= a
(k)
X

(

fm, τ
)

− a
(k)
X

(

fm, t
)

and A
(k)
Y

(

fn, τ
)

=
a
(k)
Y

(

fn, τ
)

− a
(k)
Y

(

fn, t
)

denote normalized CFC components

of the signals X and Y at the center frequencies fm and fn,

correspondingly, and E
(k)
X

(

fm, τ
)

=
∑

(

A
(k)
X

(

fm, τ
)

)2
and

E
(k)
Y

(

fn, τ
)

=
∑

(

A
(k)
Y

(

fn, τ
)

)2
are corresponding energies in the

segment. Time series or CFC components were normalized by

subtracting the ensemble or segments’ means from correspond-

ing instantaneous CFC-values. For determination of power to

frequency and phase to frequency CFCs, IF of the bandpass-

filtered signal component was determined using instantaneous

phases as a derivative IF(ti) at the sample point ti approximated

by the difference equation:

IF
(

f , t
) ∼=

IPh
(

f , ti + 1

)

− IPh
(

f , ti − 1

)

ti + 1 − ti − 1
(13)

where IPh
(

f , ti + 1

)

and IPh
(

f , ti − 1

)

are instantaneous phases of

the signal at the time points ti + 1 and ti − 1, correspondingly. The

different CFC components were applied to the Equation 12 to

determine CFCs within and between corresponding time series.

All the CFC measures were determined across time within

the segments and then averaged across segments. Before aver-

aging, the measures (correlation coefficients and also PSIs) were

normalized using Fisher-Z or tangent hyperbolicus transform:

Zr = arctan h (r) = 1

2
ln

(

1 + r

1 − r

)

(14)

where r is the correlation coefficient or the PSI value.

Statistical evaluation

To determine whether CFC is greater than would be observed by

chance, we used surrogate data test. For this purpose we generated

surrogate data through a random permutation of phases of the

time series (“phase shuffling”) of all EEG epochs at all considered

channels and then calculated the corresponding synchronization
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measures between all possible electrode pairs of these surrogate

data. Thereafter, we applied a bootstrapping procedure with 1000

resamples of the coupling measures gained from the surrogate

data set and determined the threshold as the bootstrapping mean

plus the confidence interval at a significance level of p < 0.0001.

Only coupling values larger than the threshold value were consid-

ered for representation of data. In the case of simulated data, the

threshold was determined in the same way with the difference that

the surrogate data of the two simulated signals were generated

100 times.

For cross-frequency representations and statistical evaluation

of the EEG data, we chose a most representative electrode pair

(e.g., Fp1 and O2 in case of bispectral measures). In the case of

spectral power and spectral coherence, we used the same elec-

trodes (Fp1 and O2) to ensure the comparability. In the case of

both spectral and bispectral measures, we divided the frequency

spectrum into the four frequency bands: delta (2–4 Hz), theta

(5–7 Hz), alpha1 (8–10 Hz), and alpha2 (11–13 Hz) and calcu-

lated power or coupling values within these frequency bands or

between them. Spectral power was statistically evaluated using

a Two-Way repeated measures ANOVA with two within-subject

factors Eyes (EC and EO) and Electrodes (Fp1 and O2). Because

the spectral coherence is a symmetrical measure, a One-Way

repeated measures ANOVA with the within-subject factor Eyes

(EC and EO) was calculated for the electrode pair Fp1-O2. A Two-

Way repeated measures ANOVA with two within-subject factors

Eyes (EC and EO) and Electrodes (Fp1 and O2) was calculated

for BIS and bicoherence. In the case of cBIS and cBIC within

the same frequency pairs (e.g., delta-delta, theta-theta, alpha1-

alpha1, and alpha2-alpha2), we used in this ANOVA the factor

Electrode Pair (Fp1-O2 and O2-Fp1) instead of Electrodes. For

cBIS and cBIC between different frequencies (e.g., delta-theta,

theta-alpha1, alpha1-alpha2, etc.), a Three-Way repeated mea-

sures ANOVA with three within-subject factors Eyes (EC and

EO), Electrode Pair (Fp1-O2 and O2-Fp1) and Frequency (e.g.,

delta-theta vs. theta-delta) was used.

In the case of the specific CFC measures, separate ANOVAs

were calculated for frequency components showing significant

CFC in the corresponding grand averages. So, power to power

CFC showed significant coupling in the frequency range between

5 and 14 Hz and concerns, above all, neighboring frequencies.

We calculated then Two-Way repeated measures ANOVA with

two within-subject factors Eyes and Frequency, where factor

Frequency have had different levels: 7, 8, 9, 10, 11, and 12 Hz. We

chose also a most representative electrode pair for corresponding

CFCs. In the case of the power to power CFC, these electrodes

were Fp1 and F3.

Greenhouse–Geisser epsilons were used in all ANOVAs for

non-sphericity correction when necessary.

RESULTS

SIMULATION DATA: ILLUSTRATION OF TWO COUPLED OSCILLATORS

From Figure 2, it is apparent from the juxtaposition of the iden-

tical system simulated with and without noise that the effect

of noise may either obscure or enhance certain types of CFC.

For instance, the phase to power CFC shows itself clearly in

absence of noise, but is difficult to recognize while noise is present

(Figure 2C). The phase to phase CFC expresses itself clearer in the

presence of noise (Figure 2B), because the two oscillator signals

always return to the same phase coupling despite much vari-

ability otherwise. On the other hand, in absence of noise, there

is no relative phase change after a transient, which renders an

evaluation difficult and demands further investigation via CFC

analysis. The CFC algorithms were, at first, applied to simulation

data. The results of two coupled oscillators representing differ-

ent types of CFCs are presented in Figure 3. The power to power

CFC (Figure 3A) could be gathered with both specific CFC algo-

rithms applied for this type of CFC (s. Methods for details).

In both algorithms, there is smearing across frequencies, cover-

ing 2–4 Hz of the low-frequency oscillator and 7–14 Hz of the

high-frequency oscillator (we present here only results calculated

using the Cohen-algorithm). BIS and BIC showed a peak for the

2–10 Hz CF interaction. More clearly it can be seen in the bis-

pectrum. Phase to phase CFC (Figure 3B) was registered more

precisely indicating highest coupling for 2–10 Hz phase to phase

relation, as simulated in the data. BIS and BIC also indicate this

CF interaction but showed also an additional delta-to-delta CFC

peak. Interestingly, the phase to phase coupling could be found

not only for this type of CFC, but also for other types as well as

in the case of uncoupled oscillators indicating that the phase to

phase relation that was initially fixed in the model system was not

disturbed sufficiently by the present noise. This issue is impor-

tant and needs to be recognized: the CFC measures discussed here

evaluate covariations of various orders, which are influenced by

the degree of non-linearity and noise. The multifrequency behav-

iors and frequency smearing resulting from their influence are

a real part of the signal and do not require corrections, since

these phenomena are deviating from intuitive expectations based

on linear oscillator theory (such as constant angular frequency

across the range of phases for instance). The phase to power CFC

(Figure 3C) has also been gathered with the algorithm applied

for this type of CFC. There was also smearing across frequen-

cies, covering 2–4 Hz of the low-frequency oscillator and 3–18 Hz

of the high-frequency oscillator. BIS and BIC were also able to

show the delta to alpha (2–10 Hz) CF interaction. In the case

of phase to frequency CFC simulation (Figure 3D), there was

indeed a significant CF interaction between the frequencies (2

and 10 Hz) but the CFC was higher for 3 to 7–11 Hz and 4 to

10–14 Hz CF interaction. Interestingly, phase to power CFC mea-

sure showed here strong coupling within the delta band (2–4 Hz)

and also between delta und beta (14, 18, 24, and 28 Hz) fre-

quencies. This coupling seems to be a byproduct of phase to

frequency simulation. BIS and BIC showed a CFC between the

low frequencies (between 1 and 8 Hz). Additionally, BIC showed

a delta-beta CFC (2–5 to 24–28 Hz). The power to frequency CFC

(Figure 3E) has also been gathered with the algorithm applied for

this type of CFC but the coupling is highest at somewhat higher

frequency components (14 and 18 Hz instead of 10 Hz). BIS and

BIC were not able to capture this CFC and showed their peaks in

the low frequency range between 1 and 4 Hz. The fact that BIS

and BIC were not able to capture the phase to frequency and the

power to frequency CF interactions is apparently due to the fre-

quency modulations in the high-frequency signal disturbing the

primary frequency ratio between the signals. Thus, these types

Frontiers in Computational Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 78 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Jirsa and Müller Cross-frequency coupling in brain networks

FIGURE 3 | Continued
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FIGURE 3 | Cross-frequency coupling in simulated data assessed using

specific CFC-measures, cross-bispectrum, and cross-bicoherence. (A)

CFC for simulated signals with power to power modulation. The assessed

coupling covers the CF interaction between 2 and 4 Hz of the

low-frequency oscillator and 7 and 14 Hz of the high-frequency oscillator.

Bispectrum and bicoherence show a peak for the 2–10 Hz CF interaction,

which is more clearly seen in the bispectrum. (B) CFC for simulated

signals with phase to phase modulation. The 2–10 Hz phase to phase

relation is detected, as simulated in the data. Bispectrum and bicoherence

also indicate this CF interaction but show also an additional delta-to-delta

CFC peak. (C) CFC for simulated signals with phase to power modulation.

The assessed coupling covers the CF interaction between 2 and 4 Hz of

the low-frequency oscillator and 3 and 18 Hz of the high-frequency

oscillator. Bispectrum and bicoherence indicate the 2–10 Hz CFC. (D) CFC

for simulated signals with phase to frequency modulation. The CF

interaction between the simulated frequencies (2 and 10 Hz) is shown.

However, the CFC is higher for 3 to 7–11 Hz and 4 to 10–14 Hz CF

interaction. Bispectrum and bicoherence showed a CFC between the low

frequencies (between 1 and 8 Hz). Additionally, bicoherence showed a

delta-beta CFC (2–5 to 24–28 Hz). (E) CFC for simulated signals with

power to frequency modulation. The coupling is smeared between 2 and

5 Hz for low-frequency oscillator and 9 and 18 Hz for high-frequency

oscillator. Bispectrum and bicoherence were not able to capture the power

to frequency CF interactions and showed only peaks in the low-frequency

range (1–4 Hz). (F) CFC for simulated uncoupled oscillators. Phase to phase

CFC at the main simulated frequencies (2 and 10 Hz) is displayed indicating

that the phase to phase relation that was initially fixed in the model

system was not disturbed sufficiently by the present noise. Bispectrum

indicates a CF interaction between 1 and 4 Hz and 8 and 14 Hz, and

bicoherence—between 1 and 4 Hz and 10 and 13 Hz.

of CF interactions can only be captured by specific CFC mea-

sures taking into account frequency modulations. In the case of

the uncoupled oscillators (Figure 3F), there was a phase to phase

CFC, as mentioned above, at the main simulated frequencies (2

and 10 Hz) but this coupling was not as strong as in the case of

phase to phase simulation and showed also a slight smearing in

the high frequency (9–11 Hz). In addition, BIS showed a CF inter-

action between 1–4 and 8–14 Hz, and BIC—between 1–4 and

10–13 Hz. In other words, there is CFC around the frequencies

initially fixed in the model system that were not disturbed suffi-

ciently by the present noise or noise provides a diffusion of CF

relations.

RESTING STATE EEG WITH EYES CLOSED AND EYES OPEN

We calculated at first spectral power and coherence to show

that manipulation of the rest conditions (EC vs. EO) was in

line with the literature about the resting state. Grand averages

(across subjects) for the spectral power and coherence under

the EC and the EO conditions are shown in Figure 4 for two

selected electrodes (Fp1 and O2). As expected, the alpha spec-

tral power was strongest at occipital than at frontal site [alpha1:

F(1, 19) = 24.7, p < 0.0001; alpha2: F(1, 19) = 52.8, p < 0.0001]

and stronger in EC than in EO condition [alpha1: F(1, 19) = 51.5,

p < 0.0001; alpha2: F(1, 19) = 7.1, p < 0.05]. Statistical analyses

showed also lower delta power in the EC as compared with EO

condition [F(1, 19) = 10.5, p < 0.01], above all at the occipital

site [F(1, 19) = 51.3, p < 0.0001]. In addition, coherence in the

alpha frequency band was higher in the EC than in the EO con-

dition [alpha1: F(1, 19) = 15.9, p < 0.001; alpha2: F(1, 19) = 13.7,

p < 0.01].

BISPECTRUM AND BICOHERENCE OF THE RESTING STATE EEG DATA

Results (grand averages across subjects) of BIS and BIC for

two electrodes (Fp1 and O2) as well as cBIS and cBIC between

these electrodes are presented in Figures 5, 6. BIS and also cBIS

showed strong synchronization within the delta and alpha fre-

quency bands as well as a CFC between them. In contrast, BIC

and also cBIC showed strong coupling peak in the alpha fre-

quency band. Due to the fact that cBIS and cBIC are asymmetrical

measures, we displayed corresponding diagrams for both the

coupling from Fp1 to O2 and from O2 to Fp1. It can be seen

that (a) the cross-electrode coupling patterns are different for

the frontal-to-occipital (Fp1-O2) and occipital-to-frontal (O2-

Fp1) directions, and (b) there is a strong asymmetry in the

delta-alpha CFC, especially in the case of the cBIS, which is

also different for these two pairs of electrodes and eyes con-

ditions. In Figure 7, we mapped the significant connections

between the electrodes within the delta (2 Hz) and the alpha

(10 Hz) frequency bands and between them (2–10 and 10–2 Hz,

separately) for cBIS and cBIC measures. The connection is, in

this case, unidirectional if only one of the two connections is

above the threshold and bidirectional if both connections are

above the threshold. The threshold corresponds to the signifi-

cance level determined using surrogate data (see Methods), if

there are only few significant connections, in the other case, to

maintain visibility, we displayed only about 30% of all signifi-

cant connections. In comparison to simple coherence measure,

there are very strong larger-scale connections with predominantly

posterior-to-anterior direction, especially in the case of 10 Hz

or 10–2 Hz. The direction of the coupling within the delta fre-

quency (2 Hz) or in the case of the delta-to-alpha (2–10 Hz) CFC

is inverse, especially in the EO condition, or mixed (anterior-

to-posterior and posterior-to-anterior), especially in the EC

condition.

The coupling within the alpha frequency was stronger during

EC as compared to EO, at least for lower alpha [BIS: F(1, 19) =
19.7, p < 0.001; BIC: F(1, 19) = 21.7, p < 0.001; cBIS: F(1, 19) =
27.5, p < 0.0001; cBIC: F(1, 19) = 18.7, p < 0.001]. cBIS for these

two electrodes (Fp1 to O2 and O2 to Fp1) in the delta frequency

band was inversely higher in EO as compared with EC condition

[cBIS: F(1, 19) = 5.7, p < 0.05].

Statistical analyses of the cBIS for the different cross-frequency

relations revealed significant interaction Cross-Electrode ×
Cross-Frequency for delta-alpha1 [cBIS: F(1, 19) = 13.6, p <

0.01], delta-alpha2 [cBIS: F(1, 19) = 26.8, p < 0.0001], theta-

alpha1 [cBIS: F(1, 19) = 9.1, p < 0.01], and theta-alpha2 [cBIS:

F(1, 19) = 13.3, p < 0.01] indicating stronger CFC from low to

high frequency when going from frontal (Fp1) to occipital (O2)

site and inversely stronger CFC from high to low frequency when

going from occipital (O2) to frontal (Fp1) site. In the case of

cBIC, as shown by significant interaction Eyes × Cross-Electrode

× Cross-Freqeuncy for delta-alpha1 [cBIC: F(1, 19) = 19.0, p <

0.001] and for delta-alpha2 [cBIS: F(1, 19) = 6.1, p < 0.05] fre-

quency relations, the direction of coupling is mostly from low to
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FIGURE 4 | Grand averages of the spectral power and coherence of the

two selected electrodes, and corresponding coherence maps. (A) Grand

average of spectral power at the frontal electrode (Fp1). (B) Grand average of

spectral power at the occipital electrode (O2). (C) Grand average of spectral

coherence between the electrodes (Fp1 to O2). (D) Grand average of spectral

coherence links above the threshold across all the electrodes for the delta

(2 Hz) and the alpha (10 Hz) frequencies. All the diagrams and brain maps are

displayed separately for eyes closed (EC) and open (EO). Clear 10-Hz peaks

are displayed in spectral power and spectral coherence, which are stronger at

occipital than at frontal site and stronger in EC than in EO condition. Brain

maps display strong connections within frontal and occipital sites both for

delta (2 Hz) and alpha (10 Hz) frequency.

high frequency and is going from O2 to Fp1 in the EC condi-

tion and inverse in the EO condition. The CFC within the alpha

frequency band (alpha1-to-alpha2) showed higher coupling in

the EC condition than in the EO condition: cBIS: F(1, 19) = 11.2,

p < 0.01; cBIC: F(1, 19) = 9.8, p < 0.01. The same is true also

for theta-alpha CFC: theta-alpha1 [cBIS: F(1, 19) = 7.0, p < 0.05;

cBIC: F(1, 19) = 4.4, p < 0.05] and theta-alpha2 [cBIS: F(1, 19) =
9.9, p < 0.01; cBIC: F(1, 19) = 11.8, p < 0.01].
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FIGURE 5 | Grand averages of the bispectrum at the selected electrodes

(Fp1 and O2) and cross-bispectrum between them. (A) Grand average of

the bispectrum at the frontal electrode (Fp1). (B) Grand average of the

bispectrum at the occipital electrode (O2). (C) Grand average of the

cross-bispectrum between the electrodes (Fp1 to O2). (D) Grand average of

the cross-bispectrum between the electrodes (O2 to Fp1). All the diagrams

are displayed separately for eyes closed (EC) and open (EO). Bispectrum and

also cross-bispectrum showed strong synchronization within the delta and

alpha frequency bands as well as a CFC between them. The coupling is

mostly stronger in EC than in EO condition.

RESTING STATE EEG CAPTURED USING SPECIFIC CFC MEASURES

Power to power was determined using two different algorithms,

which both gave similar results. We restrict our presentation

to the algorithm based on calculation of PSI for amplitude-

modulated signals (see Methods for details). Furthermore, there

were no significant phase to frequency modulations.

Power to power CFC for two selected electrodes (Fp1 and F3)

is displayed in Figure 8 and showed strong coupling between sin-

gle frequencies within the delta, theta, alpha, and beta frequency

bands; the strongest CFC lay in the frequency range between 5

and 14 Hz and concerns, above all, neighboring frequencies, e.g.,

theta-to-alpha, alpha-to-alpha, and alpha-to-lower beta coupling.

This coupling between the selected electrodes (Fp1 to F3) was also

higher in the EC as compared with EO condition: theta-alpha

[7 to 8–12 Hz: F(1, 19) = 10.2, p < 0.01] and alpha-alpha [8 to

9–12 Hz: F(1, 19) = 9.4, p < 0.01]. The brain maps showed strong

connections (e.g., 8–12 Hz coupling) within anterior and poste-

rior regions but large-scale connections are attenuated (compare

also Bruns and Eckhorn, 2004). Due to the fact that the coupling

between the electrodes was mostly bidirectional, the arrows are

omitted in the brain maps. It is also visible that the coupling in

the EC condition is mostly stronger than in the EO condition, and

that only few centro-parietal and parieto-occipital connections

were stronger in the EO as compared to the EC condition.
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FIGURE 6 | Grand averages of the bicoherence at the selected

electrodes (Fp1 and O2) and cross-bicoherence between them. (A)

Grand average of the bicoherence at the frontal electrode (Fp1). (B) Grand

average of the bicoherence at the occipital electrode (O2). (C). Grand

average of the cross-bicoherence between the electrodes (Fp1 to O2).

(D) Grand average of the cross-bicoherence between the electrodes (O2

to Fp1). All the diagrams are displayed separately for eyes closed (EC) and

open (EO). Bicoherence and also cross-bicoherence showed strong

coupling peak within the alpha frequency band. This coupling is mostly

stronger in EC than in EO condition.

Phase to phase CFC for electrodes O2 and Fp1 is presented in

Figure 9 and was strongest within and between delta and theta

frequencies. The CFC between delta and alpha frequencies was

moderate and also related to connections going from posterior to

anterior. For the selected pair of electrodes, there were no signifi-

cant differences between the resting state conditions (EC vs. EO).

The difference brain maps (EC-EO and EO-EC) showed that, at

least the half of connections were stronger in the EO condition

than in the EC condition.

Phase to power CFC for electrodes O2 and Fp1 is displayed in

Figure 10. This CFC was related only to the delta phase, which

was coupled with amplitude modulations in the other higher

frequency bands. Brain maps for 2–10 Hz CFC showed that this

mostly larger-scale coupling is strongest when going from poste-

rior to anterior brain regions. For the selected pair of electrodes,

the difference between the resting state conditions (EC vs. EO)

was not significant. On the other hand, as depicted in the dif-

ference brain map (EC-EO), all connections in the EC condition

were stronger than in the EO condition.

Power to frequency CFC for two selected electrodes (Fp1

and F3) is displayed in Figure 11 and showed strong coupling

between single frequencies within the delta, theta, alpha, and

beta frequency bands; the strongest CFC lay in the frequency

range between 3 and 14 Hz and concerns, above all, neighboring
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FIGURE 7 | Grand average brain maps of the cross-frequency and

cross-electrode coupling within the same frequency and between the

different frequencies. (A) Grand average of the connections about the

threshold at the frequency of 2 Hz. (B) Grand average of the connections

about the threshold at the frequency of 10 Hz. (C) Grand average of the

connections about the threshold for cross-frequencies from 2 to 10 Hz. (D)

Grand average of the connections about the threshold for cross-frequencies

from 10 to 2 Hz. All the diagrams are displayed separately for eyes closed

(EC) and open (EO), and separately for cross-bispectrum (cBIS) and

cross-bicoherence (cBIC). Blue color indicates low coupling and red color

indicates high coupling. The arrows indicate the dominance or direction of

the coupling. Strong larger-scale connections with predominantly

posterior-to-anterior direction, especially in the case of 10 Hz or 10 to 2 Hz,

are displayed. The direction of the coupling within the delta frequency

(2 Hz) or in the case of the delta-to-alpha (2–10 Hz) CFC is inverse,

especially in the EO condition, or mixed (anterior-to-posterior and

posterior-to-anterior), especially in the EC condition.

frequencies, e.g., theta-to-alpha, alpha-to-alpha, and alpha-to-

lower beta coupling. In addition, power to frequency modulations

switch their polarity dependent on frequency components: power

to frequency coupling is positive when modulating frequency is

higher than modulated frequency and negative when modulating

frequency is lower than modulated frequency. The brain maps

showed strong negative (e.g., 7–12 Hz coupling) and positive

(e.g., 12–7 Hz coupling) connections within anterior and poste-

rior regions but large-scale connections are attenuated. Due to the

fact that the coupling between the electrodes was mostly bidirec-

tional, the arrows are omitted in the brain maps. The topology

of negative and positive coupling between these two frequen-

cies is similar. Probably, processes underlying these two different

modulations (7 Hz power to 12 Hz frequency modulation and

12 Hz power to 7 Hz frequency modulation) are the same. It is

also visible that the coupling in the EC condition is stronger than

in the EO condition at frontal sites, and that centro-parietal and

parieto-occipital connections were stronger in the EO as com-

pared to the EC condition. The statistical analysis of the coupling

between the selected electrodes (Fp1 to F3) showed no significant

differences between EC and EO conditions.

DISCUSSION

The aim of the study was to introduce and to test different CFC

measures on the simulated and the resting state EEG data. Our

results showed that the CFC-measures mostly correctly detect the

nature of CFC in the simulated data and display different coupling

dynamics in the experimental EEG data. Our resting state data

showed delta-alpha CFC in terms of cBIS and cBIC as well as other

specific CFC measures (e.g., phase to phase or phase to ampli-

tude). This coupling, which was generally higher in the EC than

in the EO condition, was mostly located within the frontal and the

parieto-occipital regions, and most important these regions were

connected through lager-scale coupling with different coupling

direction (anterior to posterior or inverse).

CFC OF SIMULATED DATA

We generated oscillatory time series from non-linearly coupled

dynamic systems whose mathematical skeleton was derived from

large-scale brain network equations, but its parameters were

freely chosen to maximize the effects of CFC. We systemati-

cally modeled and simulated the various scenarios of CFC under

the influence of noise to obtain biologically realistic oscillator

dynamics. We successfully showed that (i) specific CFC-measures

mostly correctly detect the nature of CFC under noise condi-

tions, (ii) BIS and BIC also detected the delta-to-alpha CFC in

simulated data. In conjunction, these two sets of measures hence

provide a powerful toolbox to reveal the nature of couplings from

experimental data.

RESTING STATE WITH EYES CLOSED AND EYES OPEN

Using different CFC measures, we found cross-frequency mod-

ulations concerning amplitude, phase, and frequency changes in

the EEG signals during rest. The strongest CFC during rest both

with EO and EC was found within and between the delta and

the alpha frequency bands but also theta and beta frequencies

were involved into cross-frequency interactions. Different CFC

measures showed different cross-frequency synchronization or

coupling patterns indicating that different neural mechanisms

are at work. Power to power modulations indicate CFC between

closer frequencies within the delta, theta, and alpha frequency

bands. This coupling was also mostly symmetric or bidirectional.

As for power to power modulations, also power to frequency

CFC was found to be strong within the delta, theta and espe-

cially alpha frequency band but in contrast to former power to

frequency modulations were broader and include beside delta-

to-theta and theta-to-alpha also delta-to-alpha modulations. In

addition, power to frequency modulations switch their polar-

ity dependent on frequency components: power to frequency

coupling is positive when modulating frequency is higher than
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FIGURE 8 | Grand averages of the power to power cross-frequency

coupling at the selected electrodes and between them. (A) Grand

average of the cross-frequency coupling at the electrode Fp1.

(B) Grand average of the cross-frequency coupling at the electrode

F3. (C) Grand average of the cross-frequency coupling between the

electrodes Fp1 and F3. (D) Grand average brain maps with the

connections about the threshold for cross-frequency coupling 8–12 Hz.

All the diagrams and brain maps are displayed separately for eyes

closed (EC) and open (EO), and separately for the difference between

these conditions (EC-EO). In the brain maps, blue color indicates low

coupling and red color indicates high coupling. Note: X- and Y-axes

represent frequency components not the frequency bins. The strongest

power to power CFC lays in the frequency range between 5 and 14 Hz

and concerns, above all, neighboring frequencies, e.g., theta-to-alpha,

alpha-to-alpha, and alpha-to-lower beta coupling. This coupling is mostly

stronger in the EC condition than in the EO condition. Only few

centro-parietal and parieto-occipital connections were stronger in the EO

as compared to the EC condition.
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FIGURE 9 | Grand averages of the phase to phase cross-frequency

coupling at the selected electrodes and between them. (A) Grand

average of the cross-frequency coupling at the electrode O2. (B)

Grand average of the cross-frequency coupling at the electrode Fp1.

(C) Grand average of the cross-frequency coupling between the

electrodes O2 and Fp1. (D) Grand average of the connections about

the threshold for cross-frequencies coupling 2–10 Hz. All the diagrams

and brain maps are displayed separately for eyes closed (EC) and

open (EO), and separately for the difference between these conditions

(EC-EO). In the brain maps (D), blue color indicates low coupling and

red color indicates high coupling. The arrows indicate the dominance

or direction of the coupling. Note: X- and Y-axes represent frequency

components not the frequency bins. The coupling is strongest within

and between delta and theta frequencies. The CFC between delta and

alpha frequencies is moderate and related to connections going from

posterior to anterior regions.
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FIGURE 10 | Grand averages of the phase to power cross-frequency

coupling at the selected electrodes and between them. (A) Grand average

of the cross-frequency coupling at the electrode O2. (B) Grand average of the

cross-frequency coupling at the electrode Fp1. (C) Grand average of the

cross-frequency coupling between the electrodes O2 and Fp1. (D) Grand

average of the connections about the threshold for cross-frequencies

coupling 2–10 Hz. All the diagrams and brain maps are displayed separately

for eyes closed (EC) and open (EO), and separately for the difference

between these conditions (EC-EO). In the brain maps, blue color indicates

low coupling and red color indicates high coupling. The arrows indicate the

dominance or direction of the coupling. Note: X- and Y-axes represent

frequency components not the frequency bins. This CFC is related only to

the delta phase, which was coupled with amplitude modulations in the other

higher frequency bands. Brain maps for 2–10 Hz CFC display larger-scale

coupling, which is strongest when going from posterior to anterior brain

regions. These connections are stronger in the EC than in the EO condition.
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FIGURE 11 | Continued
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FIGURE 11 | Grand averages of the power to frequency

cross-frequency coupling at the selected electrodes and between

them. (A) Grand average of the cross-frequency coupling at the

electrode Fp1. (B) Grand average of the cross-frequency coupling at the

electrode F3. (C) Grand average of the cross-frequency coupling between

the electrodes Fp1 and F3. (D) Grand average brain maps with the

connections about the threshold for cross-frequency coupling 7–12 Hz. All

the diagrams and brain maps are displayed separately for eyes closed

(EC) and open (EO), and separately for the difference between these

conditions (EC-EO). In the brain maps, blue color indicates low coupling

and red color indicates high coupling. Due to the fact that the coupling

between the electrodes was mostly bidirectional, the arrows are omitted.

Note: X- and Y-axes represent frequency components not the frequency

bins. The strongest CFC lays in the frequency range between 3

and 14 Hz and concerns, above all, neighboring frequencies, e.g.,

theta-to-alpha, alpha-to-alpha, and alpha-to-lower beta coupling. The

coupling switches their polarity dependent on frequency components:

power to frequency coupling is positive when modulating frequency is

higher than modulated frequency and negative when modulating

frequency is lower than modulated frequency.

modulated frequency and negative when modulating frequency

is lower than modulated frequency. We showed that the topology

of negative and positive coupling between two different frequen-

cies (e.g., 7–12 Hz or 12–7 Hz) is similar. This finding leaves us

to believe that processes underlying these two different modu-

lations (7 Hz power to 12 Hz frequency modulation and 12 Hz

power to 7 Hz frequency modulation) may probably be the same,

or at least of the same nature. As for power to power CFC,

power to frequency CFC is mostly bidirectional and short-range.

Thus, CFC measures are able not only to describe the long-range

synchronization or coupling but complete our understanding of

short-range coupling involved in local networks.

Interestingly, BIS which is considered in the literature as a

pure amplitude CFC measure was able to detect the delta-alpha

relations that were absent in the specific power to power mea-

sure but could be found using power-to-phase or phase to phase

measures. In addition, the coupling found using bispectral analy-

ses was asymmetric, i.e., there was directionality in the coupling.

Interestingly, the coupling found by BIC was very strong within

the alpha band (like the amplitude-to-amplitude CFC) and mod-

erate or even absent regarding the delta-alpha relations. BIS and

BIC measure, in contrast to specific measures, the non-linear

quadratic coupling, whereas the relation between amplitude and

phase in this coupling is not always clear. The fact that we found

clear delta-alpha BIS peak in the phase to phase simulated data

confirms our statement: BIS reflects not only amplitude but also

phase modulations. Whether the power to frequency CFC plays

here a role and what its influence is that remains to be seen.

Another interesting point is that delta-alpha CFC is above all

related to large-scale connections going from anterior to posterior

in the case of 2 Hz modulation of alpha and is rather inverse if

CFC modulation is 10–2 Hz as shown in the cBIS and partially in

the cBIC. Interestingly, if in the case of 10–2 Hz frequency mod-

ulation, posterior-to-anterior CFC is predominantly in both EC

and EO conditions, in the case of 2–10 Hz frequency modula-

tion, the CFC is anterior-to-posterior in the EO condition but

rather inverse or mixed (posterior-to-anterior and anterior-to-

posterior) in the EC condition. This different direction of the

delta-alpha (or alpha-delta) CFC is apparently contingent on the

locations of delta and alpha generators. It is well–known that

delta oscillations are generated anterior, whereas alpha oscilla-

tions have posterior and also anterior origin (Michel et al., 1992;

Tsuno et al., 2002; Canuet et al., 2011). Apart from the direction of

the coupling, localization of delta and alpha frequency generators

at anterior and posterior sites allows the explanation of the larger-

scale coupling, which is detectable using different CFC methods,

especially if alpha oscillations are involved. Interestingly, this

larger-scale coupling was found also within the alpha frequency,

and this coupling has predominantly posterior-to-anterior direc-

tion indicating the influence of the alpha-frequency generators on

the other brain regions. This larger-scale coupling is especially

strong in the EC condition, when alpha oscillations are much

more pronounced, and may be related to the inhibitory function

of alpha oscillations reported in the literature (Klimesch et al.,

2007; Jensen and Mazaheri, 2010; Mathewson et al., 2011).

In addition, we also found differences in the CFC when com-

pared EC with EO conditions. Mostly, CFC was stronger in the

EC condition as compared with EO condition. Decrease in spec-

tral alpha power (also called alpha depression) during rest with

EO compared to rest with EC, also shown in our study, is a

well-known phenomenon (see Klimesch, 1999, for a review).

Normally, alpha depression in the EO condition is associated

with brain activation caused by increased external stimulation

through the opening of the eyes or visual input (Klimesch, 1999).

It can be seen that this brain activation through opening the eyes

reduces also spectral coherence and CFC, and evokes different

CFC patterns between the different electrode sites and frequen-

cies indicating that there are different processes at work. Besides

the long-range connectivity also short-range connectivity reduces

in general its strength and alters its topology through opening

the eyes. Interestingly, the short-range connectivity, as shown by

power to power and power to frequency CFC, is higher in EC than

in EO above all frontally but higher in EO than in EC parieto-

occipital indicating higher segregation during EC at frontal sites

and higher segregation during EO at parieto-occipital sites. These

short-range CFC patterns probably describing local synchroniza-

tion complement our knowledge about the local networks, which

are usually delineated by synchronization at single frequencies.

METHODOLOGICAL: ADVANTAGE OF USING CFC MEASURES

AND ITS LIMITATIONS

The interaction between different frequencies investigated here

adds another dimension in understanding complex neural

dynamics of the frequency-specific neuronal networks. Neuronal

cell assemblies oscillating synchronously at different frequencies

provide an efficient basis for integrative processes in the brain

(Buzsáki and Draguhn, 2004). Separate cell assemblies commu-

nicate with each other to integrate single information flows into

a common network. Non-linear dynamic system theory teaches

us that time-scale separation, that is frequency separation in this

context, offers a natural means in non-linear systems to separate

information flows. Then CFC, allowing accurate timing between
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different oscillatory rhythms, may be one of the mechanisms

underlying the re-integration of these separated information

flows, or, said differently, allowing for a communication between

different cell assemblies (Klimesch et al., 2008; Sauseng et al.,

2008; Canolty et al., 2010). As we have shown, CFC measures

(especially BIS and BIC) in comparison to the classical coherence

measure describe well the large-scale coupling. Due to the fact

that BIS and BIC as well as the phase to amplitude CFC measure

are asymmetric, they can provide the information about the cou-

pling directionality, even though they make no statement about

causality that is the direction of the information flow. In addition,

BIS and BIC reflect non-linear coupling between different oscil-

lations both within and between the different electrodes. Here,

we have clearly shown that the different CFC measures provide

different insights about the cross-frequency interaction. These

outcomes or synchronization patterns should be considered not

as alternative but rather as complementary to each other. All these

interaction patterns found by different CFC measures exist simul-

taneously in biological signals (including neuroimaging signals

such as neuroelectric or neuromagnetic measurements) and thus

give us a more complete picture about information processing in

the brain.

THEORETICAL: SIGNIFICANCE OF DELTA AND ALPHA INTERACTIONS

As reported earlier, Isler et al. (2008) found CF delta-alpha mod-

ulations in terms of BIC in widespread fronto-central, right

parietal, temporal, and occipital regions, and also between them.

This CFC found in an auditory novelty oddball task was inter-

preted as a neural mechanism for the orienting response. In

the study of (Cohen et al., 2009a), delta-alpha phase to ampli-

tude CFC found in a competitive decision-making task was

suggested to reflect a coding mechanism of feedback valence

information. Our resting state data showed delta-alpha (and also

alpha-delta) CFC in terms of (cross-) BIS and (cross-) BIC as

well as other specific CFC measures (e.g., phase to phase or

phase to amplitude). This coupling is mostly located within the

frontal and the parieto-occipital regions, and most important

these regions are connected through lager-scale coupling pro-

viding direct communication between different cell assemblies

located in these regions. Thereby, this coupling is asymmetric

mostly from the parieto-occipital to frontal regions, especially

during rest with EC, whereas in the rest condition with EO the

direction of coupling, especially delta-to-alpha (2–10 Hz) can be

inverse. As mentioned above, delta and alpha oscillations have

different origin: whereas delta oscillations are generated anterior,

alpha oscillations have posterior and, to some extent, also ante-

rior origin (Michel et al., 1992; Tsuno et al., 2002; Canuet et al.,

2011). Following Steriade and Timofeev (2003), delta oscilla-

tions are generated by neocortical and thalamo-cortical networks.

Enhanced oscillatory activity in the delta frequency range during

cognitive tasks is often considered as an indicator of attentional

task demands (Harmony et al., 1996; McEvoy et al., 2001) and

of syntactic language processing (Roehm et al., 2004). Strong or

synchronized alpha activity is associated with cortical deactiva-

tion or inhibition, whereas strongly desynchronized alpha activity

reflects a state of high excitability (Klimesch, 1999; Klimesch et al.,

2007, 2008). Larger amplitudes of synchronized alpha activity

typical for rest state with EC are associated with a brain state of

reduced information processing (Pfurtscheller and Lopes da Silva,

1999; Pfurtscheller, 2001) and are consistent with the concepts

of “idling” or “nil working” (Adrian and Matthews, 1934). Alpha

activity covers a wide range of different cognitive functions and is

strongly involved in memory processes, whereby pronounced ERS

(event-related synchronization) was observed during retention

but strong ERD (event-related desynchronization) during retrival

(Klimesch, 1999; Jensen et al., 2002; Schack and Klimesch, 2002;

Sauseng et al., 2005; Klimesch et al., 2007). The envelopes of var-

ious frequency bands of neuroelectric activity are correlated with

the hemodynamic signals as measured in Bold fMRI giving rise to

ultraslow intermittent spontaneous coherent fluctuations in the

absence of an explicit task (Biswal et al., 1995; Greicius et al., 2003;

Müller et al., 2003a,b; Damoiseaux et al., 2006; Deco et al., 2009;

Venables et al., 2009). Large-scale brain modeling efforts demon-

strated the stochastic nature of the spatiotemporal fluctuations

(Deco et al., 2008, 2009; Ghosh et al., 2008). The delta-alpha CFC

found in our study during resting state allows supposing that this

CF interaction capturing the intrinsic network dynamics might

play a crucial rule in information exchange and its integration.

Furthermore, there is neurophysiological evidence that resting-

state networks undergo profound reorganization from childhood

to old age (Müller and Lindenberger, 2012).
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