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Cross-Layer Analysis of the End-to-End Delay
Distribution in Wireless Sensor Networks

Yunbo Wang, Member, [EEE, Mehmet C. Vuran, Member, IEEE, and Steve Goddard, Member, IEEE

Abstract—Emerging applications of wireless sensor net-
works (WSNs) require real-time quality-of-service (QoS) guaran-
tees to be provided by the network. Due to the nondeterministic
impacts of the wireless channel and queuing mechanisms, prob-
abilistic analysis of QoS is essential. One important metric of
QoS in WSNs is the probability distribution of the end-to-end
delay. Compared to other widely used delay performance metrics
such as the mean delay, delay variance, and worst-case delay,
the delay distribution can be used to obtain the probability to
meet a specific deadline for QoS-based communication in WSNs.
To investigate the end-to-end delay distribution, in this paper, a
comprehensive cross-layer analysis framework, which employs a
stochastic queueing model in realistic channel environments, is
developed. This framework is generic and can be parameterized
for a wide variety of MAC protocols and routing protocols. Case
studies with the CSMA/CA MAC protocol and an anycast protocol
are conducted to illustrate how the developed framework can ana-
lytically predict the distribution of the end-to-end delay. Extensive
test-bed experiments and simulations are performed to validate
the accuracy of the framework for both deterministic and random
deployments. Moreover, the effects of various network parameters
on the distribution of end-to-end delay are investigated through
the developed framework. To the best of our knowledge, this is
the first work that provides a generic, probabilistic cross-layer
analysis of end-to-end delay in WSNs.

Index Terms— Delay distribution, quality of service (QoS), real-
time systems, wireless sensor networks.

I. INTRODUCTION

IRELESS sensor networks (WSNs) have been utilized
W in many applications as both a connectivity infrastruc-
ture and a distributed data generation network due to their
ubiquitous and flexible nature [6]. Increasingly, a large number
of WSN applications require real-time quality-of-service (QoS)
guarantees [5]. Such QoS requirements usually depend on
two common parameters: timing and reliability. The resource
constraints of WSNs, however, limit the extent to which these
requirements can be guaranteed. Furthermore, the random
effects of the wireless channel prohibits the development of
deterministic QoS guarantees in these multihop networks. Con-
sequently, a probabilistic analysis of QoS metrics is essential to
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address both timing and reliability requirements. In this paper,
we focus on the probability distribution of the end-to-end delay
in WSNs. Characterization of the end-to-end delay distribution
is fundamental for real-time communication applications with
probabilistic QoS guarantees. Indeed, the cumulative distribu-
tion function (cdf) of the delay for a given deadline can be used
as a probabilistic metric for reliability and timeliness.

Characterizing delay in distributed systems has been inves-
tigated in different contexts. Recent work has analyzed the la-
tency performance of WSNs in terms of its first-order statistics,
i.e., the mean and the variance [3], [8], [15]. However, com-
plex and cross-layer interactions in multihop WSNs require a
complete stochastic characterization of the delay. Several ef-
forts have been made to provide probabilistic bounds on delay.
As an example, the concept of network calculus [10] has been
extended to derive probabilistic bounds for delay through worst-
case analysis [9], [12]. However, because of the randomness in
wireless communication and the low-power nature of the com-
munication links in WSNs, worst-case analysis cannot capture
the stochastic behavior of end-to-end delay. Moreover, work on
real-time queueing theory [19], [38] provides stochastic models
for unreliable networks. However, these models consider heavy
traffic rate, which is not applicable for WSNs. Recently, proba-
bilistic analysis of delay has been performed for broadcast net-
works [7], [25], [28], [29], [31] considering several medium
access control (MAC) protocols. While the channel contention
has been adequately modeled in these studies, additional delay
due to multihop communication, queuing delay, and wireless
channel errors have not been captured. Capturing these cross-
layer effects is imperative to completely characterize the delay
distribution in WSNs.

Our goal is to provide a comprehensive analytical model for
distribution of end-to-end delay in WSNs. Accordingly, the con-
tributions of this paper are as follows. First, a comprehensive
and accurate cross-layer analysis framework is developed to
characterize the end-to-end delay distribution in WSNs for both
deterministic and random deployments of nodes. Second, the ef-
fects of heterogeneity in WSNs on latency is captured in terms of
channel quality, transmit power, queue length, and communica-
tion protocols. Third, the developed framework highlights the
relationships between network parameters and the delay dis-
tribution in multihop WSNs. Using this framework, real-time
scheduling, deployment, admission control, and communication
solutions can be developed to provide probabilistic QoS guar-
antees. To the best of our knowledge, this is the first paper that
provides a probabilistic cross-layer analysis of end-to-end delay
in WSNs.!

A preliminary version of this work appeared in [34].

1063-6692/$26.00 © 2011 IEEE
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The remainder of this paper is organized as follows. Related
work in this area is summarized in Section II. In Section III,
the end-to-end delay distribution problem is formally defined
and an overview of the proposed Markovian model is provided.
The detailed derivation of the single-hop delay distribution
is described in Section IV, followed by the derivation of the
end-to-end delay distribution in Section V. Then, case studies
for the CSMA/CA MAC protocol and the anycast protocol are
provided in Sections VI and VII, respectively. Experimental
results are provided in Section VIII to validate the developed
model. Finally, Section IX concludes the paper.

II. RELATED WORK

The problem of probabilistic QoS guarantees has attracted a
large amount of research in recent years. The concept of net-
work calculus [10] has been extended to support probabilistic
delay bounds in [9], [12], [18], [30]. Network calculus and its
probabilistic extensions are based on a min-plus algebra to pro-
vide traffic curves and service curves, which are deterministic
(or statistical) bounds of traffic rate and service time, respec-
tively. In these studies, the worst-case performance bounds are
analyzed. However, determining worst-case bounds has limited
applicability in WSNs for three reasons: First, because of the
randomness in wireless communication and the low power na-
ture of the communication links, worst-case bounds do not exist
in most practical scenarios. Second, the large variance in the
end-to-end delay in WSNs results in loose bounds that cannot
accurately characterize the delay distribution. Finally, most ap-
plications tolerate packet loss for a lower delay of higher priority
packets since the efficiency of the system is improved. These
motivate the need for probabilistic delay analysis rather than
worst-case bounds.

Moreover, work on real-time queueing theory [19], [38]
combines real-time theory and queueing theory to provide sto-
chastic models for unreliable networks. However, these models
consider heavy traffic rate (usually saturation mode), which is
not applicable for WSNs. Our approach in this paper is similar
to real-time queueing theory [19] in that we use a stochastic
queuing model for the analysis. In contrast, we do not focus
on the scheduling problem in real-time systems, which has
been discussed intensively in the literature [19], [21], [38].
Rather, we aim to provide an analytical tool to help develop
communication solutions and real-time systems.

Recently, the delay distribution of MAC protocols has been
analyzed in several studies for wireless networks and WSNss,
in particular. The access delay of several MAC protocols has
been investigated including IEEE 802.11b DCF protocol [2] in
[71,[29], and [31], IEEE 802.15.4 protocol in [27] and [28], and
TDMA protocols in [25]. However, in these studies, a broadcast
network is considered, where each node can hear the transmis-
sion of each other. Moreover, in [7], [29], and [31], saturated
traffic is considered. Consequently, the multihop communica-
tion effects due to hidden node problems and the low traffic rate
of WSNs cannot be captured.

The distribution of link-layer retransmissions are modeled
in [16]. While the distribution of the number of retransmis-
sions is obtained, the transmission time is regarded as the same
for each attempt. Hence, the resulting delay distribution model
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does not consider the uncertainty due to random backoffs of
CSMA/CA protocols. In [37], the end-to-end delay distribution
in a linear network is derived for homogeneous networks. How-
ever, this model assumes infinite queue length at each node,
which may not be practical considering the resource constraints
of sensor nodes. A probabilistic end-to-end delay and network
lifetime analysis is given for WSNs performing data aggrega-
tion in [13], but with the assumption that packet transmission
time is exponentially distributed. This assumption is inaccurate
for most of the MAC protocols commonly in use. Finally, in
[11],[14], and [26], empirical measurements are used to provide
probabilistic estimations for end-to-end delay. These solutions
exploit on-the-fly measurements, but do not provide analytical
results. It can be observed that completely and accurately char-
acterizing end-to-end delay in WSNss is still an open problem.

A preliminary version of this work appeared in [34], which
constitutes the first step in providing a comprehensive analyt-
ical model for distribution of the end-to-end delay in WSNs.
In this paper, we extend our previous work in the following
aspects. The analytical framework proposed in [34] character-
izes the end-to-end delay distribution for a variety of MAC pro-
tocols including the TinyOS CSMA/CA MAC protocol. The
model is extended to capture a wide variety of MAC proto-
cols with duty-cycle operation and a case study with an anycast
protocol is included. Moreover, considering the various deploy-
ment methodologies in WSN applications, both deterministic
and random network topologies are analyzed. Comprehensive
test-bed experiments and simulations are provided to validate
the extended model. In the following, we present the extended
analysis framework in more detail.

III. PROBLEM DEFINITION AND SYSTEM MODEL

In our analysis, we consider a network composed of sensor
nodes that are distributed in a 2-D field. Sensor nodes report
their readings to a sink through a multihop route in the network.
Two different types of network deployments are investigated.

* Deterministic deployment: Sensor nodes are located at
deterministic locations. Each node is labeled by an index ¢
and is characterized by its input traffic rate \;, queue
length M;, and the maximum number of retransmission
attempts ;.

* Random deployment: The locations for individual sensor
nodes are located randomly according to a Poisson point
process. In this case, nodes are identified according to their
locations rather than deterministic indices. The input traffic
rate, queue length, and the maximum number of retrans-
mission attempts for a node located at = (z,y) is de-
noted as Ay, M,, and X, respectively.

Although any channel model can be used in our framework,
in this paper, a log-normal fading channel model is considered
for its accuracy [39]. Accordingly, for a given network with a
certain MAC protocol and node parameters described above, we
are interested in the following two problems.

1) What is the probability distribution function (pdf) of
single-hop delay, fon jy(t), between two nodes 7 and j
for deterministic deployment, and fy(z, =,)(%), between
two nodes located at #1 and & for random deployment,
for a new arriving packet?
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2) Given the single-hop delay pdf, what is the end-to-end
delay pdf, f.(; «)(f) between a node 4 and a sink s for de-
terministic deployment, and fo(z »,)(t) between a node lo-
cated atz and a sink located at -, for random deployment?

We consider a heterogeneous network for this analysis, where
the heterogeneity is defined in terms of channel conditions, the
packet error rate PER, traffic rate A, queue length M, max-
imum number of retransmission attempts 7y, and transmission
power P, with appropriate subscripts indicating the different
values for different nodes. In the following, we provide an
overview of our solutions for the two problems above, and the
detailed descriptions are deferred to Sections IV and V.

A. Single-Hop Delay Distribution

Each node is modeled according to a queuing model, which is
characterized by its interarrival distribution and service process.
More specifically, we model the traffic interarrival according to
a geometric distribution as will be explained next. Furthermore,
a discrete-time Markov process (DTMP) is used to model the
service behavior. Therefore, the service time is phase-type (PH)
distributed [24]. Considering a single processor at each node and
a queue capacity of M, the resulting model is a discrete-time
Geom/PH/1/M queueing model.

1) Interarrival Time: The geometric interarrival time is mo-
tivated by the following. In a typical multihop WSN, the input
traffic at each node consists of two parts: locally generated
packets and relay packets. Locally generated packets consist
of the local information sampled by the sensors, whereas relay
packets are received from the neighbors of the node. We are
interested in finding the interarrival time of these packets at
each node for our analysis.

The interarrival time of the locally generated packets depends
on the application requirements, with which the sensor data are
generated. For monitoring applications, where nodes repeatedly
poll their sensors, the generated data is periodic. Accordingly,
the locally generated traffic can be modeled using a constant
bit rate (CBR) model. For event-based applications, nodes send
data only if a certain physical event of interest occurs, e.g., the
temperature exceeds a given threshold. In this case, the gener-
ated data are often sporadic. Considering such physical events
do not occur very frequently, the probability that the event oc-
curs at any time is governed by a Poisson process, and the in-
terarrival time is exponentially distributed. Since we employ
a discrete-time model, the Poisson process is equivalent to a
Bernoulli process, and the exponential distribution of interar-
rival time is equivalent to a geometric distribution [23]. Note
that in some applications, the traffic generated for the physical
event can be bursty. For tractability, the bursty traffic pattern is
not considered in this paper and is left for future work.

While the locally generated traffic mainly depends on the
physical phenomena of interest and the application type, the
relay traffic depends on the network parameters. Although char-
acterization of the relay traffic is out of the scope of this paper,
we approximate this distribution based on empirical measure-
ments. Test-bed experiments have been performed to estimate
the distribution of the interarrival time of packets in a 10-hop
chain network for both types of applications, i.e., monitoring

0.8
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Fig. 1. Distribution of interarrival time for different types of traffic for a 10-hop
chain. Low traffic: 0.4 packets/s. High traffic: 4 packets/s. (a) Low traffic, CBR.
(b) High traffic, CBR. (c) Low traffic, Poisson. (d) High traffic, Poisson.

and event-based for low and high traffic rates. In each exper-
iment, each node uses the TinyOS CSMA/CA MAC protocol
and generates packets according to either a CBR model (moni-
toring) or a Poisson process (event-based). Each node transmits
its generated packets and the received packets from its neigh-
bors to the next node toward the end of the chain. The distribu-
tion of the interarrival time of the packets is recorded at the end
of the chain. The empirical cdf of the interarrival time is shown
in Fig. 1 along with an exponential distribution model for four
cases.? The results reveal that except for the low periodic traffic
case shown in Fig. 1(a), exponential distribution closely models
the interarrival rate. Accordingly, in our discrete-time model,
we consider that the interarrival time follows a geometric dis-
tribution, and define the traffic rate A at a node to be the proba-
bility that a new locally generated packet or relay packet arrives
during a time unit 7.

2) Service Time: The service time of each node is PH dis-
tributed since the system is modeled according to a DTMP with
time unit 7. Since a Bernoulli arriving process is assumed for
packets and the DTMP is used to describe the behavior of packet
communication service, the system is essentially governed by
a quasi-birth—death (QBD) process [24] and is modeled by a
Geom/PH/1/M queue.

The communication system at each node is modeled as a
discrete-time recurrent Markov chain, {X,,}. As shown in
Fig. 2(a), this DTMC has a layered structure. Each layer ¢ con-
tains the part of the chain where there are ¢ packets in the queue.
The communication behaviors of each node are represented
by transitions among states in {X,,}. Then, a second DTMC,
{Y,.}, which is the absorbing variant of { X, }, is used to obtain
the single-hop delay distribution. The detailed explanation of
these DTMCs is provided in Section IV.

B. End-to-End Delay Distribution

With each hop modeled as a Geom/PH/1/M queue, the entire
network is considered as a queueing network. Nodes are interre-

2The exponential distributions shown in Fig. 1 are chosen such that their
means are equal to the measured mean interarrival times.
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Fig. 2. Structures of Markov chains are shown in (a) for {X,,} and (b) for
{Y, }. The common structure of blocks {Z,,} and {1,,} are shown in (c) and
(d), respectively.

lated according to the traffic constraints. More specifically, the
successfully transmitted traffic rate from one node should be
equal to the sum of the incoming relay traffic rate at each of the
next-hop neighbors of the node.

The topology of the queueing network depends on the routing
protocol used. In this paper, we focus on the class of routing pro-
tocols with which each node maintains a probabilistic routing
table for its neighbors, e.g., geographic routing protocols [4].
Nodes relay their packets to each of their neighbors according
to a probability in their routing tables. By first calculating the
relaying traffic and the single hop delay distribution for each
pair of nodes, the end-to-end delay is obtained using an itera-
tive procedure as will be explained in Section V.

IV. SINGLE-HOP DELAY DISTRIBUTION

The communication system at each node i is modeled by a
DTMC {X,,}" and its absorbing variant {Y,, }*. For clarity, the
index ¢ is omitted in single-node contexts when there is no am-
biguity. First, { X,,} is constructed to capture the equilibrium
behavior of the communication. Then, {Y,,} is used to analyze
the transient communication behavior after a specific packet ar-
rives. The single-hop delay of the packet communication is then
represented as the absorption time of {Y,, }. In the following, the
construction of { X, } and {Y,,} are described in detail, and the
single-hop delay distribution is derived according to Theorem 1
at the end of this section.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

A. Constructing Markov Chain { X, }

The DTMC {X,.}, as shown in Fig. 2(a), is composed of
M + 1 layers, where each layer m (0 < m < M) repre-
sents the state where there are m packets in the queue and M is
the queue capacity. These layers are of two different types, the
idle layer {I,,} and the communication layers {C,,}, , each of
which consists of one or more states. The states and the transi-
tions among the states in each layer are determined by the proto-
cols used by each node and represent the operations conducted
by the nodes according to the protocols. Case studies are pre-
sented in Sections VI and VII for the TinyOS CSMA/CA pro-
tocol and an anycast protocol. The idle layer, {I,} (m = 0),
represents the idle process, during which the node does not have
any packet to send and waits for new packets. The communi-
cation layers, {C,, },. (m > 0), represent the communication
process in which packets are transmitted. One or several trans-
mission attempts are conducted until either the packet is suc-
cessfully transmitted or the maximum number of transmission
attempts, 'y, is exceeded. Accordingly, a layer m in { X, } is de-
noted as {C,, }, and is composed of x blocks. The bth block in
layer m is denoted as {Z,}  ,.> As shown in Fig. 2(c), each
block models a single transmission attempt. The structure of
{Z,} depends on the MAC protocol used. Packets are dropped
if they arrive at a full queue or if all x transmission attempts
fail. Consequently, the vth state in layer m and transmission at-
tempt b is denoted as Sy, p.o .

The traffic arriving at each node contains locally generated
traffic and relay traffic. While locally generated traffic can arrive
at any time, the relay traffic can only arrive when the node is
listening. Therefore, the total traffic rate depends on the state
of the process. The locally generated traffic rate and the relay
traffic rate for a node are denoted as A' and AT, respectively.
Therefore, in the states where the node is listening, the total
traffic rate is A' + A', and it is A' otherwise.

According to the MAC protocol employed, {7,,} and {C,,}
are respectively parameterized by the following notations:

* P and P the transition probability matrix among the

states in {1,,} and {C,, };

e «aj and a: the initial probability vector for {/,,} and
{Cn};

17 and 7. the probability vector from each state in {I,,}
and {C,, } to complete the idle process and the transmission
process successfully;

« tL,: the probability vector from each state in {C,, } to com-
plete the transmission process unsuccessfully;

* A7 and Ac: the packet arrival probability vector for each
state in {I,,} and {C, }. Each element in the vector is the
probability of a new packet arrival in a time unit when the
process is in the corresponding state.

Each communication layer {C,,} consists of Markov chain
blocks for each transmission attempt {Z,,}, which is further
characterized by the transition probability matrix Pz, the ini-
tial probability vector ez, the success probability vector 13,
the failure probability vector 5, and packet arrival probability
vector Az.

3In the following, we drop the indices m and b, where appropriate, to simplify
the notation.
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Accordingly, the transition probability matrix among the
states in a single layer {C), } in { X,,} can be organized as rows
and columns of blocks

PZ t%az 0
Pc= T ey
PZ ttZOlZ
0 Py

where the number of Pz blocks in P¢ is equal to Y, i.e., the
maximum number of attempts for each packet transmission.
Similarly, the initial probability vector e and the probability
vectors £, and L, to complete a layer in success and failure are
respectively organized as

ac:[az o .- 0] (2)
te = [ty 1y ty]" 3)
th=1[0 0 ] 4)

Note that since the idle layer does not have multiple attempts
like the communication layer does, there is no similar organized
internal pattern in the corresponding matrices and vectors for
{I,.}. The states and the transitions related to {/,,} and {Z,,}
depend on the MAC protocol employed. For now, we assume
that these matrices are known and the case studies to obtain
them for two different protocols are provided in Sections VI and
VIL The transition probability matrix @ y of the entire Markov
chain { X, } can then be found according to transitions between
different states at each layer as explained next.

Forlayerrn,1 < wm < M —1, the queue is not full. Whenever
a packet arrives, the process transits to a higher layer since the
queue length increases. The probabilities of such transitions are
governed by the probability matrix

A, =(1)" @ Po (&)

where 1 is a properly dimensioned matrix containing all 1’s, and
® is the entrywise product operator. Ac and P are parameter-
ized according to the MAC protocol. Note that element (v, v')
in A, represents the transition probability from the wth state in
previous layer to the «’th state in the upper layer, and other tran-
sition probability matrices in the following are defined the sim-
ilar way. The transition probability matrix at the same level 1,
1<m<M-—-1,is

A, = ()T @ (tcac)+ (1 -1A)T 0P (6)

where to = 1 + tg is the probability vector from each layer
to complete the current communication process regardless of
success or failure. The first term in (6) captures the case where
a locally generated packet arrives at the same time unit in which
a packet service is completed. The second term in (6) is for the
case where neither service completion nor new packet arrival
occurs during the time unit.

At layer m = M, the queue is full. Hence, new arriving
packets are directly dropped. Therefore, the transition proba-
bility matrix in this layer is A, + As.

When there is no packet arrival and the current packet service
is completed, the Markov chain transits to one layer below. The

transition probability matrix from level m + 1 to level m, 1 <
m<M-—1is
Ay =(1- 1Ac)T ® (tleace). (7)

The transition probabilities are similar when the idle layer is
involved as follows:

Ao =A]ac (®)
Agp =1 -1x)T @ tea; )
Ao =1 -12)T 2 (P; +tap). (10)

When a new packet arrives while there is no packet in the
system, the chain transits from the idle layer to layer 1 ac-
cording to A, in (8). When the service is completed for the
only packet in the system and no new packet arrives, the chain
transits from layer 1 to the idle layer according to Ay in (9).
Finally, the transition probabilities with which the node stays
in the idle layer are given in A,y in (10).

Using (5)—(10), the transition probability matrix @« for
the entire recurrent Markov chain {X,,} can be constructed as
follows:

layer 0 1 2 .. M
0 ASO AuO 0
1 Ay A, A,
Qx =2 A, (11)
M 0 Ay A+ A,

where each nonzero block corresponds to the transition prob-
ability among all layers. The duration of the time unit 7" is
chosen to be small enough such that the probability of having
two or more transitions in a single time unit is negligible. There-
fore, it is only possible for { X}, } to have intralayer transitions
and interlayer transitions to adjacent layers. Also note that the
first row and column of blocks in @ y correspond to the transi-
tion probabilities from and to the idle layer. Then, the equilib-
rium state probability vector & for { X, } is calculated by solving
TQy = mand ), m; = 1. The detailed solution to this equa-
tion system is documented in [34].

B. Absorbing Time for {Y,,}

To obtain the distribution of single-hop delay for a packet,
consider a particular packet that enters the system at time £ = .
The single-hop delay of the packet is the time spent until it
is transmitted or dropped. To derive the delay distribution, we
use another DTMC, {Y,,}, as an absorbing variant of {X,}.
As shown in Fig. 2(b), in {Y},}, the idle layer of {X,,} is re-
placed by two absorbing states Sgu.c and St,;, corresponding
to the two cases where the packet is successfully transmitted
and dropped, respectively. In addition, all new packet arrivals
are ignored since they do not interfere with the service time of
the packet concerned. Thus, the state transitions occur only in-
side a layer or from layer m + 1 to m. The steps to obtain {Y,, }
from {X,, } is explained in the following.

Before the packet arrives, the system is in one of the states
according to the equilibrium state probability vector w. After the
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new packet arrives, if the queue is full, the packet is immediately
dropped. The probability of queue full is
Pqf = 7rZV[Au]- (12)
where 77 is the subvector in 7 corresponding to the M th layer.
Otherwise, the packet is inserted into the queue. The probability
vector that the node is in a specific state after the new packet
arrives is @ = wQ5F, where Q37 is the transition probability
matrix of {Y,} conditioned on the fact that the new packet ar-
rives. Q4F is derived from @+ in (11) by replacing Ar and Ac
with vectors of all 1°s in (5)—(10) and replacing A, + A, with
A, . Note that A,, in the bottom right block accounts for the tran-
sition that will cause a packet to drop because of a full queue.
Then, 7’ is the initial probability vector for {Y,,}.
Accordingly, the transition probability matrix for {¥,,} is

[ 1 0 0 ]

Q,y,=10 1 0 (13)
& ¢ Py

where the transition probabilities from and to the absorbing

states Squce and Sty are listed in the first two rows and columns.

The transition probability matrix among the transient states, i.e.,
all states except Ssuce and S, is given by

Pq 0
tcac P
PY _ CcC .C (14)
0 tcac PC

This is obtained from (11) by removing the first row and first
column of blocks and replacing A and A with vectors of all 0’s
in (5)—(10) for each remaining block. The transition probability
vectors from each of the transient states to the absorbing states
are
t=0t 00 T £ =0 00 -] @5
respectively, where ¢ and té are given in (3) and (4). Finally,
since a transition in {Y},} takes a time unit 7, the following
important results are directly obtained.
Theorem 1. The pmf of the number of time units, k&, a packet
should wait before being transmitted and dropped are
Jr(k) = ay Pyt fic(k) = ay Pyt (16)
respectively, where @y = (n}, @}, -+, @), ), i.e., #’ without the
elements corresponding to the idle layer, and Pé}‘l represents
the (k — 1)th power of Py-.
Proof: The theorem follows from [23, Ch. 9.5]. ]
The pmf of the number of time units a packet should wait,
regardless of being transmitted and dropped, is obtained by
adding f5. (k) and fL (k). Thus, the following corollary is
directly obtained.
Corollary 1: The pmf of single-hop delay, measured by the
number of time units of 7", is given by

fr(k) = ay PY 'ty (17)
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Using this model, the probability that the packet is eventually
delivered in success can also be found and is given by the fol-
lowing corollary.

Corollary 2: The delivery rate of a new arriving packet is

400
Pdeli = Z Fi(k) = ay(I - Py) 't5. (18)
k=1

Of interest, the first two moments of the successful single-hop
delay, which are widely used as the performance metrics in
WSN applications, can also be derived.

Corollary 3: The mean and variance of single-hop delay for
a new arriving packet are given by

pr =y (I — Py) 72t /paei (19)
oy 2(1— Py)73 — (I— Py)72 5
ok = ( ) Y 13, (20)

Pdeli

The derivations are straightforward and are not included.
Next, we derive the end-to-end delay distribution based on the
single-hop delay distribution analysis in this section.

V. END-TO-END DELAY DISTRIBUTION

The end-to-end delay distribution depends on the topology of
the network and the routing protocol used. Two types of node
deployments are considered in this paper: deterministic deploy-
ment and random deployment. For both deployments, we focus
on the steady-state behavior of the routing protocol. Accord-
ingly, a node forwards a particular packet to any of its neighbor
nodes with a certain probability, which does not change rapidly
over time. These protocols comprise the majority of routing
protocols in WSNs [6]. It is also assumed that in-network pro-
cessing, such as data aggregation, is not employed.

A. Deterministic Deployment

In a network with deterministic deployment, each node has a
deterministic location, and the forwarding probabilities among
nodes is determined with the knowledge of the locations. A
typical network setup for common applications is considered,
where a single sink is used and the routing protocol produces no
closed loops in the routing paths (i.e., packets are never routed
by a node more than once). In such a case, the network is viewed
as a directed acyclic graph (DAG). Without loss of generality,
this graph can be topologically sorted so that a node with a larger
index never transmits a packet to a node with smaller index. In
a network with /N nodes, the index for the sink s is V.

Suppose in each time unit of 7", each node ¢ generates a local
traffic of Al to the sink. Each packet is routed using a relay k €
N; with probability pf"”k, where N; is the set of potential relays
from 4 to the sink. Thus, >, ., % = 1, Vi. We first calculate
the average relay traffic A! in each time unit from node 4 by
solving the following equation system for every node:

i-1
M= Z (5\2 + )\;) P?gl)den,j,i Vi

=1

2

and 5\’{ = 0, where pqali,;; is the probability that a packet
is successfully delivered from node j to i, as defined in (18).
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Fig. 3. Feasible region [ 4 and the infeasible region B4 of node A.

Then, since each node cannot receive packets in transmission
and sleeping states, the relay traffic rate in the states, in which
the node is capable to receive packets, is

)\f = S\E/W’}iston (22)

where 71t 5 the probability that 7 is in any state in which
the node can receive packets and is the sum of the probabili-
ties corresponding to all such states in ;. Whether or not the
node can receive packets in a state is determined by the pro-
tocol. Accordingly, the input traffic rate vectors A; and A¢ of a
node 7 can be found according to Section IV. Then, Ay and Ac
are used in (5)—(10) to determine the single-hop delay distribu-
tion, fin(i.5)(t), between a pair of nodes i and j as discussed in
Section IV.
Finally, the end-to-end delay distribution is given as

N-1
Je(imy(t) = Z Fsniay @) * fotie, sy (DDE% + Foni,m) (P

k=it1

(23)
where () is the convolution operator. Our numerical experi-
ments show that it takes less than 2 min to obtain the end-to-end
delay distribution between two nodes in a network consisting of
16 nodes with TinyOS CSMA/CA MAC protocol. This calcu-
lation time is affordable for protocol analysis.

B. Random Deployment

For the random deployment, the nodes are located in the net-
work according to a Poisson point process with density p. Due to
this randomness, the location for each node is stochastic. There-
fore, geographic routing protocols [4] are often used due to their
scalability and adaptability to the random geographic locations
of the nodes. In such protocols, instead of the routing proba-
bility pf“] between any pair of nodes ¢ and j, the routing proba-
bility between any pair of locations x 4 and g, pi““c , can be
determined.

A common scenario is also considered for the random deploy-
ment, where the nodes in the network generate homogeneous
amount of local traffic to a sink. Moreover, each node forwards
packets to the neighboring nodes within its feasible region, F 4,
i.e., the region in which nodes are closer to the sink, but are still
in the transmission range, as shown in Fig. 3. Assume that the
sink is located at the center of a circular plane with a radius I2.
In this scenario, the end-to-end delay analysis can take advan-
tage of the symmetry of the topology as explained next.

The entire circular plane is discretized into concentric rings
indexed by their distance to the sink, . Each node senses the
physical events, and generates packets with traffic rate A’. By

symmetry, the relay traffic A} is the same for all nodes in the

same ring r. In the following analysis, we assume a polar coor-
dinate system with the sink located at the origin.

For a node A located at 4 = (r4,0.), the relay traffic ar-
rives from any node B in the infeasible region By = C4 \ F 4,
where C 4 is the communication range of A, as shown in Fig. 3,
i.e., B4 is the region in which nodes are farther to the sink but
are still in the transmission range. To derive the relay traffic rate
for A and other nodes in ring 7 4, consider the small area (74 :
ra+ Ar.6: 8 4+ Af) around node A located at (r4,6). Sim-
ilar to the deterministic deployment, the relay traffic rate A, is
given by

o __\t listen

/\"‘A - /\'r'A ,i

A = ”!BA P (A;B + )‘1) p:fcﬂl; 7$Apdeli7$57$Ade 24)
e pATAGT

where p is the network density of the Poisson node distribution,
and pivjvg 24 a0d Pdelizs x, are similarly defined as pf},‘, and
Pdeli,m,i 10 (21), except that the nodes are indexed by their lo-
cations. Finally, pi‘;z ., in (24) is the routing protocol-specific
probability that the node at #p transmits packets to a node at
4. A case study for the anycast protocol will be provided in
Section VII to show how this probability is obtained.

According to (24), the traffic rate of node A at each state is de-
termined. Accordingly, the input traffic rate vectors A; and Ac
ofnode A can be found according to Section IV. Then, the equi-
librium state probability for the DTMC { X, }, ., is obtained.
Note that in (24), the traffic rate for nodes in ring r 4 depends
on the traffic rate and delivery rate for nodes in their infeasible
region. Therefore, the single-hop delay distribution is obtained
first for nodes in the outmost ring, and then for nodes in the inner
rings in the decreasing order of the ring radius.

By symmetry, the end-to-end delay distribution to the sink is
the same for all nodes with a same distance r 4 to the sink, and
is obtained by

Jeray() = / P zp fan(ra) * Jo(ry) (Dd2n.
Fa

(25)

The end-to-end delay distribution is found in the ascending
order of the distance to the sink.

Next, in Section VI, the TinyOS CSMA protocol is used as
a case study to show how the DTMC:s, specifically the single-
transmission-attempt block {Z,, }, are constructed and how the
end-to-end delay distribution is obtained in a deterministic de-
ployed network. Likewise, another case study of the anycast
protocol is provided in Section VII to illustrate the end-to-end
delay analysis in a randomly deployed network.

VI. CASE STUDY: TinyOS CSMA/CA PROTOCOL

In this section, we illustrate how single-hop delay distribution
can be obtained for a particular MAC protocol in a deterministi-
cally deployed network. We use the TinyOS default CSMA/CA
protocol [32], which is widely adopted by applications due to
the popularity of TinyOS. Similar to the IEEE 802.15.4 protocol
[1], atwo-slot clear channel assessment (CCA) is conducted be-
fore transmitting a packet. As discussed in Section II, there exist
several studies that characterize the CSMA/CA protocol in a
broadcast network. In this section, we refer to the framework
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Fig. 4. Markov chain structure for each attempt for TinyOS CSMA protocol.
Nrp and N p are the number of states representing the initial backoff and
congestion backoff, respectively. The subscript ¢ for node ¢ is omitted in the
figure.

in [28] for our analysis. Since multihop traffic and the hidden
node problem are not considered in [28], we extend this anal-
ysis to the multihop case. Note that our aim in this section is not
to propose yet another analysis of the CSMA/CA protocol. In-
stead, we illustrate how the existing models of MAC protocols
can be extended through our framework to model the end-to-end
delay distribution.

A. Markov Process Overview

With the TinyOS CSMA/CA protocol, nodes can start trans-
mission at any time when a packet arrives. Therefore, the idle
layer {I,,} contains only one state, denoted here as Siqi.. The
elements in Py, a, 17, and A; are easily determined

Pr={0} a;={1} t;={1} A ={X+A}. (26
Moreover, the Markov chain {Z,,} that models each transmis-
sion attempt is depicted in Fig. 4. Before each transmission, the
packet in the queue is transferred from the microcontroller to the
transceiver. The time needed for such transfer differs for various
transceivers, but is not negligible. Our experiments with TelosB
nodes suggest that the durations of loading time before and after
radio transmission are constant and are approximately 1.7 and
2.0 ms, respectively. Therefore, the data transfer delay is mod-
eled by two additional state chains with a length corresponding
to the transfer duration. These chains are the first and the last
part of {Z,,}, denoted as {TX,,} and {RX,,} in Fig. 4.

After the packet is transferred to the transceiver, a random
initial backoff is conducted to arbitrate with other nodes. Then,
the two-slot CCA is performed, which is followed by the
packet transmission if both CCAs result in a clear channel. If
the channel is busy, a random congestion backoff is conducted
and the channel is sensed again. After the transmission is
completed, the node waits for the acknowledgment from the
receiver until ACK timeout.

B. Constructing the DTMC {X,,}

For each transmission attempt, the corresponding block of
the Markov chain is depicted in Fig. 4, which is characterized
by three variables in the chain: p} and p? are respectively the
probabilities that the node senses the channel busy in the first
and second CCA, and p! is the probability that a transmission
attempt fails due to either channel noise or collisions. For the
derivations of their values, we first define the collision area C;
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of anode ¢ as the area in which all the neighbors interfere with
node ¢. For two communicating nodes ¢ and j, both nodes re-
side in the intersection of the collision areas of these nodes, i.e.,
{i,5} € C;;,* where C; ; = C; N C;. Moreover, the colli-
sion area of ¢ that is not in C; ; is defined as H; ; = C, \ C, ;,
which is the hidden node area of i with respect to 7. Essentially,
nodes that reside in H; ; cannot be heard by j. Similarly, the
hidden node area of j w.r.t. ¢ is denoted as H; ;. The size of these
areas |C; ;|, |Hi |, and |H; ;| can easily be obtained according
to the distance between ¢ and j and their respective interference
ranges. Accordingly, the number of nodes in these areas are the
product of their respective sizes and the network density p

ZkEC,‘, p‘]?

ne
pe, =1-
Psend,C;

27

Then, the values of p!, p2, and p/ for each node i are found
by solving the following set of equations:

1 _  send

9 _ gt
pi=|1- o m — (1—H(1—¢k)>

x + PP Lack (28)

2 Pe, kaEc (1—o1) kecC,
1 _ C

Pc, . (29)

2—pe.

’ erc (1-o)
— py (1 — peo®id) (1 - PER, ) (30)

= ¢ (1 —p) (1 =12

where p‘“nd is the probability with which at least one node

keC; begins a transmission, Ltx and L ack are respectively
the duration of a data packet transmission and an ACK trans-
mission in terms of time units, p2°* is the probability that an
ACK packet is transmitted by at least one node in C; during a
time unit, p¢. is the probability that given a transmission was
going on, a collision is observed on the channel in a given time
unit, p}’ is the probability that only node ¢ starts to transmit a
packet in a given time unit, and p{%""¢ is the probability of col-
lision due to hidden terminal transmissions. They are obtained
by [34, Egs. (25), (27), (28), (30), and (31)]. Moreover, ¢; is
the probability that node ¢ is in the first CCA state and is given
in m;, the stationary probability vector for node i; p} and p?
are the probability that the node senses the first and the second
CCA busy, respectively. Note that since heterogeneous network
traffic is considered, ¢; may be different for different nodes.
Finally, PER; ; is the packet error rate dependent on channel
noise, which depends on the transmission distance, transmission
power, random multipath, and shadowing effects. In our model,
we define the expected packet reception rate for a pair of nodes
according to the log-normal fading model in [39].

Also note that pij is averaged among all destinations j as the
approximation of p} for each node i. As suggested in (30), the
value of pf_’j depends on the channel conditions and the colli-
sion probability. Considering a channel-aware routing protocol
is employed, pﬁ’j does not vary significantly for different node
pairs, and such approximation is acceptable. Accordingly, for

4With a slight abuse of notation, in the following, ¢ € C is used to indicate
node ¢ resides in area C.
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a given node ¢, the failure probability for each transmission at-
tempt, p!, is the same for all packets in the queue.

The three probability values, p}, p?, and pf, are then used to
construct the Markov chain {Z,,} as follows. First, the states
in {Z,} are given an index in an arbitrary order. Then, the fol-
lowing matrices and vectors are determined.

¢ The (v, v’)th element in Pz is equal to the transition prob-

ability from state v to v'.
* The element in ¢z corresponding to the first state in
{TX,} (as shown in Fig. 4) is 1. Other elements are 0’s.
¢ The element in 3, corresponding to the last state in {RX,, }
is 1, and the element in th corresponding to the last state
for ACK timeout is 1. Other elements are 0’s.

» The elements in Az corresponding to the transmission
states are A! and other elements are A + A'.

Each of these values depends on each other as well as ¢;,
which is the probability that the node ¢ is in the first CCA state.
Note that ¢;, p}, and p? cannot be determined without the
knowledge of w;, which can only be obtained after constructing
the Markov chain as explained in Section I'V. Consequently, an
iterative procedure is used to find these parameters. First, initial
guesses of ¢;, p}, and p?, which are set to all 0’s in our evalu-
ation, are used to construct the Markov chains for each node.
Based on the Markov chains, «; is calculated. Then, values for
&, pt, and p? are updated accordingly to the knowledge of ;.
The calculation of ¢;, p}, p?, and ; is conducted iteratively,
until the difference of the value for any variable between two
iterations is negligible.

After {Z,} is constructed, the entirce DTMC {X,} is ob-
tained according to Section IV. The single-hop delay distribu-
tion is then derived by Theorem 1. Finally, the end-to-end delay
distribution is found according to (23). The results are described
in Section VIII-A.

VII. CASE STUDY: ANYCAST PROTOCOL

In this section, the approach for computing single-hop and
end-to-end delay distributions is illustrated for an anycast pro-
tocol. The anycast technique has been widely adopted in WSNs
recently [17], [22], [33]. Since there is no dominantly used any-
cast protocol, in this paper, we model the representative protocol
described in what follows. This case study is used to show how
the single-hop and the end-to-end delay analysis in Sections IV
and V can be applied to protocols with duty-cycle operations
for a randomly deployed network. Other anycast protocols, and
more generally, other duty-cycle-based protocols, can be mod-
eled using similar approaches.

For the random deployment of nodes, the topology model
in Section V-B is considered, and node-specific variables are
indexed by the ring radius r. In the following analysis, when
there is no ambiguity, the subscript 7 in ring-specific variables
is omitted.

In the anycast protocol, sensor nodes report their readings to
the sink, located at the center of the circular plane, through mul-
tihop routes in the network. The nodes (excluding the sink) turn
off their radio periodically to save energy. We assume that the
waking period in a sleep-wake cycle T for each node is T,
and the sleeping period is 7°'. When a node A has a packet
to send, it starts to repeatedly transmit RTS beacon packets

based on a CSMA/CA manner, i.e., through carrier sense and
random backoff mechanisms. When a node B in the transmis-
sion range is awake and hears the packet, it checks for the fol-
lowing criteria: 1) node B is closer to the sink than A; and 2) the
signal-to-noise ratio (SNR) of the received RTS packet, v, is
greater than some predefined threshold ¢/*". If both criteria are
met, node B sends a CTS packet. Node A then chooses the first
node that sent a CTS packet as the next-hop node and trans-
mits the data packet to it. Successful data packet transmissions
are acknowledged by the receiver, otherwise the sender retrans-
mits the data packet until successful or the maximum number of
transmission attempts  is reached.

To reduce the waiting time for the packets spent in the queue
and balance the energy consumption in the network, in the pro-
tocol, each node responds to beacon packets only when it does
not have packets to send. Considering the sink is awake all the
time, if a node closer than a distance threshold " to the sink
transmits beacons, it is assumed that no node except the sink
will respond. Here, 7" is chosen such that a high SNR is al-
most always guaranteed. Moreover, nodes go to sleep when they
finish transmitting all packets in the queue. As a result, com-
pared to nontransmitting nodes, the active period is shorter. In
cases where transmission energy consumption is significantly
higher than listening, this helps balancing energy consumption
among nodes.

We first show the DTMC {X,} for the protocol. Then,
the protocol-specific parameters for the generic analysis in
Section IV, including the relay traffic rate at each state, and the
transition probabilities for {X,,} are derived. The single-hop
delay distribution for each pair of nodes is obtained after these
parameters are known. Finally, the end-to-end delay distribu-
tion from each node to the sink is provided.

A. Markov Process Overview

The anycast protocol is modeled according to a DTMC { X, }
discussed in Section IV. The structures of the idle layer {I,,}
and one of the communication layers {C,, } for this protocol are
shown in Fig. 5(a) and (b), respectively. The process enters {1, }
periodically when there is no packet to send. {I,,} consists of a
group of sleeping states and listening states. During the listening
states, the node listens to the channel. Thus, both locally gener-
ated packets and relay packets can arrive. During the sleeping
states, however, the node turns off its transceiver, and therefore
only local packets can arrive. The number of states in {7, } is
L€ = TYT9 + T%/T" = T<¢/T", where T" is the unit time.
A large T can reduce the number of states in the DTMC, thus
reducing computation cost for the model, but at the cost of re-
ducing the granularity and accuracy of the result.5 When a local
or relay packet arrives, the node terminates the idle process and
begins the first layer of communication process.

In each communication layer, which consists of a {C,}
block, the node keeps transmitting beacon packets. The number
of states in {C,,} is L” = T"/T™, where T% is the beacon
timeout. If a node receives RTS responses from other nodes, it
starts transmitting the data packet to the first responding node.
Retransmissions are conducted in case of a transmission failure.

SRecall in Section IV that it is assumed only one packet may arrive in a time
unit. This is accurate only when 7™ is chosen small.
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Fig. 5. Markov chain structure of (a) the communication process {C,, } and
(b) the idle process {I,,} for the anycast protocol.

Since only neighbor nodes that receive the beacon packets with
a high SNR will respond, a high-quality wireless channel is
guaranteed. Moreover, in most WSN applications, the traffic
rate is low, and the chance of packet collision with other nodes
is small. Therefore, data packets are transmitted successfully
in limited number of (re)transmission attempts, which takes
negligible time compared to the sleeping cycle T (usually
longer than 10 s). Thus, {C,} only contains transmission
states. When the first RTS packet is received, the transmission
terminates in a success. When the beacon transmission times
out, the packet is dropped, and the transmission terminates in
a failure. In either way, the node enters the lower layer. Note
that the beacon timeout T is usually chosen equal to or longer
than the cycle 7. This is to ensure that each neighbor node can
receive the beacon messages within their duty-cycle period.
The entire beacon transmission process before packet delivery
or timeout is regarded as a single transmission attempt. Thus,
each communication layer {C,,} contains only one block of

{Z,}.

B. Constructing the DTMC {X,,}

Unlike the TinyOS CSMA protocol with which there is only
a single state in {/,}, to capture the duty-cycle operation in
the anycast protocol, a series of states are needed. The transi-
tion probabilities in {1, } and {C}, } are 1’s when not noted. The
transition probabilities ) @) and the traffic rate A7, Ac are ex-
plained in the following.

In the 4th time unit in {C), }, anode A in ring r 4 has a proba-
bility of p}” ,y ofnotreceiving any CTS response, and enters the
next state. If in all N, states, node A receives no CTS response,
the transmission fails and the packet is dropped. On the other
hand, if in any of the states, a CTS response is received, the node
transmits the packet and the transmission succeeds. The proba-
bility pf:(i) is the conditional probability that given the trans-
missions in the previous ¢ — 1 states failed, the transmissions in
the sth state still fails. For simplicity, the hidden terminals are ig-
nored. Hidden terminal effects in high-density networks can be
easily captured by the model as shown in Section VI. Therefore

P?Zu) :P?Z(lwn

ur nr ur : b
Prh() = Pra~i)/Pra(ieiot)s 2<i< Ly (3D
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where pf}i(h 9 is the probability that during all first ¢ states in
{C,,} beacon transmission fails since no CTS packet is received
in these states. Therefore

Phamg = 11 (1-pArpaeml o pF) 62

zp€F 4

where node (z)g = (rp,0p) is any location in the feasible re-
gion of A; p is the node density; p‘,’; ) is the probability that
the waking period of a node B, which is located r5 away from
the sink, overlaps with the first ¢ beacon transmission time units
of A, and is given by (28) in [35]. Moreover, p’;& is the prob-
ability that a packet, which is transmitted by node A and re-
ceived by a node located at £z, has an SNR higher than some
predefined threshold 4*". It is obtained by [39, Eq. (10)]. Then,
p?;uw) in (32) can be determined, and pﬂz(i) in (31) is ob-
tained using (32).

Next, the traffic rate at each state, A; and A, is discussed.
The arriving traffic at A contains locally generated and relay
traffic. In sleeping states, the traffic arrival rate is )\},A. In lis-
tening states, the traffic rate is A}, + AL - Finally, in the beacon
transmission states, since nodes are assumed not to respond
to any relay packets, the traffic rate is AL - The value of A7
is obtained according to (24). The protocol-specific probabili-
ties pfc‘;m , are derived in the following.

The probability that a node A located at &5 forwards a packet
to a node B located at &4, among all possible forward targets,
pi‘LmA, is proportional to the probability that A is available
when B transmits a beacon and is normalized on the total avail-

abilities for all possible nodes. The availability is defined as

wake SNR.

avail b
rA pﬂ:B XA

b LA
EJL; T is the probability that node A is
awake, and W}Z is the equilibrium probability that A is in the

jth waking state in {X,, }. Then, p£¥ , in (24) is given by

Tp. A

= pAraAbfp (33)
where pyake =

J

pavail
fw B, A

where o = (r¢, 0¢) is any location in F 5.
Accordingly, {I,,} and {C,,} (containing only one block of
{Z,}) are characterized by the following.

 The (v, v")th element in Py and P is the transition prob-
ability from state v to v* shown in Fig. 5.

* The element in a; and ¢ is 1 for states pointed by a
“begin” arrow. Other elements are 0’s.

« The element in £}, £, and t%, is set according to the prob-
ability attached to the arrows pointing to “success” and
“fail,” respectively.

* The elements in Aj corresponding to the sleeping states are
set to Al. Other elements in A; and Ao are set to A + A*.

Consequently, the single-hop delay distribution and

end-to-end delay distribution for each ring are respectively
obtained according to (17) and (25).

In Section VIII, we use empirical evaluations to validate the

analytical model for both protocols.
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VIII. ANALYTICAL RESULTS AND EMPIRICAL VALIDATIONS

The end-to-end delay distribution model has been evaluated
using MATLAB to determine the single-hop and multihop
delay distributions for the TinyOS CSMA/CA MAC pro-
tocol (Section VI) and the anycast protocol (Section VII).
The computing environment is a PC with a Xeon 5150 CPU
working at 2.66 GHz and 2 GB RAM. Moreover, empirical
experiments and TOSSIM-based simulations [20] have been
conducted on our WSN test bed to validate the results. The
simulations are conducted in the same PC environment. For
the empirical validations, Crossbow TelosB motes with a data
rate of 250 kb/s are used. The packet size is I, = 39 B. Each
node ¢ generates local traffic to be sent to sink s according to a
Poisson distribution with rate )\bls). Our experiments with the
TelosB motes suggest that it requires on the average 1.7 ms to
transfer each packet from the MCU to the RF transceiver, and
2.0 ms vice versa. The transmission power is set to —15 dBm
for all the experiments unless otherwise stated.

In the experiments, the single-hop delay and end-to-end
delay are measured as follows. When the source node gen-
erates a packet, it simultaneously sends an electric pulse to
the destination node through a pair of wires. The destination
node starts a timer when it receives the pulse and waits for the
packet. When the packet is received by the destination node,
the duration after the reception of the pulse is recorded as the
packet delay. This eliminates the need for synchronization
among all the nodes. Next, we present the evaluation results
for TinyOS CSMA/CA protocol and the Anycast protocol in
Sections VIII-A and VIII-B, respectively.

A. Experiments for TinyOS CSMA/CA MAC Protocol

1) Single-Hop Delay Distribution: First, the single-hop
delay distribution of the TinyOS CSMA/CA protocol is evalu-
ated according to the derivations in Section VI. The time unit is
set to 7" = 320 us. The maximum initial backoff and conges-
tion backoff durations are set to 9.77 and 2.44 ms, respectively.
For the evaluations, a single-hop network is considered where
the delay distribution is found for a node under the contention
from neighbor nodes. Three different network configurations
are considered for the evaluations.

In the first configuration, a node continuously transmits lo-
cally generated packets to a receiver node with a data rate of
two packets per second. This corresponds to A! = 6.4 x 10~*
in the analytical model. Four other nodes are used to transmit
packets at the same rate to create background traffic for con-
tention. In the second case, the packet rate for all five nodes is
increased to 10 packets per second. For the third case, two addi-
tional nodes with the same packet generation rate are used, but
are placed so that they act as hidden terminals for the transmit-
ting node. The single-hop delay for 5000 packets is recorded for
each experiment.

The results of both analytical and empirical validations are
shown in Fig. 6 for the cdf of the delay. The results show that a
higher traffic rate increases hop delay, which is also captured by
our model. In addition, the two hidden nodes introduced in the
third case cause heavy contention and further increase the hop
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Fig. 6. CDF of the single-hop delay of the CSMA/CA protocol. Both empir-
ical (emp) and analytical (ana) results are shown.

delay. It can be observed that the analytical model accurately
captures the effects of hidden nodes. For all cases, the analyt-
ical model has less than 2% of error compared to the empirical
evaluations.

In our computing environment with a Xeon 5150 CPU
working at 2.66 GHz and 2 GB RAM, the calculations run for
less than 10 s for a typical hop with six neighbors, with x = 3
and M = 5 for all nodes, while empirical experiments take
more than 5 min to obtain enough data samples for meaningful
delay distribution estimation.

2) End-to-End Delay Distribution: To validate the model for
multihop networks and illustrate the effects of network param-
eters in WSNs, two sets of experiments have been performed.
First, a network consisting of 25 TelosB nodes are used. The
nodes are placed ina 5 x 5 grid, as illustrated in Fig. 7(a). Nodes
shown as light-colored boxes only relay packets, while the eight
dark-colored nodes also generate packets according to a Poisson
process. The transmit power for every node is —25 dBm. The
generated traffic rate for the eight nodes A!, the queue length M,
and the maximum number of transmission attempts y are varied
to reveal the relationships between each of the parameters and
the end-to-end delay distribution. End-to-end delay is measured
for approximately 3000 packets for each configuration.

The results are shown in Fig. 7(d). As can be observed, the cdf
of the analytical model matches well with the empirical results
with an error less than 5%. The slight difference in these results
is partially due to the inaccurate collision models since the col-
lision range in practice is not an arbitrary area for each node and
a transitional area exists around the boundary [39]. The results
suggest that heavier traffic leads to a longer end-to-end delay
and a lower reliability as can be observed from the asymptotic
value of the cdf. In addition, by reducing the queue length, M
and the maximum number of transmission attempts Y, the reli-
ability decreases. However, when a low delivery rate (e.g., less
than 50%) is sufficient, a lower M or x does not largely affect
the delay performance. More specifically, the average waiting
time can be reduced by decreasing the queue capacity, and the
chance of collisions is decreased since less retransmissions are



316

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

a4
0.8
Increasad power
in configuration 2 07 7
] Generate and v y
relay packets 0.6 )
P = 05 ..ix((
[l Onlyrslay .kh t end ° iff
packets frnegt en o4t ¢ l,"
¥l
= ! ;'
) e Sink 03 i
Forwarding 'III
Path 0.2 i
if Tastbed
a1t ! — — - Simulation |-
\]I —— Modsl
. ) ols . T
Configuration 1 0 0.z 0.4 06 08 1

+ Configuration 2

Farthest Node Delay (sec)
(a) (©
T T T 1 1
i P ==
08 /w 08 osf /’,’-- -
. i) /7
08- o 08 08
[ A ——————

0.7 4 ﬁ{:-""'/ o7 0.7F
Fo06- o 06 06F
[7)
205 Tos Tos
B & M=3, Ny=3, 4pkbs, ana Q o
:é 0.4 M=, M=, dpkiis, pms 04l ! a4k

2. b=, ki, ana i f
0.3- 0.3 ’ 03l 1
! | S
0.2 0.2 l,}" Fika I anaconfig 1 0z2F ¢
t;‘ i - emp config 1 1
0.1 K o4 o S o ana conlig 2 [ o1F S — — - Simulation
il g R fin e . by
sea ' ' : : : : : 0 e “.":4‘3 s ol . . . =
8.02 0.04 0.06 0.08 0.1 012 014 016 0.18 0.2 D22 1] 50 100 150 200 0 5 10 15 20 25 30 35 40
End-to—end delay (sec) End-to—end delay (msec) Delay {sec)
(d) (e} (f)

Fig. 7. Topology and the end-to-end delay distribution for the multihop grid experiments (a) and (d) and the test-bed experiments (b) and (e). The end-to-end
delay distribution of the Anycast protocol is also shown in (c) and (f). (a) Grid experiment topology. (b) Test-bed topology. (c) Distance to the sink r = 4.3 m.

(d) Grid experiment delay distribution. () Test-bed delay distribution. (f) Distance to the sink = 50 m.

allowed. This fact is useful when designing applications with
nodes having limited memory space.

Experiments are also performed in a realistic indoor environ-
ment. A multihop network of 16 TelosB nodes is located in three
rooms as shown in Fig. 7(b). Two different network configu-
rations are used to illustrated the effects of topology changes.
In both configurations, each node generates Poisson traffic of
two packets per second, and the packets are forwarded to the
sink as shown in Fig. 7(b). A geographical routing protocol
is used to determine the forwarding routes based on the dis-
tance between each node and the sink. In the first configura-
tion, every node transmits packets with a power of —15 dBm,
and the routes are shown in dashed lines. In the second con-
figuration, two nodes are selected to transmit packets with an
increased power of —7 dBm. Therefore, they can directly reach
the sink. The routes for the second case are shown in Fig. 7(b)
as solid lines. The cdfs of the results are shown in Fig. 7(e).
Accordingly, increasing transmit power in only two nodes sig-
nificantly impacts the end-to-end delay as also captured by the
analytical evaluations.

B. Experiments for Anycast Protocol

We first show that the analytical results of the end-to-end
delay distribution are validated by the simulation and the
test-bed experiments. The anycast protocol described in
Section VII is implemented in TinyOS 2.0. Our test bed con-
sists of 25 Crossbow TelosB motes. The nodes are randomly
placed in a circular area of radius 2 = 4.5 m. Thus, the density
is roughly p = 0.39. The data packet size is [, = 39 B,

whereas the beacon message and the CTS response message
have the same size of /[, = 22 B. Each node generates the
same amount of local traffic to be sent to the sink according
to a Bernoulli process with average rate A' = 0.001 in each
time unit 7" = 0.01 s, which equals 0.1 packet per second.
The operating cycle of each node is 7° = 1 s, during which
the wake period is 7% = 0.5 s, thus the duty cycle is n = 0.5.
Moreover, the beacon transmission timeout is 77 = 1 s. The
transmission power is set to —15 dBm for all the nodes. The
threshold radius 7" is set to 2.7 m, within which all nodes only
transmit packets to the sink. The signal-to-noise ratio (SNR)
threshold is set to 4*® = 10 dB. The simulation is performed
on the same topology. Both the simulation and the test-bed
experiment have been run for 2.5 h, and the end-to-end delay
distribution for a node at distance = 4.3 m is recorded.

The results are compared with analytical prediction from the
model, as shown in Fig. 7(c). It can be observed that the an-
alytical results agree well with both the simulation result and
the test-bed experiment result, and the error is less than 10%.
Therefore, the simulation is used in the following to validate
our model in a larger space and time scales, and for more ran-
domly generated topologies.

In the second set of evaluations, the network radius is set
to 50 m, the transmission power is increased to —10 dBm.
Accordingly, the threshold distance is changed to r** = 10 m.
Moreover, the network density is p = 0.1. Durations 7, TV,
and T" are 10, 5, and 10 s, respectively, and the traffic rate is
0.01 packets/s. Other parameters are left unchanged. Twenty
different topologies are randomly generated according to a
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Fig. 8. Relationship between network parameters and the delivery probability within 3, 6, and 200 s with the Anycast protocol. (a) Density varies. (b) Duty cycle

varies. (c) Traffic rate varies.

Poisson distribution with the same density. Each topology is
simulated for 1 h. The end-to-end delay distributions from all
nodes with a distance of 50 m to the sink are measured. The
result is shown in Fig. 7(f), along with the analytical results. It
can be observed that the analytical result is also within 10% of
the simulation result.

Next, using the end-to-end delay distribution modeled in
(17), we investigate the relationships between the probability
of achieving a given end-to-end delay and various network
parameters. In each of the following evaluations, the network
density p, the duty cycle # for all nodes, and the traffic rate \'
for all nodes are varied, respectively. The default values for
these parameters are 0.02, 0.2, and 0.005 packets/s. Other
parameters are kept unchanged from the previous experiment.
The network radius is i = 50 m.

The probability that the end-to-end delay of a node at dis-
tance » = 50 m is smaller than 3, 6, and 200 s is shown in
Fig. 8. The results in Fig. 8(a) reveal that when the network
density increases, the probability of delivering packets from the
edge to the sink also increases. This is because a network with
a higher density tends to have more available relaying nodes
at any time. Similarly, as shown in Fig. 8(b), when the duty
cycle increases, nodes have more waking time to relay packets,
thus the probability of delivering packets is increased. Finally,
Fig. 8(c) suggests that increasing the traffic rate increases the
queueing delay and decreases the probability that nodes are
ready to relay packets. Therefore, the probability of delivering
packets is smaller as traffic rate increases. It is important to note
that given enough time, e.g., 200 s, the delivery probability does
not change much when the duty cycle or the traffic rate varies as
shown in Fig. 8(b) and (c). However, in Fig. 8(a), the delivery
probability after 200 s changes greatly when the network den-
sity changes. This is because lower duty cycle and higher traffic
rate prolong the packet waiting time. Given enough time, there
are still enough nodes to relay the packets. On the other hand,
a low network density reduces the number of relaying nodes.
Therefore, eventually more packets are lost due to timeout in a
low density network.

For any network setup in the experiments above, the calcula-
tion for the end-to-end delay distribution during any given dura-
tion takes less than 2 min. On the other hand, the TOSSIM-based
simulations determine the delay distribution in the same order
of actual time. For example, for a simulated duration of 2 h, the

simulation takes roughly 30 min. Thus, our analytical approach
provides insights significantly faster with the same accuracy.

IX. CONCLUSION

Providing QoS guarantees in wireless sensor net-
works (WSNs) necessitates a probabilistic approach, where
the queuing delay and the effects of wireless channel errors
are captured. In this paper, an end-to-end analysis of the
communication delay is provided. A Markov process based
on birth—death problem is used to model the communica-
tion process in a multihop network. The developed model is
validated by extensive test-bed experiments through several
network configurations and parameters. The results show that
the developed framework accurately models the distribution
of the end-to-end delay and captures the heterogeneous effects
of multithop WSNs. The developed framework can be used to
guide the development of QoS-based scheduling and commu-
nication solutions for WSNs. Based on the framework, models
are also developed for event detection delay distributions in
WSNs [36].
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