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Abstract

As automatic speech recognition-based applications become increasingly common in a wide variety of market segments, there
is a growing need to support more languages. However, for many languages, the language resources needed to train speech
recognition engines are either limited or completely non-existent, and the process of acquiring or constructing new language
resources is both long and costly. This paper suggests a methodology that enables Phonetic Search Keyword Spotting to be
implemented in a large speech database of any given under-resourced language using cross-language phoneme mappings to
another language. The phoneme mapping enables a speech recognition engine from a sufficiently resourced and well-trained
source language to be used for phoneme recognition in the new target language. The keyword search is then performed over
a lattice of target language phonemes. Three cross-language phoneme mapping techniques are examined: knowledge-based,
data-driven and phoneme recognition performance-based. The results suggest that Phonetic Search Keyword Spotting based
on the cross-language phoneme mapping approach proposed herein can serve as a quick initial solution for validating keyword
spotting applications in new, under-resourced languages.
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1 Introduction

Speech indexing and retrieval tools have become increas-
ingly crucial in coping with the constant accumulation of
massive amounts of digital audio and video data. In par-
ticular, speech recognition technology is frequently used in
Keyword Spotting (KWS)-based applications to enable spe-
cific words to be identified out of a stream of continuous.[1]

KWS-based applications, in turn, are often used by call cen-
ters and security-intelligence organizations for categorizing
calls or searching speech databases, or by companies of-

fering multi-media search applications on the internet or
in enterprise markets. Such applications can be developed
quickly for languages with sufficient available Language
Resources (LRs). Supporting an under-resourced language,
however, generally requires a long and costly preliminary
process of collecting speech and text databases in order to
train acoustic and language models, in addition to compil-
ing a large vocabulary pronunciation lexicon. Yet, in spite
of these challenges, there seems to be a growing demand
for providing rapid support for under-resourced languages,
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as evidenced by the emergence of international evaluations,
such as the Open Keyword Search sponsored by IARPA and
organized by NIST.[2]

The majority of KWS solutions employ Large Vocabulary
Continuous Speech Recognition (LVCSR) engines. One of
the main problems with an LVCSR-based system is that
keyword searches are restricted by the vocabulary used in
the transcription process, that is, the system cannot han-
dle Out-of-Vocabulary (OOV) keywords.[3] Phonetic Search
KWS (PS KWS) provides a solution for OOV keywords,
as it performs the keyword search on a string of recog-
nized phonemes, rather than words. Furthermore, because
phonetic search is not dependent on a given vocabulary,
the need for a word-based Language Model (LM) is elimi-
nated. Thus, compared with LVCSR-based search, PS KWS
is much less dependent on LRs.

The research presented here focuses on the rapid introduc-
tion PS KWS capabilities for a new language by using
cross-language phoneme mapping techniques that do not
rely heavily on LR availability. With this method, strong
acoustic models from a well-resourced language can be
used for phoneme recognition in a separate, under-resourced
language. There are several approaches to cross-linguistic
phoneme recognition. In one approach, acoustic models are
produced from a large global inventory of phonemes con-
structed from the phoneme sets of several languages.[4–6]

The premise of this method is that all languages have some
phonemes in common, and that a large enough phoneme
pool should be able to represent the acoustic models needed
for any new language. In another approach, acoustic models
are mapped from a single source language or from a small
set of source languages to a new target language. This map-
ping is performed either by manual knowledge-based meth-
ods or by semi-automatic data-driven methods.[7] Naturally,
the phonemes available from the source languages may not
provide ideal coverage of the target language phoneme set;
however, the need for LRs in the target language is greatly
reduced or eliminated compared to standard KWS methods.

When only a small amount target language audio is accessi-
ble, acoustic adaptation techniques can be applied on the
available acoustic models from the source language[8] or
bootstrapping techniques that use well-trained models from
several source languages to generate unsupervised transcrip-
tions for training acoustic models in the target language.[9]

Both these methods require some target LRs and have been
attempted with continuous speech recognition using both
small and large vocabularies and with Language Identifica-
tion (LI), but not with PS KWS.

The research goal was to consolidate a methodology for sup-
porting PS KWS in a target language with few or no LRs
available. The method used employs phoneme mappings
between a source language with adequate LRs for train-
ing acoustic models and an under-resourced target language.

The source language acoustic models are used to produce a
string of recognized phonemes in the target language. Then,
PS is performed on the resulting phoneme strings in order
to locate keywords from the target language. Neither a full
set of LRs nor dedicated acoustical models are required in
the target language.

1.1 Keyword spotting overview

Most KWS procedures are carried out using one of the three
following methods:[10]

• LVCSR-based KWS: where an LVCSR engine pro-
duces a transcription of the entire speech database,
and the KWS-based application searches the resulting
text for the designated keywords.

• Acoustic KWS: where the KWS engine operates on
the speech signal and the recognition vocabulary con-
sists only of the designated keywords, represented as
sequences of phonemes.

• Phonetic Search (PS) KWS: where a phoneme recog-
nition engine produces a phonetic representation of
the entire speech database, and a phonetic search en-
gine searches the resulting phoneme sequence or lat-
tice for the designated keywords.

Each of these methods has benefits in comparison to the oth-
ers under different circumstances.[10–14] For example, when
searching large speech databases, rapid search capabilities
are essential. LVCSR and PS methods are applicable to
such settings because they perform a one-time transforma-
tion of the speech into a textual representation and then in-
dex the engine output (as words or as phonemes, respec-
tively), thereby facilitating a quick search process. In the
case of acoustic KWS, in contrast, it is necessary to re-run
the audio for each new search list. This makes acoustic
KWS irrelevant for most modern applications, which gen-
erally deal with large amounts of audio data. Indeed, most
research in the field today focuses on LVCSR and PS meth-
ods.

Comparing the two main KWS methods, LVCSR is at a
disadvantage compared with PS when it comes to keyword
flexibility.[15–17] Such flexibility is crucial for KWS-based
applications that deal with a constant flow of new data and
frequent changes in search terms. Often, these search terms
are names of people or places, which are in many cases of
foreign origin. These types of keywords are not necessar-
ily part of an LVCSR recognition vocabulary (i.e., OOV
words). To accommodate such keywords, it is necessary
to re-run the LVCSR recognition engine with an updated
recognition vocabulary for each new OOV keyword. With
PS KWS-based applications, in contrast, it is possible to
search for any term, provided the phonetic transcription is
available, thus eliminating the OOV problem. Although the
PS method offers users total freedom in changing the des-
ignated keywords, since the textual transformation of the
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speech into phonemes is not restricted by a vocabulary, this
flexibility comes at a cost of higher computational complex-
ity in the search phase and often a drastic decrease in perfor-
mance for in-vocabulary words, compared with the LVCSR
method.

In order to resolve the tradeoff between flexibility and per-
formance, much recent research has focused on hybrid sys-
tems that combine the two approaches. Some merge LVCSR
and PS KWS engine results in a combined lattice or in post-
processing procedures,[18–21] while others use hybrid LMs
that blend in-vocabulary words and sub-word units (phones,
triphones, fragments) into a unified LM.[21–23] The hybrid
LM enables the system to produce phoneme strings in place
of the OOV words, making them accessible in search re-
sults. Bulyko et al.[24] performed sub-word recognition
alone without the use of a word LM.

A basic assumption of cross-linguistic systems is that few or
no LRs may be available in the target language. Thus, the
focus of this research is on PS KWS, which, compared with
LVCSR, is much less dependent on linguistic constraints
and, unlike LVCSR, requires LM training at the phone-level,
but not at the word-level. In order to compensate for the pos-
sibility that phone-level LM is also unobtainable in the tar-
get language, the option of using a source-language phone
LM is also explored.

PS is also the most suitable KWS method for applying
phoneme mappings between languages because it employs a
fuzzy search mechanism that can compensate for inaccurate
mappings.

1.2 Keyword spotting in under-resourced languages

Owing to international evaluations such as those sponsored
by the DARPA RATS and IARPA BABEL programs, it
is now commonly recognized that current KWS solutions
provide acceptable results for well-resourced languages
recorded under relatively sterile conditions, but that they
fall short under real-life conditions with limited language
resources. For target languages that are rare or spoken only
in regions where collection is difficult or even impossible,
LRs can be scarce or non-existent, imposing major, often ir-
resolvable, constraints on training acoustic models in these
languages. In dealing with under-resourced or zero-resource
languages, research is focused on finding robust KWS so-
lutions using techniques such as subspace-GMM acoustic
modeling,[25] multiple system combination and score nor-
malization,[26] and bootstrapping techniques utilizing multi-
language acoustic models and neural networks.[9, 27, 28]

When adapting a PS KWS system to process data in an
under-resourced language, it is possible to bypass the long
and costly training process by utilizing phoneme acoustic
models from accessible and well-trained languages. Specif-
ically, it is possible to incorporate a cross-language phonetic
mapping between the target and source language phonemes

either prior to the phoneme recognition stage or during the
phonetic search stage—in the latter case, the mapping is
based on the phoneme sequence or lattice generated during
the recognition stage.

Two major issues to consider prior to performing cross-
language KWS are what languages to use for the source
acoustic models and what type of mapping scheme to em-
ploy. Source acoustic models can originate from either a
single language[29–32] or multiple languages.[27, 33–36] When
it comes to selecting the mapping scheme, one major fac-
tor to consider is how much speech data is actually avail-
able in the target language. When no target language speech
data are available, a knowledge-based mapping can be gen-
erated. Knowledge-based mappings are produced manu-
ally and take into account known phonetic similarities be-
tween the source and target language phonemes,[29, 31, 32]

as defined, for example, by the International Phonetic
Alphabet (IPA).[37] A knowledge-based mapping can be
avoided if phonetic transcriptions of all source and target
languages use the same phoneme set (e.g. SAMPA) and
source language phoneme provide coverage of target lan-
guage phonemes.[34] When a limited amount of target lan-
guage speech is available (a few minutes to a few hours),
data-driven methods can be used. Data-driven methods in-
clude producing mappings based on acoustic distance mea-
surements between source and target phonemes, acoustical
model adaptation methods such as maximum likelihood lin-
ear regression (MLLR), which can be based on an initial
knowledge-based mapping or unsupervised techniques em-
ploying DNNs for example.[34]

This paper focuses on the use of acoustical models from a
single source language using three different mapping meth-
ods. The first is a knowledge-based mapping performed by
a linguist. The second is a data-driven mapping that uses
a small quantity of audio to train coarse acoustic models in
the target language. The distance between the coarse acous-
tic models in the target language and well-trained acoustic
models from the source language is calculated, and the best-
matched mapping is generated using the distance matrix. In
the third method, source language acoustic models are used
to recognize a small amount of data in the target language,
after which the recognition statistics produced are leveraged
in order to automatically generate a mapping between the
languages. In all three mapping paradigms, the source lan-
guage acoustic models that are used for recognizing speech
in the target language remain unaffected. Only their labels
are changed to reflect the target language phoneme set.

Phonetic search is particularly suitable for such a method
for several reasons: 1) The phoneme lattice produced repre-
sent the acoustic content of the target language speech, even
when acoustics models from another language are used; 2)
The search is performed through a series of soft decisions
depending on likelihoods and can easily take mapping costs
into account; and 3) Large amount of textual data in the tar-
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get language is not needed for producing a word-level LM
which is irrelevant for PS.

2 Methods

For the cross-language PS evaluations, either American En-
glish (English) or Levantine Arabic (Arabic) were used as
the source language and Spanish was used as the target lan-
guage.

2.1 Phonetic search keyword spotting

To perform cross-language PS KWS, we implemented a sys-
tem consisting of the following two central components:

• A Phoneme Recognition Engine: Phoneme recogni-
tion was performed using acoustic models of English
or Arabic as source languages with several options for
a phoneme-level LM: ergodic (equal transition prob-
abilities), target LM or source LM.

• A Phonetic Search Engine: Phonetic search was per-
formed over the resulting source language phoneme
lattice while employing a mapping scheme between
the source language used and the Spanish phonemes.
The Levenshtein Distance measure[38, 39] was used for
sequence matching, where all hypotheses with a dis-
tance lower than a pre-defined threshold were de-
clared as recognized keywords.

A block diagram of the PS KWS system using cross-
language mapping is shown in Figure 1:

Figure 1: Cross-Language Phonetic Search KWS System

The two parts of the system (phoneme recognition and
phonetic search) are designed to function independently.
The phoneme recognition stage uses the source language
acoustic models and phoneme LM as input, and the pho-
netic search stage uses the phonetic lattice produced in the
phoneme recognition stage and any given phonetic mapping
(represented by a mapping matrix) between source and tar-
get phonemes.

2.2 Cross-language phoneme mapping for phonetic

search

This paper introduces three mapping paradigms:
knowledge-based, data-driven and performance-based. The

knowledge-based mapping requires no speech data in the
target language, whereas the data-driven and performance-
based mappings require a small amount of data. In order
to evaluate the quality of each of the mapping schemes,
phoneme recognition results in Spanish were produced us-
ing well-trained Spanish acoustic and language models as
a base-line for comparison. The topology used to train the
Spanish models was the same as that used to train the source
models.

2.2.1 Knowledge-based phonetic mapping

The knowledge-based mapping procedure was designed
to compensate for the gap between the source language
phoneme set and the target language phoneme set. Take,
for example, the English to Spanish mapping. The Span-
ish vowel set consists of the five cardinal vowels: /a/, /e/,
/i/, /o/ and /u/. These vowels are shared by the English
sound system which contains a much broader set of vow-
els. However, one-to-one mappings may not be precise.
For the knowledge-based mapping, all Spanish phonemes
were mapped to the closest-known counterpart in the source
language. So, for example, the Spanish vowel /a/, as
in [paDres] "parents" was mapped to /aa/, as in [paad]
"pod" in English, even though the Spanish phoneme is pro-
nounced closer to the front of the mouth. A second mapping
employed a one-to-many technique, allowing each target
phoneme to be mapped to more than one source phoneme.
In this case, the Spanish /a/ was mapped not only to the
English /aa/, but also to /ae/, which is more fronted than
/aa/. In the mappings based on the latter one-to-many ap-
proach, some Spanish phonemes were mapped to multi-
ple phonemes in the source language, whereas others were
mapped to only one. Table 1 shows some examples of the
mappings between Spanish and English.

Table 1: Sample of one-to-many mapping
Spanish <> English 

a <> aa, ae 

i <> iy, ih 

m <> m 

tS <> ch, sh 

 

2.2.2 Data-driven phonetic mapping

For the data-driven mapping, one hour of speech data in
Spanish was used to train coarse target-language acoustic
models. Naturally, these models were not sufficient for ro-
bust recognition, but they were sufficient to calculate the
acoustic distance between source and target acoustic mod-
els. This process resulted in a data-driven mapping be-
tween the source and target phonemes. Previous studies sug-
gested several Distance Measures (DMs) between GMMs.
The DMs used in the evaluation follow those suggested by
Sooful and Botha,[32] and include: Kullback-Leibler, Bhat-
tacharyya, Mahalanobis, Euclidean, and Jeffreys-Matusita.
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Acoustic models were trained using a large amount of data
available in each of the source languages and only one hour
of audio data in Spanish. The distance measures between
the source and target acoustic models were then calculated
using only one mixture per state (multi-mixture models
were employed for recognition using the source language
acoustic models), and a distance matrix was produced from
each DM calculation. Each distance matrix was transformed
into a mapping matrix, where each matrix element repre-
sented the similarity between a phoneme in the source lan-
guage and a phoneme in the target language.

2.2.3 Phoneme recognition performance-based mapping

A performance-based mapping was created to improve the
accuracy of the knowledge-based or data-driven mappings.
One hour of Spanish speech and corresponding word-level
transcriptions (no time-alignment was required) and a pro-
nunciation lexicon were used to produce the mapping. The
recognized phoneme sequence (obtained from the best path
in the lattice), using the source language acoustic mod-
els (and either the knowledge-based or data-driven map-
ping), was compared to the correct phoneme sequence (ob-
tained by aligning the orthography with the lexicon tran-
scriptions). Then, a learning mechanism that utilizes the re-
sulting confusion matrix was developed. The confusion ma-
trix reflects the probability of identifying a certain source-
phoneme given that a certain target-phoneme was actually
pronounced.

This mechanism estimates p(si|tj) for each of the phonemes
in both languages, where si represents a source language
phoneme, and tj a target language phoneme. A dynamic-
programming algorithm was then employed to achieve the
best alignment between the two phoneme sequences—the
first sequence being the lexical transcription and the sec-
ond sequence being the recognized sequence mapped into
the target language. At this stage, the recognized phoneme
sequence resulting from the knowledge-based mapping was
used as a bootstrap to the learning process.

Preliminary experiments indicated that learning the em-
pirical phoneme mapping by applying this standard pro-
cess, leads to a significant degradation in PS KWS perfor-
mance. A deeper inspection revealed that taking acoustic
mismatches and recognition errors into account could im-
prove the alignment mechanism, which performed poorly
with the knowledge-based mapping. An additional boot-
strapping method was thus applied to the mapping in order
to account for acoustic variations detected in the develop-
ment set, as well as additional a-priori anticipated phoneme
recognition errors. Furthermore, a more robust phoneme-
to-phoneme mapping that reduces the impact of phoneme
confusions between phonemes belonging to the same ma-
jor phonetic natural class (e.g., plosives or fricatives) was
employed.

In the resulting bootstrapped mapping, less-probable confu-
sions were given lower weights. For example, the mapping
of the Spanish /b/ into three Arabic phonemes incorporated
different weighting for each Arabic phoneme, as presented
in Table 2:

Table 2: Sample of one-to-many mapping
Spanish <weight> Arabic 

b <1.0> b 

b <0.3> p 

b <0.1> d, k, t, g 

 

The mapping of /b/ to /b/ is conventional and the mapping
of /b/ to /p/ takes into account probable recognition errors.
The mapping of /b/ to other plosives is reflective of errors
anticipated by acoustic phonetic natural class theory. This
approach was able to "fix" the alignment of the series and
enabled a robust statistical process of learning the mappings
between target and source phonemes.

2.2.4 Phoneme-level language model

To improve phoneme recognition results, it was also nec-
essary to use a phoneme-level LM that assigns probabili-
ties to potential phoneme sequences. Ideally, the phoneme
LM should be in the target language; however, estimation of
such an LM requires a representative text database with its
phonetic transcription. If such a database is unavailable in
the target language, it is possible to use a small amount of
transcribed speech data and a phonetic lexicon in the target
language, or use a source language LM. Of course, it is also
possible not to use a LM at all, but this is expected to yield
inferior phoneme recognition results. In order to evaluate
the impact of the LM on cross-language phoneme recogni-
tion, several LM topologies were examined.

3 Evaluation

The three phonetic-mapping techniques, knowledge-based,
data-driven and performance-based, were each examined
separately. Furthermore, for each mapping paradigm, we
evaluated the influence of using various phoneme LMs in
the phoneme recognition stage. As noted, the source lan-
guages used were English and Arabic, while the target lan-
guage was Spanish. All evaluations were performed on both
phoneme recognition and PS KWS.

A base-line reference was produced using fully-trained
Spanish acoustic and language models. To eliminate any
bias resulting from Spanish-specific traits, PS KWS experi-
ments were later performed on Russian, using the same two
source languages. All mapping schemes provided full cov-
erage of the target language phoneme set.

The following summarizes the experiments performed:

(1) Cross-language phoneme recognition evaluation
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• Base-line Spanish phoneme recognition results
using Spanish acoustic models for comparison
to the cross-language recognition.

• Cross-language phoneme recognition using
acoustic models from either English or Arabic
to recognize phonemes in Spanish. For this test
a phoneme-to-phoneme mapping between the
source and target phoneme sets was first defined.
Various mapping schemes were implemented.

(2) PS KWS evaluation
• Baseline Spanish KWS results using Spanish

acoustic and language models for comparison to
the cross-language recognition.

• PS over phoneme lattices generated by the
source language acoustic and language models
using the knowledge-based mapping into Span-
ish.

• PS using various cross-language phonetic map-
ping techniques during the search process.

• Experiments using the knowledge-based map-
ping on three LM configurations: 1) source
acoustic models and an ergodic topology (no
LM); 2) source acoustic models with a phoneme
LM estimated from the source language; 3)
source acoustic models and a target language
phoneme LM estimated from a large-scale lex-
icon and textual database. These experiments
were intended to test the influence of the LM
type in the phoneme recognition stage.

• Experiments using an additional target language
– Russian.

3.1 Speech databases

The English acoustic models were trained using 157 hours
from the Wall Street Journal portion of the Macrophone
database.[40] The Arabic acoustic models were trained us-
ing a total of 115 hours from the Appen Levantine Arabic
Conversational Telephone Speech database[41] and the LDC
Fisher Levantine Arabic Conversational Telephone Speech
database.[42]

The experimental test sets for Spanish and Russian included
one hour of speech for each language from the ELRA
SpeechDat(II) FDB-4000 database[43] and Appen’s Russian
Conversational Telephony database[44] respectively. The de-
velopment database used for estimating each of the resulting
confusion matrices contained an additional hour of speech
for each language, extracted from the same databases. The
remaining audio in the Spanish database (173 hours) was
used to generate the Spanish base-line reference results that
required well-trained acoustical and language models.

The phoneme sets used for each language were as follows:
39 English DARPA phonemes;[45] 43 Arabic Buckwalter
transliteration based (http://www.qamus.org/translit

eration.htm); 31 Spanish SAMPA phonemes;[46] 49 Rus-
sian SAMPA phonemes.[47]

Searches were performed on lists of keywords of three sylla-
bles or more. The keyword lists in Spanish consisted of 124
search terms, with average length of 9.2 phonemes each.
The Russian keyword list consisted of 25 search terms, with
an average length of 9.6 phonemes each.

3.2 Experimental setup

Phoneme recognition was performed using the HTK speech
recognition engine. Feature extraction was MFCC of order
39 with first- and second derivatives. The acoustic models
were three state tri-phone HMMs with additional models for
speaker noises and non-speech events. The phonetic search
process was performed over a phoneme lattice following im-
plementation of one of the various mapping schemes. The
Levenshtein Distance was used to measure the distance be-
tween the keywords and partial phoneme sequences on the
lattice. A given phoneme sequence was considered to match
the keyword if the distance between them was below a pre-
defined threshold.

3.3 Scoring paradigms

Phoneme recognition and PS KWS were carried out on the
Spanish and Russian test sets. Phoneme recognition per-
formance was measured using a Phoneme label correct rate
(%Correct), estimated based on the Levenshtein distance
between the phoneme recognition results and the reference
pronunciation and using the following calculation:

%Corect labels =
number of correct labels

total number of labels
×100 (1)

As for PS KWS results, the Detection Rate (DR) and False
Alarm Rate (FAR) were estimated for various values of a
decision threshold (θ). The calculations of DR and FAR are
given by (1) and (2) respectively:

DR(θ) =
1

K

K∑

k=1

NDetect(k, θ)

NT rue(k)
(2)

FAR(θ) =
1

Q

Q∑

k=1

NF A(k, θ)

TSpeech

(3)

where:

Q = total of keywords;

K = of keywords with 1 or more reference occurrences;

NDetect (k,θ) = of detections of keyword k using threshold
θ (calculated only for keywords with a reference);

NF A (k,θ) = of false alarms of keyword k (calculated for
any keyword);
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NT rue (k) = of reference occurrences of keyword k;

TSpeech= the total duration of evaluated speech in the test
data (in hours).

In a parallel analysis we also provide the Maximum Term-
Weighted Value (MTWV), a metric officially used by NIST
for the OpenKWS evaluations. The term-weighted value
(TWV) is 1 minus the weighted sum of the term-weighted
probability of missed detections PM iss(θ) and the term-
weighted probability of false alarms PFA(θ).

TWV (θ) = 1 − [PMiss(θ) + β · PFA(θ)] (4)

To compute the TWV, we assume β=999.9 (NIST, 2014).
The MTWV is the maximum possible TWV over all possi-
ble threshold values, θ.

4 Results

The main purpose was to evaluate PS KWS performance
under different cross-language mappings. Thus, the KWS
evaluation was the primary evaluation. However, phoneme
recognition produces the phoneme sequence on which the
PS KWS is performed and thus has a strong impact on the
PS KWS results. Consequently, before carrying out the
KWS experiments, we performed phoneme recognition ex-
periments in order to evaluate the phoneme mapping. In a
consecutive step, the results of the PS KWS are presented.
Since, phonetic-mapping evaluations for both source lan-
guages (Arabic and English) produced similar results, for
the sake of brevity, only the results obtained using Arabic
as the source language are presented (for both Spanish and
Russian as targets). The concluding results, which integrate
the target language LM, were carried out in English and are
therefore presented last (see Figures 5 and 6).

4.1 Phoneme recognition

Table 3 shows the phoneme recognition results obtained
using the knowledge-based mapping and each of the data-
driven mappings that resulted from the various DMs tested.
These can be compared to the base-line Spanish results. The
discrepancy in the number of mapped phonemes is related to
the one-to-many phoneme mapping between the target and
source phonemes. All mappings schemes fully cover the tar-
get phoneme set, but not all source phonemes are utilized.

Although none of the mappings produced results that ap-
proached the base-line Spanish results, the results obtained
using data-driven mapping were similar to those obtained
using knowledge-based mapping. The best recognition re-
sults were achieved using the Euclidean distance measure
and Arabic source models. However, using the Kullback-
Leibler measure produced the highest average recognition
rate (averaged over the two source languages).

Table 3: Cross-language Phoneme Recognition Evaluation
Results – Percentage of Correct Phoneme Labels

Mapping 

Technique 

Source 

Language 

#Mapped 

Phonemes 

%Correct 

Labels 

Base-line Spanish Spanish 31 68.42% 

Knowledge-based 
English 27 39.85% 

Arabic 24 55.63% 

Data-driven 

Kullback-Leibler 

English 24 44.03% 

Arabic 21 55.03% 

Data-driven 

Bhattacharyya 

English 31 37.65% 

Arabic 21 42.14% 

Data-driven 

Mahalanobis 

English 23 39.48% 

Arabic 23 54.88% 

Data-driven 

Euclidean 

English 26 37.99% 

Arabic 26 56.71% 

Data-driven 

Jeffreys-Matusita 

English 31 38.21% 

Arabic 31 40.41% 

 

4.2 Keyword spotting performance

KWS performance under various conditions is represented
in Figures 2-6, in which the DR is plotted as a function of
the FAR. Figure 2 shows KWS performance on the Spanish
test set, using lattices generated by the English and Ara-
bic source acoustic and language models, with knowledge-
based mapping. The Spanish base-line results (PS KWS
in Spanish using well-trained Spanish acoustic and lan-
guage models) are also presented for comparison. The re-
sults show that, although significantly lower than the per-
formance obtained in the Spanish base-line experiment, the
performance of Spanish KWS using Arabic as a source lan-
guage was quite similar to that obtained using English as a
source language.

Figure 2: Spanish KWS Evaluation Results: English and
Arabic Source Models Using Knowledge-Based Mapping

This is surprising, given the fact that Arabic performed
better in the phoneme recognition resulting from the
knowledge-based mapping (see Table 3). In fact, Figure 2
shows that the KWS performance resulting from the Arabic-
Spanish mapping was indeed superior to that resulting from
the English-Spanish mapping up to a FAR of approximately
5. At this working point, it seems that the DR reached a
maximum regardless of the language used as the source.

Figure 3 compares Spanish PS KWS performance us-
ing Arabic acoustic models and the various mapping

78 ISSN 1927-6974 E-ISSN 1927-6982



www.sciedu.ca/air Artificial Intelligence Research 2015, Vol. 4, No. 2

schemes: (a) knowledge-based mapping, (b) data-driven
mapping, (c) performance-based mapping initialized from
the knowledge-based mapping, and (d) performance-based
mapping initialized from the data-driven mapping. All con-
figurations used a source language phoneme-level LM. The
MTWV results for the same Arabic source conditions are
given in Table 4.

Figure 3: Spanish KWS Evaluation Results: Arabic
Source Models Using Different Mapping Schemes

Table 4: Arabic Source MTWV for Spanish Target
Arabic source (a) (b) (c) (d) 

MTWV 0.071 0.088 0.115 0.210 

 

The results suggest that data-driven mapping yields bet-
ter PS KWS performance than the knowledge-based map-
ping (assuming a small development set is available for the
target language) than does knowledge-based mapping, and
that further refinement of either mapping using a phoneme
recognition performance-based learning approach improves
the KWS results substantially.

The same methodology and source languages were tested
on the Russian data, yielding similar results. Figure 4 com-
pares Russian PS KWS performance using Arabic acoustic
models and the various mapping schemes: (a) knowledge-
based mapping, (b) data-driven mapping, (c) performance-
based mapping initialized from the knowledge-based map-
ping and (d) performance-based mapping initialized from
the data-driven mapping. All configurations used a source
language phoneme-level LM. The MTWV for the same Ara-
bic source conditions is given in Table 5. Results indicate
that the Arabic models do not provide an adequate repre-
sentation of the Russian phonemes. However, some statisti-
cal performance-based mapping learning may alleviate the
problem if the user agrees to accept larger numbers of false
alarms.

Table 5: Arabic Source MTWV for Russian Target
Arabic source (a) (b) (c) (d) 

MTWV 0.0 0.005 0.045 0.015 

 

Figure 4: Russian KWS Evaluation Results: Arabic
Source Models Using Different Mapping Schemes

Figure 5 presents the results obtained for each of the
three LM options used in the recognition phase, under
knowledge-based mapping, with English as the source lan-
guage and Spanish as the target language. Results are ob-
tained on the one-best recognized phonetic path: (a) no LM,
(b) English LM and (c) Spanish LM. These are compared to
the base-line Spanish results (Spanish KWS using Spanish
acoustic models), specifically, (d) the Spanish base-line with
no LM, and (e) the Spanish base-line using a Spanish LM.
The corresponding MTWV results are provided in Table 6.

Figure 5: Spanish KWS Evaluation Results: English
Source Models; Knowledge-Based Mapping, Search
Performed over One-Best Phoneme Recognition Results
using Various LM Schemes

Table 6: English Source MTWV for Spanish Target
Compared to Spanish Base-Line

English source (a) (b) (c) (d) (e) 

MTWV 0.011 0.015 0.045 0.51 0.51 

 

Again, the performance using cross-language mappings
was considerably poorer than the Spanish base-line perfor-
mance results. However, among the cross-language map-
ping schemes, using English acoustic models in combina-
tion with a Spanish phoneme-level LM produced best re-
sults. This clearly indicates that using a target language LM
can greatly improve performance. More importantly, even
using a phone-level LM from the source language is supe-
rior to using no LM when performing cross-language PS.
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Figure 6 shows results obtained for several LM options,
but this time with different target-to-source phoneme map-
ping schemes, and this time, the search is performed
on a phonetic lattice: (a) knowledge-based mapping
and no LM, (b) knowledge-based mapping and Spanish
LM, (c) performance-based mapping and no LM, and
(d) performance-based mapping and Spanish LM. The
performance-based mapping used was initialized from the
knowledge-based mapping and enriched by the natural
class groupings. These results can be compared to the
Spanish base-line using a (e) Spanish LM and (f) Span-
ish LM and performance-based mapping between Span-
ish phonemes (automatic mapping of Spanish phonemes to
Spanish phonemes). The corresponding MTWV results are
provided in Table 7.

The results also show that a monolingual base-line system
can also benefit from a performance-based mapping dur-
ing the search, although the improvements for the cross-
language configurations are more substantial. Moreover, a
performance-based mapping is more effective in improving
performance than integrating a LM in the target language.
When examining the phoneme recognition confusion ma-
trices, it was observed that each of the target phonemes
was mapped to numerous source phonemes with substantial
probability, producing much more smeared matrices in com-
parison to the monolingual configuration. Hence, utilizing
this information for the PS led to a significant improvement.

Figure 6: Spanish KWS Evaluation Results: English
Source Models, Search over Phoneme Recognition lattice
using Various Mapping and LM Schemes

Table 7: English source MTWV for Spanish target
compared to Spanish Base-Line

English Source (a) (b) (c) (d) (e) (f) 

MTWV 0.011 0.121 0.132 0.181 0.61 0.63 

 

5 Conclusions

The research presented here proposes a methodology for im-
plementing PS KWS in under-resourced languages without
the need to train new acoustic models. Three cross-language
mapping techniques and phonetic language model configu-
rations were examined. Whereas previous works on cross-
language phoneme mapping have mostly concentrated on
LVCSR, the research described here focused on PS KWS.
The best results were obtained using a phoneme recogni-
tion performance-based mapping initialized by a previously
learned data-driven mapping. This topology significantly
improved target language KWS performance in compari-
son to the knowledge-based or data-driven mappings alone.
Although these methods still yielded substantially poorer
performance compared with fully-trained target language
used for the base-line results, they were relatively reason-
able when accounting for the fact that they were attained
with very limited use of language resources in the target lan-
guage.

Incorporation of a phoneme-level LM in the recognition
phase enhanced KWS performance substantially. Our re-
sults suggest that, if obtainable, a language model estimated
from target language data produces the best results; how-
ever, importantly, even a language model estimated from
the source language is superior to using an ergodic, non-
restrictive topology.

The approach presented provides a rapid means of support-
ing new languages with very limited resources (both lan-
guage and human resources) and at virtually no cost. This
initial, rapid, low-cost version of a KWS application can be
later upgraded to incorporate updated acoustic and language
models estimated from target language data that are logged
from the application.

Future research directions include combining searches in
two (or more) source lattices, as well as using data-driven
methods to correctly span the acoustic space using several
source languages.
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