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Cross-Layer Analysis of the End-to-End Delay

Distribution in Wireless Sensor Networks
Yunbo Wang, Member, IEEE, Mehmet C. Vuran, Member, IEEE, and Steve Goddard, Member, IEEE

Abstract—Emerging applications of wireless sensor net-

works (WSNs) require real-time quality-of-service (QoS) guaran-

tees to be provided by the network. Due to the nondeterministic

impacts of the wireless channel and queuing mechanisms, prob-

abilistic analysis of QoS is essential. One important metric of

QoS in WSNs is the probability distribution of the end-to-end

delay. Compared to other widely used delay performance metrics

such as the mean delay, delay variance, and worst-case delay,

the delay distribution can be used to obtain the probability to

meet a specific deadline for QoS-based communication in WSNs.

To investigate the end-to-end delay distribution, in this paper, a

comprehensive cross-layer analysis framework, which employs a

stochastic queueing model in realistic channel environments, is

developed. This framework is generic and can be parameterized

for a wide variety of MAC protocols and routing protocols. Case

studies with the CSMA/CAMAC protocol and an anycast protocol

are conducted to illustrate how the developed framework can ana-

lytically predict the distribution of the end-to-end delay. Extensive

test-bed experiments and simulations are performed to validate

the accuracy of the framework for both deterministic and random

deployments. Moreover, the effects of various network parameters

on the distribution of end-to-end delay are investigated through

the developed framework. To the best of our knowledge, this is

the first work that provides a generic, probabilistic cross-layer

analysis of end-to-end delay in WSNs.

Index Terms— Delay distribution, quality of service (QoS), real-

time systems, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have been utilized

in many applications as both a connectivity infrastruc-

ture and a distributed data generation network due to their

ubiquitous and flexible nature [6]. Increasingly, a large number

of WSN applications require real-time quality-of-service (QoS)

guarantees [5]. Such QoS requirements usually depend on

two common parameters: timing and reliability. The resource

constraints of WSNs, however, limit the extent to which these

requirements can be guaranteed. Furthermore, the random

effects of the wireless channel prohibits the development of

deterministic QoS guarantees in these multihop networks. Con-

sequently, a probabilistic analysis of QoS metrics is essential to
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address both timing and reliability requirements. In this paper,

we focus on the probability distribution of the end-to-end delay

in WSNs. Characterization of the end-to-end delay distribution

is fundamental for real-time communication applications with

probabilistic QoS guarantees. Indeed, the cumulative distribu-

tion function (cdf) of the delay for a given deadline can be used

as a probabilistic metric for reliability and timeliness.

Characterizing delay in distributed systems has been inves-

tigated in different contexts. Recent work has analyzed the la-

tency performance of WSNs in terms of its first-order statistics,

i.e., the mean and the variance [3], [8], [15]. However, com-

plex and cross-layer interactions in multihop WSNs require a

complete stochastic characterization of the delay. Several ef-

forts have been made to provide probabilistic bounds on delay.

As an example, the concept of network calculus [10] has been

extended to derive probabilistic bounds for delay through worst-

case analysis [9], [12]. However, because of the randomness in

wireless communication and the low-power nature of the com-

munication links in WSNs, worst-case analysis cannot capture

the stochastic behavior of end-to-end delay. Moreover, work on

real-time queueing theory [19], [38] provides stochastic models

for unreliable networks. However, these models consider heavy

traffic rate, which is not applicable for WSNs. Recently, proba-

bilistic analysis of delay has been performed for broadcast net-

works [7], [25], [28], [29], [31] considering several medium

access control (MAC) protocols. While the channel contention

has been adequately modeled in these studies, additional delay

due to multihop communication, queuing delay, and wireless

channel errors have not been captured. Capturing these cross-

layer effects is imperative to completely characterize the delay

distribution in WSNs.

Our goal is to provide a comprehensive analytical model for

distribution of end-to-end delay inWSNs. Accordingly, the con-

tributions of this paper are as follows. First, a comprehensive

and accurate cross-layer analysis framework is developed to

characterize the end-to-end delay distribution inWSNs for both

deterministic and random deployments of nodes. Second, the ef-

fects of heterogeneity in WSNs on latency is captured in terms of

channel quality, transmit power, queue length, and communica-

tion protocols. Third, the developed framework highlights the

relationships between network parameters and the delay dis-

tribution in multihop WSNs. Using this framework, real-time

scheduling, deployment, admission control, and communication

solutions can be developed to provide probabilistic QoS guar-

antees. To the best of our knowledge, this is the first paper that

provides a probabilistic cross-layer analysis of end-to-end delay

in WSNs.1

1A preliminary version of this work appeared in [34].

1063-6692/$26.00 © 2011 IEEE
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The remainder of this paper is organized as follows. Related

work in this area is summarized in Section II. In Section III,

the end-to-end delay distribution problem is formally defined

and an overview of the proposed Markovian model is provided.

The detailed derivation of the single-hop delay distribution

is described in Section IV, followed by the derivation of the

end-to-end delay distribution in Section V. Then, case studies

for the CSMA/CA MAC protocol and the anycast protocol are

provided in Sections VI and VII, respectively. Experimental

results are provided in Section VIII to validate the developed

model. Finally, Section IX concludes the paper.

II. RELATED WORK

The problem of probabilistic QoS guarantees has attracted a

large amount of research in recent years. The concept of net-

work calculus [10] has been extended to support probabilistic

delay bounds in [9], [12], [18], [30]. Network calculus and its

probabilistic extensions are based on a min-plus algebra to pro-

vide traffic curves and service curves, which are deterministic

(or statistical) bounds of traffic rate and service time, respec-

tively. In these studies, the worst-case performance bounds are

analyzed. However, determining worst-case bounds has limited

applicability in WSNs for three reasons: First, because of the

randomness in wireless communication and the low power na-

ture of the communication links, worst-case bounds do not exist

in most practical scenarios. Second, the large variance in the

end-to-end delay in WSNs results in loose bounds that cannot

accurately characterize the delay distribution. Finally, most ap-

plications tolerate packet loss for a lower delay of higher priority

packets since the efficiency of the system is improved. These

motivate the need for probabilistic delay analysis rather than

worst-case bounds.

Moreover, work on real-time queueing theory [19], [38]

combines real-time theory and queueing theory to provide sto-

chastic models for unreliable networks. However, these models

consider heavy traffic rate (usually saturation mode), which is

not applicable for WSNs. Our approach in this paper is similar

to real-time queueing theory [19] in that we use a stochastic

queuing model for the analysis. In contrast, we do not focus

on the scheduling problem in real-time systems, which has

been discussed intensively in the literature [19], [21], [38].

Rather, we aim to provide an analytical tool to help develop

communication solutions and real-time systems.

Recently, the delay distribution of MAC protocols has been

analyzed in several studies for wireless networks and WSNs,

in particular. The access delay of several MAC protocols has

been investigated including IEEE 802.11b DCF protocol [2] in

[7], [29], and [31], IEEE 802.15.4 protocol in [27] and [28], and

TDMA protocols in [25]. However, in these studies, a broadcast

network is considered, where each node can hear the transmis-

sion of each other. Moreover, in [7], [29], and [31], saturated

traffic is considered. Consequently, the multihop communica-

tion effects due to hidden node problems and the low traffic rate

of WSNs cannot be captured.

The distribution of link-layer retransmissions are modeled

in [16]. While the distribution of the number of retransmis-

sions is obtained, the transmission time is regarded as the same

for each attempt. Hence, the resulting delay distribution model

does not consider the uncertainty due to random backoffs of

CSMA/CA protocols. In [37], the end-to-end delay distribution

in a linear network is derived for homogeneous networks. How-

ever, this model assumes infinite queue length at each node,

which may not be practical considering the resource constraints

of sensor nodes. A probabilistic end-to-end delay and network

lifetime analysis is given for WSNs performing data aggrega-

tion in [13], but with the assumption that packet transmission

time is exponentially distributed. This assumption is inaccurate

for most of the MAC protocols commonly in use. Finally, in

[11], [14], and [26], empirical measurements are used to provide

probabilistic estimations for end-to-end delay. These solutions

exploit on-the-fly measurements, but do not provide analytical

results. It can be observed that completely and accurately char-

acterizing end-to-end delay in WSNs is still an open problem.

A preliminary version of this work appeared in [34], which

constitutes the first step in providing a comprehensive analyt-

ical model for distribution of the end-to-end delay in WSNs.

In this paper, we extend our previous work in the following

aspects. The analytical framework proposed in [34] character-

izes the end-to-end delay distribution for a variety of MAC pro-

tocols including the TinyOS CSMA/CA MAC protocol. The

model is extended to capture a wide variety of MAC proto-

cols with duty-cycle operation and a case study with an anycast

protocol is included. Moreover, considering the various deploy-

ment methodologies in WSN applications, both deterministic

and random network topologies are analyzed. Comprehensive

test-bed experiments and simulations are provided to validate

the extended model. In the following, we present the extended

analysis framework in more detail.

III. PROBLEM DEFINITION AND SYSTEM MODEL

In our analysis, we consider a network composed of sensor

nodes that are distributed in a 2-D field. Sensor nodes report

their readings to a sink through a multihop route in the network.

Two different types of network deployments are investigated.

� Deterministic deployment: Sensor nodes are located at

deterministic locations. Each node is labeled by an index

and is characterized by its input traffic rate , queue

length , and the maximum number of retransmission

attempts .

� Random deployment: The locations for individual sensor

nodes are located randomly according to a Poisson point

process. In this case, nodes are identified according to their

locations rather than deterministic indices. The input traffic

rate, queue length, and the maximum number of retrans-

mission attempts for a node located at is de-

noted as , , and , respectively.

Although any channel model can be used in our framework,

in this paper, a log-normal fading channel model is considered

for its accuracy [39]. Accordingly, for a given network with a

certainMAC protocol and node parameters described above, we

are interested in the following two problems.

1) What is the probability distribution function (pdf) of

single-hop delay, , between two nodes and

for deterministic deployment, and , between

two nodes located at and for random deployment,

for a new arriving packet?
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2) Given the single-hop delay pdf, what is the end-to-end

delay pdf, between a node and a sink for de-

terministic deployment, and between a node lo-

cated at and a sink located at for random deployment?

We consider a heterogeneous network for this analysis, where

the heterogeneity is defined in terms of channel conditions, the

packet error rate , traffic rate , queue length , max-

imum number of retransmission attempts , and transmission

power , with appropriate subscripts indicating the different

values for different nodes. In the following, we provide an

overview of our solutions for the two problems above, and the

detailed descriptions are deferred to Sections IV and V.

A. Single-Hop Delay Distribution

Each node is modeled according to a queuing model, which is

characterized by its interarrival distribution and service process.

More specifically, we model the traffic interarrival according to

a geometric distribution as will be explained next. Furthermore,

a discrete-time Markov process (DTMP) is used to model the

service behavior. Therefore, the service time is phase-type (PH)

distributed [24]. Considering a single processor at each node and

a queue capacity of , the resulting model is a discrete-time

Geom/PH/1/M queueing model.

1) Interarrival Time: The geometric interarrival time is mo-

tivated by the following. In a typical multihop WSN, the input

traffic at each node consists of two parts: locally generated

packets and relay packets. Locally generated packets consist

of the local information sampled by the sensors, whereas relay

packets are received from the neighbors of the node. We are

interested in finding the interarrival time of these packets at

each node for our analysis.

The interarrival time of the locally generated packets depends

on the application requirements, with which the sensor data are

generated. Formonitoring applications, where nodes repeatedly

poll their sensors, the generated data is periodic. Accordingly,

the locally generated traffic can be modeled using a constant

bit rate (CBR) model. For event-based applications, nodes send

data only if a certain physical event of interest occurs, e.g., the

temperature exceeds a given threshold. In this case, the gener-

ated data are often sporadic. Considering such physical events

do not occur very frequently, the probability that the event oc-

curs at any time is governed by a Poisson process, and the in-

terarrival time is exponentially distributed. Since we employ

a discrete-time model, the Poisson process is equivalent to a

Bernoulli process, and the exponential distribution of interar-

rival time is equivalent to a geometric distribution [23]. Note

that in some applications, the traffic generated for the physical

event can be bursty. For tractability, the bursty traffic pattern is

not considered in this paper and is left for future work.

While the locally generated traffic mainly depends on the

physical phenomena of interest and the application type, the

relay traffic depends on the network parameters. Although char-

acterization of the relay traffic is out of the scope of this paper,

we approximate this distribution based on empirical measure-

ments. Test-bed experiments have been performed to estimate

the distribution of the interarrival time of packets in a 10-hop

chain network for both types of applications, i.e., monitoring

Fig. 1. Distribution of interarrival time for different types of traffic for a 10-hop
chain. Low traffic: 0.4 packets/s. High traffic: 4 packets/s. (a) Low traffic, CBR.
(b) High traffic, CBR. (c) Low traffic, Poisson. (d) High traffic, Poisson.

and event-based for low and high traffic rates. In each exper-

iment, each node uses the TinyOS CSMA/CA MAC protocol

and generates packets according to either a CBR model (moni-

toring) or a Poisson process (event-based). Each node transmits

its generated packets and the received packets from its neigh-

bors to the next node toward the end of the chain. The distribu-

tion of the interarrival time of the packets is recorded at the end

of the chain. The empirical cdf of the interarrival time is shown

in Fig. 1 along with an exponential distribution model for four

cases.2 The results reveal that except for the low periodic traffic

case shown in Fig. 1(a), exponential distribution closely models

the interarrival rate. Accordingly, in our discrete-time model,

we consider that the interarrival time follows a geometric dis-

tribution, and define the traffic rate at a node to be the proba-

bility that a new locally generated packet or relay packet arrives

during a time unit .

2) Service Time: The service time of each node is PH dis-

tributed since the system is modeled according to a DTMP with

time unit . Since a Bernoulli arriving process is assumed for

packets and the DTMP is used to describe the behavior of packet

communication service, the system is essentially governed by

a quasi-birth–death (QBD) process [24] and is modeled by a

Geom/PH/1/M queue.

The communication system at each node is modeled as a

discrete-time recurrent Markov chain, . As shown in

Fig. 2(a), this DTMC has a layered structure. Each layer con-

tains the part of the chain where there are packets in the queue.

The communication behaviors of each node are represented

by transitions among states in . Then, a second DTMC,

, which is the absorbing variant of , is used to obtain

the single-hop delay distribution. The detailed explanation of

these DTMCs is provided in Section IV.

B. End-to-End Delay Distribution

With each hop modeled as a Geom/PH/1/M queue, the entire

network is considered as a queueing network. Nodes are interre-

2The exponential distributions shown in Fig. 1 are chosen such that their
means are equal to the measured mean interarrival times.
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Fig. 2. Structures of Markov chains are shown in (a) for and (b) for
. The common structure of blocks and are shown in (c) and

(d), respectively.

lated according to the traffic constraints. More specifically, the

successfully transmitted traffic rate from one node should be

equal to the sum of the incoming relay traffic rate at each of the

next-hop neighbors of the node.

The topology of the queueing network depends on the routing

protocol used. In this paper, we focus on the class of routing pro-

tocols with which each node maintains a probabilistic routing

table for its neighbors, e.g., geographic routing protocols [4].

Nodes relay their packets to each of their neighbors according

to a probability in their routing tables. By first calculating the

relaying traffic and the single hop delay distribution for each

pair of nodes, the end-to-end delay is obtained using an itera-

tive procedure as will be explained in Section V.

IV. SINGLE-HOP DELAY DISTRIBUTION

The communication system at each node is modeled by a

DTMC and its absorbing variant . For clarity, the

index is omitted in single-node contexts when there is no am-

biguity. First, is constructed to capture the equilibrium

behavior of the communication. Then, is used to analyze

the transient communication behavior after a specific packet ar-

rives. The single-hop delay of the packet communication is then

represented as the absorption time of . In the following, the

construction of and are described in detail, and the

single-hop delay distribution is derived according to Theorem 1

at the end of this section.

A. Constructing Markov Chain

The DTMC , as shown in Fig. 2(a), is composed of

layers, where each layer repre-

sents the state where there are packets in the queue and is

the queue capacity. These layers are of two different types, the

idle layer and the communication layers , each of

which consists of one or more states. The states and the transi-

tions among the states in each layer are determined by the proto-

cols used by each node and represent the operations conducted

by the nodes according to the protocols. Case studies are pre-

sented in Sections VI and VII for the TinyOS CSMA/CA pro-

tocol and an anycast protocol. The idle layer, ,

represents the idle process, during which the node does not have

any packet to send and waits for new packets. The communi-

cation layers, , represent the communication

process in which packets are transmitted. One or several trans-

mission attempts are conducted until either the packet is suc-

cessfully transmitted or the maximum number of transmission

attempts, , is exceeded. Accordingly, a layer in is de-

noted as and is composed of blocks. The th block in

layer is denoted as .3 As shown in Fig. 2(c), each

block models a single transmission attempt. The structure of

depends on the MAC protocol used. Packets are dropped

if they arrive at a full queue or if all transmission attempts

fail. Consequently, the th state in layer and transmission at-

tempt is denoted as .

The traffic arriving at each node contains locally generated

traffic and relay traffic.While locally generated traffic can arrive

at any time, the relay traffic can only arrive when the node is

listening. Therefore, the total traffic rate depends on the state

of the process. The locally generated traffic rate and the relay

traffic rate for a node are denoted as and , respectively.

Therefore, in the states where the node is listening, the total

traffic rate is , and it is otherwise.

According to the MAC protocol employed, and

are respectively parameterized by the following notations:

� and : the transition probability matrix among the

states in and ;

� and : the initial probability vector for and

;

� and : the probability vector from each state in

and to complete the idle process and the transmission

process successfully;

� : the probability vector from each state in to com-

plete the transmission process unsuccessfully;

� and : the packet arrival probability vector for each

state in and . Each element in the vector is the

probability of a new packet arrival in a time unit when the

process is in the corresponding state.

Each communication layer consists of Markov chain

blocks for each transmission attempt , which is further

characterized by the transition probability matrix , the ini-

tial probability vector , the success probability vector ,

the failure probability vector , and packet arrival probability

vector .

3In the following, we drop the indices and , where appropriate, to simplify
the notation.
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Accordingly, the transition probability matrix among the

states in a single layer in can be organized as rows

and columns of blocks

. . .
. . . (1)

where the number of blocks in is equal to , i.e., the

maximum number of attempts for each packet transmission.

Similarly, the initial probability vector and the probability

vectors and to complete a layer in success and failure are

respectively organized as

(2)

(3)

(4)

Note that since the idle layer does not have multiple attempts

like the communication layer does, there is no similar organized

internal pattern in the corresponding matrices and vectors for

. The states and the transitions related to and

depend on the MAC protocol employed. For now, we assume

that these matrices are known and the case studies to obtain

them for two different protocols are provided in Sections VI and

VII. The transition probability matrix of the entire Markov

chain can then be found according to transitions between

different states at each layer as explained next.

For layer , , the queue is not full. Whenever

a packet arrives, the process transits to a higher layer since the

queue length increases. The probabilities of such transitions are

governed by the probability matrix

(5)

where is a properly dimensioned matrix containing all 1’s, and

is the entrywise product operator. and are parameter-

ized according to the MAC protocol. Note that element

in represents the transition probability from the th state in

previous layer to the th state in the upper layer, and other tran-

sition probability matrices in the following are defined the sim-

ilar way. The transition probability matrix at the same level ,

, is

(6)

where is the probability vector from each layer

to complete the current communication process regardless of

success or failure. The first term in (6) captures the case where

a locally generated packet arrives at the same time unit in which

a packet service is completed. The second term in (6) is for the

case where neither service completion nor new packet arrival

occurs during the time unit.

At layer , the queue is full. Hence, new arriving

packets are directly dropped. Therefore, the transition proba-

bility matrix in this layer is .

When there is no packet arrival and the current packet service

is completed, the Markov chain transits to one layer below. The

transition probability matrix from level to level ,

is

(7)

The transition probabilities are similar when the idle layer is

involved as follows:

(8)

(9)

(10)

When a new packet arrives while there is no packet in the

system, the chain transits from the idle layer to layer 1 ac-

cording to in (8). When the service is completed for the

only packet in the system and no new packet arrives, the chain

transits from layer 1 to the idle layer according to in (9).

Finally, the transition probabilities with which the node stays

in the idle layer are given in in (10).

Using (5)–(10), the transition probability matrix for

the entire recurrent Markov chain can be constructed as

follows:

layer

. . .
. . .

. . .

(11)

where each nonzero block corresponds to the transition prob-

ability among all layers. The duration of the time unit is

chosen to be small enough such that the probability of having

two or more transitions in a single time unit is negligible. There-

fore, it is only possible for to have intralayer transitions

and interlayer transitions to adjacent layers. Also note that the

first row and column of blocks in correspond to the transi-

tion probabilities from and to the idle layer. Then, the equilib-

rium state probability vector for is calculated by solving

and . The detailed solution to this equa-

tion system is documented in [34].

B. Absorbing Time for

To obtain the distribution of single-hop delay for a packet,

consider a particular packet that enters the system at time .

The single-hop delay of the packet is the time spent until it

is transmitted or dropped. To derive the delay distribution, we

use another DTMC, , as an absorbing variant of .

As shown in Fig. 2(b), in , the idle layer of is re-

placed by two absorbing states and , corresponding

to the two cases where the packet is successfully transmitted

and dropped, respectively. In addition, all new packet arrivals

are ignored since they do not interfere with the service time of

the packet concerned. Thus, the state transitions occur only in-

side a layer or from layer to . The steps to obtain

from is explained in the following.

Before the packet arrives, the system is in one of the states

according to the equilibrium state probability vector . After the
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new packet arrives, if the queue is full, the packet is immediately

dropped. The probability of queue full is

(12)

where is the subvector in corresponding to the th layer.

Otherwise, the packet is inserted into the queue. The probability

vector that the node is in a specific state after the new packet

arrives is , where is the transition probability

matrix of conditioned on the fact that the new packet ar-

rives. is derived from in (11) by replacing and

with vectors of all 1’s in (5)–(10) and replacing with

. Note that in the bottom right block accounts for the tran-

sition that will cause a packet to drop because of a full queue.

Then, is the initial probability vector for .

Accordingly, the transition probability matrix for is

(13)

where the transition probabilities from and to the absorbing

states and are listed in the first two rows and columns.

The transition probability matrix among the transient states, i.e.,

all states except and , is given by

. . .
. . .

(14)

This is obtained from (11) by removing the first row and first

column of blocks and replacing and with vectors of all 0’s

in (5)–(10) for each remaining block. The transition probability

vectors from each of the transient states to the absorbing states

are

(15)

respectively, where and are given in (3) and (4). Finally,

since a transition in takes a time unit , the following

important results are directly obtained.

Theorem 1: The pmf of the number of time units, , a packet

should wait before being transmitted and dropped are

(16)

respectively, where , i.e., without the

elements corresponding to the idle layer, and represents

the th power of .

Proof: The theorem follows from [23, Ch. 9.5].

The pmf of the number of time units a packet should wait,

regardless of being transmitted and dropped, is obtained by

adding and . Thus, the following corollary is

directly obtained.

Corollary 1: The pmf of single-hop delay, measured by the

number of time units of , is given by

(17)

Using this model, the probability that the packet is eventually

delivered in success can also be found and is given by the fol-

lowing corollary.

Corollary 2: The delivery rate of a new arriving packet is

(18)

Of interest, the first twomoments of the successful single-hop

delay, which are widely used as the performance metrics in

WSN applications, can also be derived.

Corollary 3: The mean and variance of single-hop delay for

a new arriving packet are given by

(19)

(20)

The derivations are straightforward and are not included.

Next, we derive the end-to-end delay distribution based on the

single-hop delay distribution analysis in this section.

V. END-TO-END DELAY DISTRIBUTION

The end-to-end delay distribution depends on the topology of

the network and the routing protocol used. Two types of node

deployments are considered in this paper: deterministic deploy-

ment and random deployment. For both deployments, we focus

on the steady-state behavior of the routing protocol. Accord-

ingly, a node forwards a particular packet to any of its neighbor

nodes with a certain probability, which does not change rapidly

over time. These protocols comprise the majority of routing

protocols in WSNs [6]. It is also assumed that in-network pro-

cessing, such as data aggregation, is not employed.

A. Deterministic Deployment

In a network with deterministic deployment, each node has a

deterministic location, and the forwarding probabilities among

nodes is determined with the knowledge of the locations. A

typical network setup for common applications is considered,

where a single sink is used and the routing protocol produces no

closed loops in the routing paths (i.e., packets are never routed

by a node more than once). In such a case, the network is viewed

as a directed acyclic graph (DAG). Without loss of generality,

this graph can be topologically sorted so that a node with a larger

index never transmits a packet to a node with smaller index. In

a network with nodes, the index for the sink is .

Suppose in each time unit of , each node generates a local

traffic of to the sink. Each packet is routed using a relay

with probability , where is the set of potential relays

from to the sink. Thus, , . We first calculate

the average relay traffic in each time unit from node by

solving the following equation system for every node:

(21)

and , where is the probability that a packet

is successfully delivered from node to , as defined in (18).
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Fig. 3. Feasible region and the infeasible region of node .

Then, since each node cannot receive packets in transmission

and sleeping states, the relay traffic rate in the states, in which

the node is capable to receive packets, is

(22)

where is the probability that is in any state in which

the node can receive packets and is the sum of the probabili-

ties corresponding to all such states in . Whether or not the

node can receive packets in a state is determined by the pro-

tocol. Accordingly, the input traffic rate vectors and of a

node can be found according to Section IV. Then, and

are used in (5)–(10) to determine the single-hop delay distribu-

tion, , between a pair of nodes and as discussed in

Section IV.

Finally, the end-to-end delay distribution is given as

(23)

where is the convolution operator. Our numerical experi-

ments show that it takes less than 2 min to obtain the end-to-end

delay distribution between two nodes in a network consisting of

16 nodes with TinyOS CSMA/CA MAC protocol. This calcu-

lation time is affordable for protocol analysis.

B. Random Deployment

For the random deployment, the nodes are located in the net-

work according to a Poisson point process with density . Due to

this randomness, the location for each node is stochastic. There-

fore, geographic routing protocols [4] are often used due to their

scalability and adaptability to the random geographic locations

of the nodes. In such protocols, instead of the routing proba-

bility between any pair of nodes and , the routing proba-

bility between any pair of locations and , can be

determined.

A common scenario is also considered for the random deploy-

ment, where the nodes in the network generate homogeneous

amount of local traffic to a sink. Moreover, each node forwards

packets to the neighboring nodes within its feasible region, ,

i.e., the region in which nodes are closer to the sink, but are still

in the transmission range, as shown in Fig. 3. Assume that the

sink is located at the center of a circular plane with a radius .

In this scenario, the end-to-end delay analysis can take advan-

tage of the symmetry of the topology as explained next.

The entire circular plane is discretized into concentric rings

indexed by their distance to the sink, . Each node senses the

physical events, and generates packets with traffic rate . By

symmetry, the relay traffic is the same for all nodes in the

same ring . In the following analysis, we assume a polar coor-

dinate system with the sink located at the origin.

For a node located at , the relay traffic ar-

rives from any node in the infeasible region ,

where is the communication range of , as shown in Fig. 3,

i.e., is the region in which nodes are farther to the sink but

are still in the transmission range. To derive the relay traffic rate

for and other nodes in ring , consider the small area

around node located at . Sim-

ilar to the deterministic deployment, the relay traffic rate is

given by

(24)

where is the network density of the Poisson node distribution,

and and are similarly defined as and

in (21), except that the nodes are indexed by their lo-

cations. Finally, in (24) is the routing protocol-specific

probability that the node at transmits packets to a node at

. A case study for the anycast protocol will be provided in

Section VII to show how this probability is obtained.

According to (24), the traffic rate of node at each state is de-

termined. Accordingly, the input traffic rate vectors and

of node can be found according to Section IV. Then, the equi-

librium state probability for the DTMC , is obtained.

Note that in (24), the traffic rate for nodes in ring depends

on the traffic rate and delivery rate for nodes in their infeasible

region. Therefore, the single-hop delay distribution is obtained

first for nodes in the outmost ring, and then for nodes in the inner

rings in the decreasing order of the ring radius.

By symmetry, the end-to-end delay distribution to the sink is

the same for all nodes with a same distance to the sink, and

is obtained by

(25)

The end-to-end delay distribution is found in the ascending

order of the distance to the sink.

Next, in Section VI, the TinyOS CSMA protocol is used as

a case study to show how the DTMCs, specifically the single-

transmission-attempt block , are constructed and how the

end-to-end delay distribution is obtained in a deterministic de-

ployed network. Likewise, another case study of the anycast

protocol is provided in Section VII to illustrate the end-to-end

delay analysis in a randomly deployed network.

VI. CASE STUDY: TinyOS CSMA/CA PROTOCOL

In this section, we illustrate how single-hop delay distribution

can be obtained for a particular MAC protocol in a deterministi-

cally deployed network. We use the TinyOS default CSMA/CA

protocol [32], which is widely adopted by applications due to

the popularity of TinyOS. Similar to the IEEE 802.15.4 protocol

[1], a two-slot clear channel assessment (CCA) is conducted be-

fore transmitting a packet. As discussed in Section II, there exist

several studies that characterize the CSMA/CA protocol in a

broadcast network. In this section, we refer to the framework
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Fig. 4. Markov chain structure for each attempt for TinyOS CSMA protocol.
and are the number of states representing the initial backoff and

congestion backoff, respectively. The subscript for node is omitted in the
figure.

in [28] for our analysis. Since multihop traffic and the hidden

node problem are not considered in [28], we extend this anal-

ysis to the multihop case. Note that our aim in this section is not

to propose yet another analysis of the CSMA/CA protocol. In-

stead, we illustrate how the existing models of MAC protocols

can be extended through our framework to model the end-to-end

delay distribution.

A. Markov Process Overview

With the TinyOS CSMA/CA protocol, nodes can start trans-

mission at any time when a packet arrives. Therefore, the idle

layer contains only one state, denoted here as . The

elements in , , , and are easily determined

(26)

Moreover, the Markov chain that models each transmis-

sion attempt is depicted in Fig. 4. Before each transmission, the

packet in the queue is transferred from the microcontroller to the

transceiver. The time needed for such transfer differs for various

transceivers, but is not negligible. Our experiments with TelosB

nodes suggest that the durations of loading time before and after

radio transmission are constant and are approximately 1.7 and

2.0 ms, respectively. Therefore, the data transfer delay is mod-

eled by two additional state chains with a length corresponding

to the transfer duration. These chains are the first and the last

part of , denoted as and in Fig. 4.

After the packet is transferred to the transceiver, a random

initial backoff is conducted to arbitrate with other nodes. Then,

the two-slot CCA is performed, which is followed by the

packet transmission if both CCAs result in a clear channel. If

the channel is busy, a random congestion backoff is conducted

and the channel is sensed again. After the transmission is

completed, the node waits for the acknowledgment from the

receiver until ACK timeout.

B. Constructing the DTMC

For each transmission attempt, the corresponding block of

the Markov chain is depicted in Fig. 4, which is characterized

by three variables in the chain: and are respectively the

probabilities that the node senses the channel busy in the first

and second CCA, and is the probability that a transmission

attempt fails due to either channel noise or collisions. For the

derivations of their values, we first define the collision area

of a node as the area in which all the neighbors interfere with

node . For two communicating nodes and , both nodes re-

side in the intersection of the collision areas of these nodes, i.e.,

,4 where . Moreover, the colli-

sion area of that is not in is defined as ,

which is the hidden node area of with respect to . Essentially,

nodes that reside in cannot be heard by . Similarly, the

hidden node area of w.r.t. is denoted as . The size of these

areas , , and can easily be obtained according

to the distance between and and their respective interference

ranges. Accordingly, the number of nodes in these areas are the

product of their respective sizes and the network density

(27)

Then, the values of , , and for each node are found

by solving the following set of equations:

(28)

(29)

(30)

where is the probability with which at least one node

begins a transmission, and are respectively

the duration of a data packet transmission and an ACK trans-

mission in terms of time units, is the probability that an

ACK packet is transmitted by at least one node in during a

time unit, is the probability that given a transmission was

going on, a collision is observed on the channel in a given time

unit, is the probability that only node starts to transmit a

packet in a given time unit, and is the probability of col-

lision due to hidden terminal transmissions. They are obtained

by [34, Eqs. (25), (27), (28), (30), and (31)]. Moreover, is

the probability that node is in the first CCA state and is given

in , the stationary probability vector for node ; and

are the probability that the node senses the first and the second

CCA busy, respectively. Note that since heterogeneous network

traffic is considered, may be different for different nodes.

Finally, is the packet error rate dependent on channel

noise, which depends on the transmission distance, transmission

power, random multipath, and shadowing effects. In our model,

we define the expected packet reception rate for a pair of nodes

according to the log-normal fading model in [39].

Also note that is averaged among all destinations as the

approximation of for each node . As suggested in (30), the

value of depends on the channel conditions and the colli-

sion probability. Considering a channel-aware routing protocol

is employed, does not vary significantly for different node

pairs, and such approximation is acceptable. Accordingly, for

4With a slight abuse of notation, in the following, is used to indicate
node resides in area .
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a given node , the failure probability for each transmission at-

tempt, , is the same for all packets in the queue.

The three probability values, , , and , are then used to

construct the Markov chain as follows. First, the states

in are given an index in an arbitrary order. Then, the fol-

lowing matrices and vectors are determined.

� The th element in is equal to the transition prob-

ability from state to .

� The element in corresponding to the first state in

(as shown in Fig. 4) is 1. Other elements are 0’s.

� The element in corresponding to the last state in

is 1, and the element in corresponding to the last state

for ACK timeout is 1. Other elements are 0’s.

� The elements in corresponding to the transmission

states are and other elements are .

Each of these values depends on each other as well as ,

which is the probability that the node is in the first CCA state.

Note that , , and cannot be determined without the

knowledge of , which can only be obtained after constructing

the Markov chain as explained in Section IV. Consequently, an

iterative procedure is used to find these parameters. First, initial

guesses of , , and , which are set to all 0’s in our evalu-

ation, are used to construct the Markov chains for each node.

Based on the Markov chains, is calculated. Then, values for

, , and are updated accordingly to the knowledge of .

The calculation of , , , and is conducted iteratively,

until the difference of the value for any variable between two

iterations is negligible.

After is constructed, the entire DTMC is ob-

tained according to Section IV. The single-hop delay distribu-

tion is then derived by Theorem 1. Finally, the end-to-end delay

distribution is found according to (23). The results are described

in Section VIII-A.

VII. CASE STUDY: ANYCAST PROTOCOL

In this section, the approach for computing single-hop and

end-to-end delay distributions is illustrated for an anycast pro-

tocol. The anycast technique has been widely adopted in WSNs

recently [17], [22], [33]. Since there is no dominantly used any-

cast protocol, in this paper, wemodel the representative protocol

described in what follows. This case study is used to show how

the single-hop and the end-to-end delay analysis in Sections IV

and V can be applied to protocols with duty-cycle operations

for a randomly deployed network. Other anycast protocols, and

more generally, other duty-cycle-based protocols, can be mod-

eled using similar approaches.

For the random deployment of nodes, the topology model

in Section V-B is considered, and node-specific variables are

indexed by the ring radius . In the following analysis, when

there is no ambiguity, the subscript in ring-specific variables

is omitted.

In the anycast protocol, sensor nodes report their readings to

the sink, located at the center of the circular plane, through mul-

tihop routes in the network. The nodes (excluding the sink) turn

off their radio periodically to save energy. We assume that the

waking period in a sleep-wake cycle for each node is ,

and the sleeping period is . When a node has a packet

to send, it starts to repeatedly transmit RTS beacon packets

based on a CSMA/CA manner, i.e., through carrier sense and

random backoff mechanisms. When a node in the transmis-

sion range is awake and hears the packet, it checks for the fol-

lowing criteria: 1) node is closer to the sink than ; and 2) the

signal-to-noise ratio (SNR) of the received RTS packet, , is

greater than some predefined threshold . If both criteria are

met, node sends a CTS packet. Node then chooses the first

node that sent a CTS packet as the next-hop node and trans-

mits the data packet to it. Successful data packet transmissions

are acknowledged by the receiver, otherwise the sender retrans-

mits the data packet until successful or the maximum number of

transmission attempts is reached.

To reduce the waiting time for the packets spent in the queue

and balance the energy consumption in the network, in the pro-

tocol, each node responds to beacon packets only when it does

not have packets to send. Considering the sink is awake all the

time, if a node closer than a distance threshold to the sink

transmits beacons, it is assumed that no node except the sink

will respond. Here, is chosen such that a high SNR is al-

most always guaranteed.Moreover, nodes go to sleep when they

finish transmitting all packets in the queue. As a result, com-

pared to nontransmitting nodes, the active period is shorter. In

cases where transmission energy consumption is significantly

higher than listening, this helps balancing energy consumption

among nodes.

We first show the DTMC for the protocol. Then,

the protocol-specific parameters for the generic analysis in

Section IV, including the relay traffic rate at each state, and the

transition probabilities for are derived. The single-hop

delay distribution for each pair of nodes is obtained after these

parameters are known. Finally, the end-to-end delay distribu-

tion from each node to the sink is provided.

A. Markov Process Overview

The anycast protocol is modeled according to a DTMC

discussed in Section IV. The structures of the idle layer

and one of the communication layers for this protocol are

shown in Fig. 5(a) and (b), respectively. The process enters

periodically when there is no packet to send. consists of a

group of sleeping states and listening states. During the listening

states, the node listens to the channel. Thus, both locally gener-

ated packets and relay packets can arrive. During the sleeping

states, however, the node turns off its transceiver, and therefore

only local packets can arrive. The number of states in is

, where is the unit time.

A large can reduce the number of states in the DTMC, thus

reducing computation cost for the model, but at the cost of re-

ducing the granularity and accuracy of the result.5When a local

or relay packet arrives, the node terminates the idle process and

begins the first layer of communication process.

In each communication layer, which consists of a

block, the node keeps transmitting beacon packets. The number

of states in is , where is the beacon

timeout. If a node receives RTS responses from other nodes, it

starts transmitting the data packet to the first responding node.

Retransmissions are conducted in case of a transmission failure.

5Recall in Section IV that it is assumed only one packet may arrive in a time
unit. This is accurate only when is chosen small.
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Fig. 5. Markov chain structure of (a) the communication process and
(b) the idle process for the anycast protocol.

Since only neighbor nodes that receive the beacon packets with

a high SNR will respond, a high-quality wireless channel is

guaranteed. Moreover, in most WSN applications, the traffic

rate is low, and the chance of packet collision with other nodes

is small. Therefore, data packets are transmitted successfully

in limited number of (re)transmission attempts, which takes

negligible time compared to the sleeping cycle (usually

longer than 10 s). Thus, only contains transmission

states. When the first RTS packet is received, the transmission

terminates in a success. When the beacon transmission times

out, the packet is dropped, and the transmission terminates in

a failure. In either way, the node enters the lower layer. Note

that the beacon timeout is usually chosen equal to or longer

than the cycle . This is to ensure that each neighbor node can

receive the beacon messages within their duty-cycle period.

The entire beacon transmission process before packet delivery

or timeout is regarded as a single transmission attempt. Thus,

each communication layer contains only one block of

.

B. Constructing the DTMC

Unlike the TinyOS CSMA protocol with which there is only

a single state in , to capture the duty-cycle operation in

the anycast protocol, a series of states are needed. The transi-

tion probabilities in and are 1’s when not noted. The

transition probabilities and the traffic rate , are ex-

plained in the following.

In the th time unit in , a node in ring has a proba-

bility of of not receiving any CTS response, and enters the

next state. If in all states, node receives no CTS response,

the transmission fails and the packet is dropped. On the other

hand, if in any of the states, a CTS response is received, the node

transmits the packet and the transmission succeeds. The proba-

bility is the conditional probability that given the trans-

missions in the previous states failed, the transmissions in

the th state still fails. For simplicity, the hidden terminals are ig-

nored. Hidden terminal effects in high-density networks can be

easily captured by the model as shown in Section VI. Therefore

(31)

where is the probability that during all first states in

beacon transmission fails since no CTS packet is received

in these states. Therefore

(32)

where node is any location in the feasible re-

gion of ; is the node density; is the probability that

the waking period of a node , which is located away from

the sink, overlaps with the first beacon transmission time units

of , and is given by (28) in [35]. Moreover, is the prob-

ability that a packet, which is transmitted by node and re-

ceived by a node located at , has an SNR higher than some

predefined threshold . It is obtained by [39, Eq. (10)]. Then,

in (32) can be determined, and in (31) is ob-

tained using (32).

Next, the traffic rate at each state, and , is discussed.

The arriving traffic at contains locally generated and relay

traffic. In sleeping states, the traffic arrival rate is . In lis-

tening states, the traffic rate is . Finally, in the beacon

transmission states, since nodes are assumed not to respond

to any relay packets, the traffic rate is . The value of

is obtained according to (24). The protocol-specific probabili-

ties are derived in the following.

The probability that a node located at forwards a packet

to a node located at , among all possible forward targets,

, is proportional to the probability that is available

when transmits a beacon and is normalized on the total avail-

abilities for all possible nodes. The availability is defined as

(33)

where is the probability that node is

awake, and is the equilibrium probability that is in the

th waking state in . Then, in (24) is given by

(34)

where is any location in .

Accordingly, and (containing only one block of

) are characterized by the following.

� The th element in and is the transition prob-

ability from state to shown in Fig. 5.

� The element in and is 1 for states pointed by a

“begin” arrow. Other elements are 0’s.

� The element in , , and is set according to the prob-

ability attached to the arrows pointing to “success” and

“fail,” respectively.

� The elements in corresponding to the sleeping states are

set to . Other elements in and are set to .

Consequently, the single-hop delay distribution and

end-to-end delay distribution for each ring are respectively

obtained according to (17) and (25).

In Section VIII, we use empirical evaluations to validate the

analytical model for both protocols.
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VIII. ANALYTICAL RESULTS AND EMPIRICAL VALIDATIONS

The end-to-end delay distribution model has been evaluated

using MATLAB to determine the single-hop and multihop

delay distributions for the TinyOS CSMA/CA MAC pro-

tocol (Section VI) and the anycast protocol (Section VII).

The computing environment is a PC with a Xeon 5150 CPU

working at 2.66 GHz and 2 GB RAM. Moreover, empirical

experiments and TOSSIM-based simulations [20] have been

conducted on our WSN test bed to validate the results. The

simulations are conducted in the same PC environment. For

the empirical validations, Crossbow TelosB motes with a data

rate of 250 kb/s are used. The packet size is B. Each

node generates local traffic to be sent to sink according to a

Poisson distribution with rate . Our experiments with the

TelosB motes suggest that it requires on the average 1.7 ms to

transfer each packet from the MCU to the RF transceiver, and

2.0 ms vice versa. The transmission power is set to 15 dBm

for all the experiments unless otherwise stated.

In the experiments, the single-hop delay and end-to-end

delay are measured as follows. When the source node gen-

erates a packet, it simultaneously sends an electric pulse to

the destination node through a pair of wires. The destination

node starts a timer when it receives the pulse and waits for the

packet. When the packet is received by the destination node,

the duration after the reception of the pulse is recorded as the

packet delay. This eliminates the need for synchronization

among all the nodes. Next, we present the evaluation results

for TinyOS CSMA/CA protocol and the Anycast protocol in

Sections VIII-A and VIII-B, respectively.

A. Experiments for TinyOS CSMA/CA MAC Protocol

1) Single-Hop Delay Distribution: First, the single-hop

delay distribution of the TinyOS CSMA/CA protocol is evalu-

ated according to the derivations in Section VI. The time unit is

set to s. The maximum initial backoff and conges-

tion backoff durations are set to 9.77 and 2.44 ms, respectively.

For the evaluations, a single-hop network is considered where

the delay distribution is found for a node under the contention

from neighbor nodes. Three different network configurations

are considered for the evaluations.

In the first configuration, a node continuously transmits lo-

cally generated packets to a receiver node with a data rate of

two packets per second. This corresponds to

in the analytical model. Four other nodes are used to transmit

packets at the same rate to create background traffic for con-

tention. In the second case, the packet rate for all five nodes is

increased to 10 packets per second. For the third case, two addi-

tional nodes with the same packet generation rate are used, but

are placed so that they act as hidden terminals for the transmit-

ting node. The single-hop delay for 5000 packets is recorded for

each experiment.

The results of both analytical and empirical validations are

shown in Fig. 6 for the cdf of the delay. The results show that a

higher traffic rate increases hop delay, which is also captured by

our model. In addition, the two hidden nodes introduced in the

third case cause heavy contention and further increase the hop

Fig. 6. CDF of the single-hop delay of the CSMA/CA protocol. Both empir-
ical (emp) and analytical (ana) results are shown.

delay. It can be observed that the analytical model accurately

captures the effects of hidden nodes. For all cases, the analyt-

ical model has less than 2% of error compared to the empirical

evaluations.

In our computing environment with a Xeon 5150 CPU

working at 2.66 GHz and 2 GB RAM, the calculations run for

less than 10 s for a typical hop with six neighbors, with

and for all nodes, while empirical experiments take

more than 5 min to obtain enough data samples for meaningful

delay distribution estimation.

2) End-to-End Delay Distribution: To validate the model for

multihop networks and illustrate the effects of network param-

eters in WSNs, two sets of experiments have been performed.

First, a network consisting of 25 TelosB nodes are used. The

nodes are placed in a 5 5 grid, as illustrated in Fig. 7(a). Nodes

shown as light-colored boxes only relay packets, while the eight

dark-colored nodes also generate packets according to a Poisson

process. The transmit power for every node is 25 dBm. The

generated traffic rate for the eight nodes , the queue length ,

and the maximum number of transmission attempts are varied

to reveal the relationships between each of the parameters and

the end-to-end delay distribution. End-to-end delay is measured

for approximately 3000 packets for each configuration.

The results are shown in Fig. 7(d). As can be observed, the cdf

of the analytical model matches well with the empirical results

with an error less than 5%. The slight difference in these results

is partially due to the inaccurate collision models since the col-

lision range in practice is not an arbitrary area for each node and

a transitional area exists around the boundary [39]. The results

suggest that heavier traffic leads to a longer end-to-end delay

and a lower reliability as can be observed from the asymptotic

value of the cdf. In addition, by reducing the queue length,

and the maximum number of transmission attempts , the reli-

ability decreases. However, when a low delivery rate (e.g., less

than 50%) is sufficient, a lower or does not largely affect

the delay performance. More specifically, the average waiting

time can be reduced by decreasing the queue capacity, and the

chance of collisions is decreased since less retransmissions are
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Fig. 7. Topology and the end-to-end delay distribution for the multihop grid experiments (a) and (d) and the test-bed experiments (b) and (e). The end-to-end
delay distribution of the Anycast protocol is also shown in (c) and (f). (a) Grid experiment topology. (b) Test-bed topology. (c) Distance to the sink m.
(d) Grid experiment delay distribution. (e) Test-bed delay distribution. (f) Distance to the sink m.

allowed. This fact is useful when designing applications with

nodes having limited memory space.

Experiments are also performed in a realistic indoor environ-

ment. Amultihop network of 16 TelosB nodes is located in three

rooms as shown in Fig. 7(b). Two different network configu-

rations are used to illustrated the effects of topology changes.

In both configurations, each node generates Poisson traffic of

two packets per second, and the packets are forwarded to the

sink as shown in Fig. 7(b). A geographical routing protocol

is used to determine the forwarding routes based on the dis-

tance between each node and the sink. In the first configura-

tion, every node transmits packets with a power of 15 dBm,

and the routes are shown in dashed lines. In the second con-

figuration, two nodes are selected to transmit packets with an

increased power of 7 dBm. Therefore, they can directly reach

the sink. The routes for the second case are shown in Fig. 7(b)

as solid lines. The cdfs of the results are shown in Fig. 7(e).

Accordingly, increasing transmit power in only two nodes sig-

nificantly impacts the end-to-end delay as also captured by the

analytical evaluations.

B. Experiments for Anycast Protocol

We first show that the analytical results of the end-to-end

delay distribution are validated by the simulation and the

test-bed experiments. The anycast protocol described in

Section VII is implemented in TinyOS 2.0. Our test bed con-

sists of 25 Crossbow TelosB motes. The nodes are randomly

placed in a circular area of radius m. Thus, the density

is roughly . The data packet size is B,

whereas the beacon message and the CTS response message

have the same size of B. Each node generates the

same amount of local traffic to be sent to the sink according

to a Bernoulli process with average rate in each

time unit s, which equals 0.1 packet per second.

The operating cycle of each node is s, during which

the wake period is s, thus the duty cycle is .

Moreover, the beacon transmission timeout is s. The

transmission power is set to 15 dBm for all the nodes. The

threshold radius is set to 2.7 m, within which all nodes only

transmit packets to the sink. The signal-to-noise ratio (SNR)

threshold is set to dB. The simulation is performed

on the same topology. Both the simulation and the test-bed

experiment have been run for 2.5 h, and the end-to-end delay

distribution for a node at distance m is recorded.

The results are compared with analytical prediction from the

model, as shown in Fig. 7(c). It can be observed that the an-

alytical results agree well with both the simulation result and

the test-bed experiment result, and the error is less than 10%.

Therefore, the simulation is used in the following to validate

our model in a larger space and time scales, and for more ran-

domly generated topologies.

In the second set of evaluations, the network radius is set

to 50 m, the transmission power is increased to 10 dBm.

Accordingly, the threshold distance is changed to m.

Moreover, the network density is . Durations , ,

and are 10, 5, and 10 s, respectively, and the traffic rate is

0.01 packets/s. Other parameters are left unchanged. Twenty

different topologies are randomly generated according to a
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Fig. 8. Relationship between network parameters and the delivery probability within 3, 6, and 200 s with the Anycast protocol. (a) Density varies. (b) Duty cycle
varies. (c) Traffic rate varies.

Poisson distribution with the same density. Each topology is

simulated for 1 h. The end-to-end delay distributions from all

nodes with a distance of 50 m to the sink are measured. The

result is shown in Fig. 7(f), along with the analytical results. It

can be observed that the analytical result is also within 10% of

the simulation result.

Next, using the end-to-end delay distribution modeled in

(17), we investigate the relationships between the probability

of achieving a given end-to-end delay and various network

parameters. In each of the following evaluations, the network

density , the duty cycle for all nodes, and the traffic rate

for all nodes are varied, respectively. The default values for

these parameters are 0.02, 0.2, and 0.005 packets/s. Other

parameters are kept unchanged from the previous experiment.

The network radius is m.

The probability that the end-to-end delay of a node at dis-

tance m is smaller than 3, 6, and 200 s is shown in

Fig. 8. The results in Fig. 8(a) reveal that when the network

density increases, the probability of delivering packets from the

edge to the sink also increases. This is because a network with

a higher density tends to have more available relaying nodes

at any time. Similarly, as shown in Fig. 8(b), when the duty

cycle increases, nodes have more waking time to relay packets,

thus the probability of delivering packets is increased. Finally,

Fig. 8(c) suggests that increasing the traffic rate increases the

queueing delay and decreases the probability that nodes are

ready to relay packets. Therefore, the probability of delivering

packets is smaller as traffic rate increases. It is important to note

that given enough time, e.g., 200 s, the delivery probability does

not change much when the duty cycle or the traffic rate varies as

shown in Fig. 8(b) and (c). However, in Fig. 8(a), the delivery

probability after 200 s changes greatly when the network den-

sity changes. This is because lower duty cycle and higher traffic

rate prolong the packet waiting time. Given enough time, there

are still enough nodes to relay the packets. On the other hand,

a low network density reduces the number of relaying nodes.

Therefore, eventually more packets are lost due to timeout in a

low density network.

For any network setup in the experiments above, the calcula-

tion for the end-to-end delay distribution during any given dura-

tion takes less than 2min. On the other hand, the TOSSIM-based

simulations determine the delay distribution in the same order

of actual time. For example, for a simulated duration of 2 h, the

simulation takes roughly 30 min. Thus, our analytical approach

provides insights significantly faster with the same accuracy.

IX. CONCLUSION

Providing QoS guarantees in wireless sensor net-

works (WSNs) necessitates a probabilistic approach, where

the queuing delay and the effects of wireless channel errors

are captured. In this paper, an end-to-end analysis of the

communication delay is provided. A Markov process based

on birth–death problem is used to model the communica-

tion process in a multihop network. The developed model is

validated by extensive test-bed experiments through several

network configurations and parameters. The results show that

the developed framework accurately models the distribution

of the end-to-end delay and captures the heterogeneous effects

of multihop WSNs. The developed framework can be used to

guide the development of QoS-based scheduling and commu-

nication solutions for WSNs. Based on the framework, models

are also developed for event detection delay distributions in

WSNs [36].
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