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Abstract— This paper considers jointly optimal design of cross-
layer congestion control, routing and scheduling for ad hoc
wireless networks. We first formulate the rate constraint and
scheduling constraint using multicommodity flow variables, and
formulate resource allocation in networks with fixed wireless
channels (or single-rate wireless devices that can mask channel
variations) as a utility maximization problem with these con-
straints. By dual decomposition, the resource allocation problem
naturally decomposes into three subproblems: congestion control,
routing and scheduling that interact through congestion price.
The global convergence property of this algorithm is proved. We
next extend the dual algorithm to handle networks with time-
varying channels and adaptive multi-rate devices. The stability
of the resulting system is established, and its performance is
characterized with respect to an ideal reference system which
has the best feasible rate region at link layer.

We then generalize the aforementioned results to a general
model of queueing network served by a set of interdependent
parallel servers with time-varying service capabilities, which
models many design problems in communication networks. We
show that for a general convex optimization problem where a
subset of variables lie in a polytope and the rest in a convex set,
the dual-based algorithm remains stable and optimal when the
constraint set is modulated by an irreducible finite-state Markov
chain. This paper thus presents a step toward a systematic way
to carry out cross-layer design in the framework of “layering as
optimization decomposition” for time-varying channel models.

I. INTRODUCTION

We consider the problem of congestion control and resource
allocation (through routing and scheduling) over a multi-
hop wireless ad hoc network. Traditionally, network protocols
take a strictly layered structure and implement congestion
control, routing and scheduling independently at different
layers. However, wireless spectrum is a scarce resource, and
it is important to use the wireless channel efficiently. In order
to achieve high end-to-end throughput and efficient resource
utilization, congestion control, routing and scheduling should
be jointly designed while the architectural separation among
them is preserved.

The need for joint design across these three layers is moti-
vated by three observations. First, wireless channel is a shared
medium and interference-limited. Unlike in wireline networks
where links are disjoint resources with fixed capacities, in ad
hoc wireless networks the link capacities are “elastic” and
the contention among links provide a fundamental constraint
for resource allocation (see e.g. [3]), i.e., they determine the
feasible rate region at link layer.

Second, most routing schemes for ad hoc networks select
paths that minimize hop count (see e.g. [12], [25]). This

implicitly predefines a route for any source-destination pair
of a static network, independent of the pattern of traffic
demand and interference/contention among links. This may
result in congestion at some region while other regions are
under-utilized. To use the wireless spectrum more efficiently,
we should exploit multiple paths based on the pattern of
traffic demand and interference/contention among links. As
we will see below, routing is then determined from the rate
and scheduling constraints.

Lastly, TCP congestion control algorithms can be inter-
preted as distributed primal-dual algorithms over the Internet
to maximize aggregate utility, see e.g. [13], [20], [15]. This
series of work implicitly assumes a network where link
capacities are fixed and routes are pre-specified. Here, we
extend the basic utility maximization formulation with rate
constraints at nodes and additional constraints on scheduling
at link layer.

We model the contention relations between wireless links
as a conflict graph (see e.g. [11]). This construction indicates
which groups of links mutually interfere and cannot be active
simultaneously. The feasible rate region at link layer is the
convex hull of the corresponding rate vectors of independent
sets of the conflict graph. We introduce multi-commodity
flow variables to formulate rate constraint at the network
layer, and formulate resource allocation in wireless ad hoc
networks with fixed channel or single-rate devices as a utility
maximization problem with those constraints. We then apply
duality theory to decompose the system problem vertically
into congestion control subproblem and routing/scheduling
subproblem that interact through congestion prices. Based on
this decomposition, a distributed subgradient algorithm for
joint congestion control, routing and scheduling is obtained,
and proved to approach arbitrarily close to the optimum of
the system problem. This algorithm motivates a joint design
where the source adjusts its sending rate according to the
congestion price generated locally at the source node, and
backpressure from the differential price of neighboring nodes
is used for optimal scheduling and routing. We next extend the
dual subgradient algorithm to wireless ad hoc networks with
time-varying channels and adaptive multi-rate devices. The
stability of the resulting system is proved, and its performance
is characterized with respect to an ideal reference system.

We then extend the aforementioned results to a gener-
alized model of queueing network that is served by a set
of interdependent parallel servers with time-varying service
capabilities. This general technique leads to results regarding



the stability and optimality of dual algorithm in face of time-
varying parameters, extending most of the earlier publications
in this area that assumes deterministic channel models. We
show that for a general convex optimization problem where a
subset of variables lie in a polytope and the rest in a convex
set, the dual-based algorithm remains stable and optimal when
the constraint set is modulated by an irreducible finite-state
Markov chain.

II. RELATED WORK

The work in [13], [15], [20], [21] provides a utility-based
optimization framework for Internet congestion control. The
same framework has been applied to study the congestion
control over ad hoc wireless networks (see, e.g., [4], [36], [35],
[3], [18]). In [3], the authors study joint congestion control
and media access control for ad hoc wireless network, and
formulate rate allocation as a utility maximization problem
with the constraints that arise from contention for channel
access. This paper substantially extends [3] to include routing
and to study the network with time-varying channel and multi-
rate devices.

In [22], the authors use multi-commodity flow variables
to characterize the network capacity region for a wireless
network with time-varying channel, and propose a joint routing
and power allocation policy to stabilize the system whenever
the input rates are within this capacity region. In [11], the
authors study the impact of interference on multi-hop wireless
network performance. They model wireless interference using
the conflict graph, and show that there is an opportunity
for achieving throughput gains by employing an interference-
aware routing protocol. We use the same construction to model
the contention relations among wireless links. In [7], [14], the
authors use a similar model to study the problem of jointly
routing the flows and scheduling the transmissions to deter-
mine the achievable rates in multi-hop wireless networks. All
these works focus on the interaction between link and network
layers, and try to characterize the achievable rate region at
network layer. We include the end-to-end transport layer, and
as such, the network uses congestion control to automatically
explore the achievable rate region while optimizing some
global objective for the end users.

The stochastic Lyapunov function method is a powerful tool
to prove the stability of Markovian system [1], [29]. Especially,
Theorem 3.1 in [29] provides sufficient conditions for the
stability of general Markov chain. We combine convex analysis
with stochastic Lyapunov method to establish the stability and
optimality properties of networks with time-varying channels.
Our result is applicable to a variety of time-varying systems
that can be solved or modelled by dual algorithms. Similar
result is obtained in other contexts through different techniques
[28], [6].

Our goal is to present a systematic approach to cross-layer
design, not only to improve the performance, but more impor-
tantly, to make the interactions between different layers more
transparent. Motivated by the duality model of TCP/AQM,
which is an example of “horizontal” decomposition via dual
decomposition, researchers have extended the utility maxi-
mization framework to provide a general cross-layer design

methodology. As we will see in this paper, duality theory leads
to a natural “vertical” decomposition into separate designs
of different layers that interact through congestion price.
Recent publications along this line of “layering as optimization
decomposition” [5] includes [31], [8] for TCP/IP interaction,
[34] for routing and resource allocation, [4], [16] for TCP
and physical layer, and [3], [17], [18], [32] for joint TCP and
media access control or scheduling.

III. MODEL

Consider an ad hoc wireless network with a set N of nodes
and a set L of logical links. These links are directed, though
we assume connectivity to be symmetric, i.e., link (j, i) ∈ L
if and only if (i, j) ∈ L. We assume a static topology and
each link l has a fixed finite capacity cl bits per second when
active, i.e., we implicitly assume that the wireless channel
is fixed or some underlying mechanism is used to mask the
channel variation so that the wireless channel appears to have
a fixed rate. This assumption will be relaxed in Section V.
Wireless channel is a shared medium and interference-limited
where links contend with each other for exclusive access to
the channel. We will use the conflict graph to capture the
contention relations among links. The feasible rate region
at link layer is then a convex hull of the corresponding
rate vectors of independent sets of the conflict graph. We
will further introduce multi-commodity flow variables, which
correspond to the link capacities allocated to the flows towards
different destinations, to describe the rate constraint at network
layer. The resource allocation is then formulated as a utility
maximization problem with schedulability and rate constraints.

A. Schedulability and Rate Constraint

In this paper, we consider a network with primary inter-
ference: links that share a common node cannot transmit
or receive simultaneously, but links that do not share nodes
can do so. The same interference model has been used in
e.g. [14], [36]. It models a wireless network with multiple
channels available for transmission. For example, simultaneous
communications in a neighborhood are enabled by using
orthogonal CDMA or FDMA channels. Under this interference
model, we can construct a conflict graph [11] that captures
the contention relations among the links. In the conflict graph,
each vertex represents a link, and an edge between two vertices
denotes the contention between the two corresponding links:
these links cannot transmit at the same time. Fig.1 shows an
example of a wireless ad hoc network and its conflict graph.
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Fig. 1. Example of an ad hoc wireless network with 4 nodes and 6 logical
links and the corresponding conflict graph



Given a conflict graph, we can identify all its independent
sets of vertices1. The links in an independent set can transmit
simultaneously. Let E denote the set of independent sets
with each independent set indexed by e. We represent an
independent set e as a |L|-dimensional rate vector re, where
the lth entry is

re
l :=

{
cl if l ∈ e
0 otherwise

The feasible rate region Π at the link layer is then defined as
the convex hull of these rate vectors

Π :=

{
r : r =

∑
e

aere, ae ≥ 0,
∑

e

ae = 1

}
(1)

Thus, given a link flow vector y, the schedulability constraint
says that y should satisfy y ∈ Π.

Let D denote the set of destination nodes of network layer
flows. Let fk

i,j ≥ 0 denote the amount of capacity of link (i, j)
allocated to the flow to destination k. Then fi,j :=

∑
k∈D fk

i,j

is the aggregate capacity on link (i, j). From the schedulability
constraint, f := {fi,j} should satisfy

f ∈ Π (2)

Let xk
i ≥ 0 denote the flow generated at node i towards

destination k. Then the aggregate capacity for its incoming
flows and generated flow to the destination k should not exceed
the summation of the capacities for its outgoing flows to k:

xk
i ≤

∑
j:(i,j)∈L

fk
i,j −

∑
j:(j,i)∈L

fk
j,i, i ∈ N, k ∈ D, i �= k (3)

Equation (3) is the rate constraint for resource allocation.
It is similar to multicommodity flow model for the routing
of data flows in the network, but we give multi-commodity
flow variables a different interpretation as the amount of link
capacities allocated to the flows of different destinations.

B. Problem Formulation

We use l ∈ L or alternatively node pair (i, j) ∈ N × N
to denote a link. We also stack up the entries of any tensor
ti,j (or tji ) to construct a vector, denoted by {ti,j} (or {tji})
or just t. Assume the network is shared by a set S of sources
indexed by s. For notational simplicity, we assume that there
is at most one flow between any node and destination pair
[i, k]2, and use s or alternatively node pair [i, k] ∈ S × D to
denote a network layer flow.

Assume each source s attains a utility Us(xs) when it
transmits at rate xs packets per second. We assume Us is
continuously differentiable, increasing, and strictly concave.
Our objective is to choose source rates xs and allocated
capacities fk

i,j so as to solve the following global problem:

max
xs≥0,fk

i,j≥0

∑
s

Us(xs) (4)

subject to xk
i ≤

∑
j:(i,j)∈L

fk
i,j −

∑
j:(j,i)∈L

fk
j,i (5)

f ∈ Π (6)

1An independent set of vertices is a set of vertices that has no edges between
each other.

2The extension to the situation with multiple flows between any node-
destination pair is straightforward.

where i ∈ N , k ∈ D, i �= k, and xk
i = 0 if [i, k] �∈ S × D.

Solving the system problem (4)-(6) directly requires coordi-
nation among possibly all sources and links, thus is impractical
in real network. Since (4) is a convex optimization problem
with strong duality, distributed algorithms can be derived by
formulating and solving its Lagrange dual problem. In the
next section, we will solve the dual problem and interpret the
resulting algorithm in the context of joint design of congestion
control, routing and scheduling.

IV. CROSS-LAYER DESIGN VIA DUAL DECOMPOSITION

A. Dual Algorithm

Consider the dual to the primal problem (4,5,6):

min
p≥0

D(p) (7)

with partial dual function

D(p) = max
xs≥0,fk

i,j≥0

∑
s

Us(xs) −
∑

i∈N,k∈D,i�=k

pk
i (xk

i

−
∑

j:(i,j)∈L

fk
i,j +

∑
j:(j,i)∈L

fk
j,i) (8)

subject to f ∈ Π (9)

where we relax only the constraint (5) by introducing Lagrange
multiplier pk

i for node i ∈ N and destination k ∈ D. The
maximization problem in (8) can be decomposed into the
following two subproblems

D1(p) = max
xs≥0

∑
s

Us(xs) −
∑

s

xsps (10)

and

D2(p) = max
fk

i,j≥0

∑
i,k

pk
i

∑
j

fk
i,j −

∑
j

fk
j,i

 (11)

subject to f ∈ Π (12)

where we use ps to denote the multiplier pk
i if [i, k] ∈ S ×D.

If we interpret pk
i as the congestion price, the first subproblem

is congestion control [20], [21], and the second one is the joint
routing and scheduling since to solve it we need to determine
the amount of capacity fk

i,j that link (i, j) is allocated to
transmit the data flow towards destination k. Thus, by dual
decomposition, the flow optimization problem decomposes
into separate “local” optimization problems of transport and
network/link layers, respectively, and they interact through
congestion prices.

The congestion control problem (10) admits a unique max-
imizer

xs(p) = U ′
s
−1(ps) (13)

which adjusts the source rate according to the congestion price
of the source node. In contrast to traditional TCP congestion
control where the source adjusts its sending rate according
to the aggregate price along its path, in our algorithm the
congestion price is generated locally at the source node.

Note that, since

∑
i,k

pk
i

∑
j

fk
i,j −

∑
j

fk
j,i

 =
∑
i,j,k

fk
i,j

(
pk

i − pk
j

)
,



problem (11)-(12) is equivalent to the following problem

D2(p) = max
fi,j≥0

∑
i,j

fi,j max
k

(
pk

i − pk
j

)
(14)

subject to f ∈ Π (15)

This motivates the following joint scheduling and routing
algorithm:
1) For each link (i, j), find destination k∗ such that k∗ ∈
arg maxk(pk

i − pk
j ), and define wi,j = pk∗

i − pk∗
j .

2) Scheduling: choose f̃i,j such that

f̃ ∈ arg max
f∈Π

∑
(i,j)∈L

wi,jfi,j (16)

There may exist multiple maximizers, but we always pick
an extreme point maximizer3. An extreme point maximizer
corresponds to a maximal independent set of the flow con-
tention graph. The scheduling (16) is a difficult problem for
ad hoc wireless network. We will discuss its solution in detail
in Subsection IV-C.
3) Routing: over link (i, j), send an amount of bits for
destination k∗ according to the rate determined by the above
scheduling.
The wi,j values represent the maximum differential congestion
price of destination k packets between nodes i and j. The
above algorithm uses back-pressure to do optimal scheduling
and find optimal routing4. Note that 1)–3) is equivalent to
solve the problem (11)-(12) by the following assignment

fk
i,j =

{
f̃i,j if k = k∗

0 if k �= k∗

Now we come to solve the dual problem (7). Note that
the dual function D(p) is not differentiable, as D2(p) is a
piecewise linear function and not differentiable. Therefore, we
cannot use the usual gradient methods, we will instead solve
the dual problem using subgradient method.

Suppose (fk
i,j) is the solution from the above joint routing

and scheduling algorithm. It is easy to verify that

gk
i (p) =

∑
j

fk
i,j(p) −

∑
j

fk
j,i(p) − xk

i (p) (17)

is a subgradient5 of dual function D(p) at point p. Thus,
by the subgradient method [26], [2], we obtain the following
algorithm for price adjustment for node destination pair (i, k)

pk
i (t + 1) = [pk

i (t) + γt( xk
i (p(t))

−(
∑

j:(i,j)∈L

fk
i,j(p(t)) −

∑
j:(j,i)∈L

fk
j,i(p(t)) ) )]+

(18)

where γt is a positive scalar stepsize, and ‘+’ denotes the
projection onto the set �+ of non-negative real numbers.

3A point in a convex set is an extreme point if it cannot be written as a
convex combination of other points in the convex set.

4The above joint routing and scheduling recovers the DRPC policy in
reference [22], except that step 2 is scheduling here and power allocation
there, and data is routed based on destination here and “commodity” there. We
show that the DRPC policy follows mathematically from dual decomposition.
Similar decomposition result for the network with deterministic wireless
channel is also revealed in the journal version of [22] and [18].

5Given a convex function f : Rn �→ R, a vector d ∈ Rn is a subgradient
of f at a point u ∈ Rn if f(v) ≥ f(u) + (v − u)T d, ∀v ∈ Rn.

Eq.(18) says that, if the demand xk
i (p(t)) for bandwidth at

node i for the flow to destination k exceeds the effective
capacity

∑
j fk

i,j−
∑

j fk
j,i, the price pk

i will rise, which will in
turn decrease the demand (see eq.(13)) and increases effective
capacity (see eq.(14)). Also, note that eq.(18) is distributed
and can be implemented by individual nodes using only local
information.

The above dual algorithm motivates a joint congestion
control, routing and scheduling design where at the trans-
port layer sources s individually adjust their rates accord-
ing to the local congestion price, and nodes i individu-
ally update their prices according to (18); and at the net-
work/link layer nodes i solve the scheduling (16) and route
data flows accordingly. In summary, we have the following

Algorithm 1: Joint Design Algorithm
At time t:
1) Each node i implicitly updates its price with respect to
destination k

pk
i (t + 1) = [pk

i (t) + γt( xk
i (p(t))

−(
∑

j:(i,j)∈L

fk
i,j(p(t)) −

∑
j:(j,i)∈L

fk
j,i(p(t)) ) )]+,

and passes the price pk
i to all its neighbors. Note that pk

i (t) is
interpreted as the congestion price at the beginning of time
slot t.
2) Congestion control: each source node s adjusts its sending
rate for the period t, according to local congestion price

xs(t) = U ′
s
−1

(ps(t))

3) Each node i collects congestion price information from
its neighbor j, finds destination k(t) such that k(t) ∈
arg maxk(pk

i (t)−pk
j (t)), and calculates differential price wi,j(t) =

p
k(t)
i (t) − p

k(t)
j (t) and passes this information to its neighbors.

4) Scheduling: each node i collects differential price infor-
mation from its neighbors in the previous period, and in the
beginning of period t allocates a capacity f̃i,j(t) over link (i, j)

such that

f̃(t) ∈ arg max
f∈Π

∑
(i,j)∈L

wi,j(t)fi,j

5) Routing: over link (i, j), send an amount of bits for destina-
tion k(t) according to the rate determined by the scheduling.

B. Convergence Analysis

In this subsection, we prove the convergence property of
Algorithm 1. Subgradient may not be a direction of descent,
but makes an angle less than 90 degrees with all descent
directions. Thus, the new iteration may not improve the dual
cost for all values of the stepsize. Using results on the
convergence of the subgradient method [26], [2], we show that,
for constant stepsize, the algorithm is guaranteed to converge
to within a neighborhood of the optimal value. For diminishing
stepsize, the algorithm is guaranteed to converge to the optimal
value. We would like a distributed implementation of the
subgradient algorithm, and thus a constant stepsize γt = γ
is more convenient. Note that the dual cost usually will not



monotonically approach the optimal value, but wander around
it under the subgradient algorithm. The usual criterion for sta-
bility and convergence is not applicable. We will use a similar
definition of convergence as in [3]. Let p(t) := 1

t

∑t
τ=1 p(τ)

be the average price by time t.
Definition 1: Let p∗ denote an optimal value of the dual

variable. Algorithm 1 with constant stepsize is said to converge
statistically to p∗, if for any δ > 0 there exists a stepsize γ
such that lim supt→∞ D(p(t)) − D(p∗) ≤ δ.

Clearly, an optimal value p∗ exists. The following theorem,
proved in the Appendix, guarantees the statistical convergence
of the subgradient method.

Theorem 2: Let p∗ be an optimal price. If the norm of the
subgradients is uniformly bounded, i.e., there exists G such
that ||g(p)||2 ≤ G for all p, then Algorithm 1 converges
statistically to p∗.

The assumption of bounded norm for subgradient g(p) is
reasonable, since f is finite and we always have an upper
bound on x in practice. Note that D(p) ≥ D(p∗) always holds.
Since D(p) is a continuous function, Theorem 2 implies that
the congestion price p approaches p∗ statistically when the
stepsize γ is small enough.

Let the primal function (the total achieved network utility)
be P (x) and achieve its optimum at x∗. Define x(t) :=
1
t

∑t
τ=0 x(τ), the average data rate up to time t. As time goes

to infinity, x(t) must be in the feasible rate region (determined
by eqs. (5)-(6)), otherwise p(t) will go unbounded as time goes
to infinity, which contradicts Theorem 2.

Theorem 3: Let x∗ be the optimal source rates. Under the
same assumption of Theorem 2, the following inequality holds

lim inf
t→∞ P (x(t)) ≥ P (x∗) − γG2

2
. (19)

Note that P (x) ≤ P (x∗) holds for any x in the feasible
rate region. Since P (x) is continuous, Theorem 3 implies that
the average source rate approaches the optimal x∗ when γ is
small enough.

C. Scheduling over Ad Hoc Networks

We now come to the scheduling problem (16). Scheduling
over ad hoc network is a difficult problem and in general NP-
hard. To see this, note that problem (16) is equivalent to a
maximum weight independent set problem over the conflict
graph, which is NP-hard for general graphs. However, with
the primary interference model we show that problem (16)
can be reduced to the maximum weighted matching problem6,
which is polynomial time solvable. As one of the extensions in
Subsection VI-A, we will see a NP-hard scheduling problem.

The scheduling problem (16) is to maximize the weighted
sum of the link capacities with the schedulability constraint. It
is defined on a weighted digraph whose link weights wi,j can
take negative value. To see how it is related to the maximum
weighted matching problem, first note that wj,i > 0 if wi,j < 0
and vice versa. Second, note that links (i, j) and (j, i) mutually

6A matching in a graph is a subset of links, no two of which share a
common node. The weight of a matching is the total weight of all its links.
A maximum weighted matching in a graph is a matching whose weight is
maximized over all matchings of the graph.

interfere and have the same interference/contention relations
with other links. Corresponding to each directed link pair
(i, j), (j, i) ∈ L, define an undirected link 〈i, j〉 with weight

w′
i,j = max{wi,jci,j , wj,icj,i}.

Let L′ denote the set of undirected links and W ′ the corre-
sponding set of weights, the scheduling problem (16) is then
equivalent to the maximum weighted matching problem on the
weighted graph G′ = (N,L′,W ′). Note that an (maximal)
independent set in the conflict graph will correspond to a
(maximal) matching in this undirected graph.

Maximum weighted matching problem can be computed in
polynomial time (see, e.g., [23]), but this requires centralized
implementation. If implemented over an ad hoc network,
each node needs to notify the central node of its weight and
local connectivity information such that the central node can
reconstruct the network topology as a weighted graph. This
will lead to an immense communication overhead which is
expensive in time and resources. There also exist simpler
greedy sequential algorithms to compute a weighted matching
at most a factor of 2 away from the maximum (see. e.g.,
[24]). But they also require centralized implementation. We
seek a distributed algorithm where each node participates in
the computation itself using only local information.

A few distributed approximation algorithms exist for max-
imum weighted matching problem, see e.g. [30], [33], [9].
In [9], the author presents a simple distributed algorithm to
compute a weighted matching at most a factor of 2 away from
the maximum in linear running time O(|L′|). This algorithm
is a distributed variant of the sequential greedy algorithm
presented in [24]. We utilize this algorithm to solve our
scheduling problem (16) distributedly, as summarized below.

Algorithm 2: Distributed Scheduling Algorithm
Each node i carries out the following steps:
1) Calculate weight w′

i,j = max{wi,jci,j , wj,icj,i} for each
directed link pair (i, j), (j, i) ∈ L incident upon it. Ties are
broken randomly.
2) Find node j∗ such that w′

i,j∗ is maximized over all links
〈i, j〉 ∈ L′ with free neighbors j:
–If having received a matching request from j∗, then link 〈i, j∗〉
is a matched link. Node i sends a matched reply to j∗ and a drop

message to all other free neighbors.
–Otherwise, node i sends a matching request to node j∗.
3) Upon receiving a matching request from neighbor j:
–If j = j∗, then link 〈i, j〉 is a matched link. Node i sends a
matched reply to node j and a drop message to all other free
neighbors.
–If j �= j∗, node i just stores the received message.
4) Upon receiving a matched reply from neighbor j, node i

knows link 〈i, j〉 is a matched link, and send a drop message to
all other free neighbors.
5) Upon receiving a drop message from neighbor j, node i

knows that j is in a matched link, and excludes j from its free
neighbors set.
6) If node i is in a matched link or has no free neighbors, no
further action is taken. Otherwise, it will repeat steps 2)–5).
7) Matched links are allowed to transmit. Nodes i, j in a
matched link 〈i, j〉 will schedule the directed link, which gives



value w′
i,j , to transmit.

Steps 2)–6) is the distributed algorithm for maximum
weighted matching problem. A link that has been chosen to
be in the matching is called matched link. Nodes that are not
incident upon any matched link are called free. A matching
request is sent to inquire the possibility to choose the link
with a neighbor as a matched link. A matched reply is sent to
confirm that the link with a neighbor is matched. A node sends
drop message to tell its neighbors that it is not free anymore.
Define a link 〈i, j〉 to be locally heaviest link if for both i and
j, its weight is maximized over all links with free neighbors.
We can see that this algorithm selects locally heaviest links as
matched. Thus, Algorithm 2 is a locally optimal scheduling.

Comparing to the known results in the literature, the above
distributed scheduling algorithm for ad hoc wireless network
is one of the best distributed algorithms in terms of compu-
tational complexity and performance bound. It has a linear
complexity O(|L′|). Such a low complexity is important for
the scalability and efficiency of ad hoc wireless network. It
achieves a performance of 1/2 of the maximum weight in the
worst case and, in practice, our numerical simulations show
it typically achieves a performance within about 4/5 of the
maximum weight.

As for the overall performance of our cross-layer design
with this approximate scheduling, we can extend the results
in [19] to show that the performance is no worse than that
achieved by an exact design with a feasible rate region 1

2Π
(and in practice, 4

5Π) at the link layer. Moreover, in Section
VII we will see that this distributed scheduling algorithm only
results in a very small degradation in the performance of the
cross-layer design for the network with time-varying channel,
since in this situation the exact solution of the scheduling is
not as important and reasonable approximations work well.

D. Implementation Issues

Utility function and global parameter: The utility function
is determined by the objective of the end user such as fairness
requirement. The smaller the global parameter γ, the closer
does the algorithm converge to the optimal point. Its value
can be chosen guided by simulations.

Congestion price and queueing: A natural choice of conges-
tion price is queue length. Each node does not need to keep per
flow information but distinguishes flows by their destinations.
Therefore, each node should manage separate queues for flows
going to different destination nodes.

Message passing and communication overhead: Each node
needs to communicate its congestion price information to its
neighbors. This can be achieved by periodically broadcasting
this information to its neighbors or its neighbors can actively
send inquiring message to ask for this information.

We now examine the implications of our design to the
layered and distributed network architecture. Our congestion
control is not an end-to-end scheme. Each source node adjusts
its sending rate according to the local congestion price. Thus,
there is no communication overhead for congestion control.
This is very different from the end-to-end congestion control

where the “global” aggregate congestion price along the whole
path needs to be fed back to the source node. Also, there is
no communication overhead for routing, since we basically
get routing for free from the scheduling. The majority of
communication overhead is for scheduling. Let K denote the
maximum degree of nodes in the network, the communication
overhead for scheduling is O(K|L|) per node per time slot.
Thus, our design has a low communication overhead.

V. JOINT DESIGN IN NETWORKS WITH TIME-VARYING

CHANNELS

In the last section, we consider the joint congestion control,
routing and scheduling design for wireless ad hoc networks
with fixed channels or single-rate devices, i.e., the capacity
cl is a constant when link l is active. However, recent years
have seen the growing popularity and demand of multi-rate
wireless network devices (e.g., 802.11a cards) that can adjust
transmission rate according to the time-varying channel state
and improve overall network utility. Here, we consider a
jointly optimal layers 2-3-4 design over networks with time-
varying channels and adaptive multi-rate devices.

A. Algorithm and Convergence Analysis

We assume that time is slotted, and the channels are fixed
within a time slot but independently change between different
slots7. Let h(t) denote the channel state in time slot t.
Corresponding to the channel state h, the capacity of link l
is cl(h) when active and the feasible rate region at the link
layer is Π(h), which is defined in a similar way as in (1). We
further assume that the channel state is a finite state process
with identical distribution q(h) in each time slot8, and define
the mean feasible rate region as

Π := {r : r =
∑
h

q(h)r(h), r(h) ∈ Π(h)} (20)

Ideally, we would like to have a joint design of congestion
control, routing and scheduling, which solves the following
utility maximization problem

max
xs≥0,fk

i,j≥0

∑
s

Us(xs) (21)

subject to xk
i ≤

∑
j:(i,j)∈L

fk
i,j −

∑
j:(j,i)∈L

fk
j,i,

i ∈ N, k ∈ D, i �= k (22)

f ∈ Π (23)

However, if we solve the above problem via dual de-
composition, we may get a link rate assignment which
is infeasible for the channel state at a given time slot.
Instead we directly extend Algorithm 1 with a modifi-
cation to handle time-varying channel. For convenience,
we describe the algorithm in details in the following:

Algorithm 3: Joint Design Algorithm over Networks with
Time-varying Channels

7It is straightforward to extend our results to the network where the channel
state process is modulated by a hidden Markov chain.

8Even if the channel state is a continuous process, we only have finite
choices of modulation schemes. The corresponding capacities take discrete
values.



At time t:
1) Each node i updates its price with respect to destination k

pk
i (t + 1) = 
 [pk

i (t) + γ( xk
i (p(t))

−(
∑

j:(i,j)∈L

fk
i,j(p(t)) −

∑
j:(j,i)∈L

fk
j,i(p(t)) ) )]+�,

(24)

and passes the price pk
i to all its neighbors. Here 
 � denotes the

integer function floor, and for the simplicity of the presentation
we let congestion price takes integer values with appropriate
unit.
2) Congestion control: each source node s adjusts its sending
rate for the period t, according to local congestion price

xs(t) = U ′
s
−1

(ps(t)).

3) Each node i collects congestion price information from
its neighbor j, find destination k(t) such that k(t) ∈
arg maxk(pk

i (t)−pk
j (t)), and calculate differential price wi,j(t) =

p
k(t)
i (t) − p

k(t)
j (t) and passes this information to its neighbors.

4) Scheduling: after collecting differential price information
from its neighbors in the previous period, in the beginning
of period t each node i monitors the channel state h(t) and
allocates a capacity f̃i,j(t) over link (i, j) such that

f̃(t) ∈ arg max
f∈Π(h(t))

∑
(i,j)∈L

wi,j(t)fi,j . (25)

Again we will always pick an extreme-point maximizer in the
above scheduling. Note that, although we assume that channel
state has a stationary distribution, the nodes do not need to
know this statistics but only the current channel state.
5) Routing: over link (i, j), send an amount of bits for destina-
tion k(t) according to the rate determined by the scheduling.

The above algorithm for joint design cannot be derived from
the dual decomposition of the problem (21)-(23). However,
we will use the problem (21)-(23) as a reference system,
and characterize the performance of the above algorithm with
respect to it.

Note that congestion price pk
i (t) is proportional to the queue

length at node i for the flows to destination d. It takes discrete
values, i.e., the queue length scaled by γ. Thus, congestion
price p(t) evolves according to a discrete-time, discrete-space
Markov chain. We need to show that this markov chain is
stable, i.e., the congestion price process reaches a steady state
and does not become unbounded. It is easy to check that
the Markov chain has a countable state space, but is not
necessarily irreducible. In such a general case, the state space
is partitioned in transient set T and different recurrent classes
Ri. We define the system to be stable if all recurrent states are
positive recurrent and the Markov process hits the recurrent
states with probability one [29]. This will guarantee that the
Markov chain will be absorbed/reduced into some recurrent
class, and the positive recurrence ensures the ergodicity of the
Markov chain over this class. We have the following

Theorem 4: The Markov chain described by equation (24)
is stable.

Proof: Denote the dual function of the problem (21)-
(23) by D(p) with an optimal price p∗ and subgradient g(p).

Consider the the Lyapunov function V (p) = ‖p − p∗‖2
2, we

have

E[∆Vt(p)|p]

= E[V (p(t + 1)) − V (p(t)) | p(t) = p] (26)

= E[V (
[p(t) − γg(p(t))]+�) − V (p(t)) | p(t) = p]

≤ E[V (p(t) − γg(p(t))) − V (p(t)) | p(t) = p]

= E[−γg(p(t))T (2(p(t) − p∗) − γg(p(t))) | p(t) = p]

= 2γg(p)T (p∗ − p) + γ2E[‖g(p(t))‖2
2 | p(t) = p]

≤ 2γg(p)T (p∗ − p) + γ2G2

where we again use the assumption that the norm of g(p(t))
is bounded above by G. Since D(p) is a convex function, we
further get

E[∆Vt(p)|p] ≤ 2γ(D(p∗) − D(p)) + γ2G2

Let

δ = max
D(p)−D(p∗)≤γG2

‖p − p∗‖2

and define A = {p : ‖p − p∗‖2 ≤ δ}. We obtain

E[∆Vt(p)|p] ≤ −γ2G2Ip∈Ac + γ2G2Ip∈A

where I is the index function. Thus, by Theorem 3.1 in [29],
which is an extension of Foster’s criterion [1], the Markov
chain p(t) is stable.

The above proof shows that the distance to the optimal
p∗ has negative conditional mean drift for all prices that
have sufficiently large distance to p∗, and implies that the
congestion price will stay near p∗ when γ is small enough.

B. Performance Evaluation

We now characterize the performance of the joint design in
terms of the dual and primal objective functions.

Theorem 5: Algorithm 3 converges statistically to within
γG2/2 of the optimal value D(p∗), i.e.,

D(E[p(∞)]) − D(p∗) ≤ γG2/2, (27)

where p(∞) denotes the state of the Markov chain in steady
state.

Note that D(p) ≥ D(p∗) always holds. Since D(p) is a
continuous function, Theorem 5 implies that the congestion
price p approaches p∗ statistically when stepsize γ is small
enough.

Theorem 6: The source rates x(t) is a stable Markov chain.
Moreover, let P (x) be the primal function and x∗ be the
optimal source rates of the system problem (21)-(23), we have
the following inequality

P (E[x(∞)]) ≥ P (x∗) − γG2

2
, (28)

where x(∞) denotes the state of the Markov chain x(t) in the
steady state.

Similarly, E[x(∞)] is the average data rate and must be
in the feasible rate region (determined by eqs. (22)-(23)),
otherwise the average queue length E[p(∞)] will go un-
bounded. Thus, Theorems 6 implies that the average source



rate approaches the optimal of the ideal reference system (21)-
(23) when stepsize γ is small enough. Theorems 5 and 6
show that, surprisingly, the joint congestion control, routing
and scheduling in Algorithm 3 can be seen as a distributed
algorithm to approximately solve the ideal reference system
problem that is not readily solvable due to stochastic channel
variations.

Our proofs for stability and performance bounds, shown in
the Appendix, are rather general. They only use the general
properties of convexity and Markovity and the definition of
subgradients. As we will see in Subsection VI-C, the above
results can readily be extended to other network optimization
problems.

C. Implementation Issues

Channel Probing: Each node needs to know the channel
states over the links to its neighbors. This can be achieved
by each node broadcasting a pre-specified pilot signal to its
neighbors, which calculate their SNR upon receiving the pilot
signal and send back SNR values to the node. Each node can
estimate the current channel state by the SNR values.

Global Parameter: The unit of time by which Algorithm 3
updates is decided by the nature of the wireless channel. It
should not be too large, since the channel state is assumed
to be fixed within a time slot. Our model is suitable for the
wireless channel with long enough coherence time.

VI. EXTENSIONS AND VARIATIONS

A. Ad Hoc Network with Secondary Interference

We have considered the network with primary interference.
Conflict graph is a rather general construction and can ac-
commodate other types of interference models. For example,
we may consider the network with secondary interference:
Links mutually interfere with each other whenever either the
sender or the receiver of one is within the interference range of
the sender or receiver of the other. This roughly corresponds
to the virtual carrier sensing using RTS-CTS exchange as in
IEEE 802.11 standard [10]. The conflict graph for the network
with secondary interference is more complicated. We can
follow Section III and IV, and formulate a utility optimization
problem for the system and carry out cross-layer design in the
same way. However, the scheduling problem (16) will be much
more difficult, and is actually NP-hard. It is easy to design
some heuristic algorithm but is hard to bound its performance.
However, due to the broadcast nature of wireless channel,
it may be possible to develop a good distributed algorithm
for maximum weight independent set problem derived from a
wireless network.

B. Network Cost

In our system model, we have only considered the user
utility. We can introduce a variable λk

i,j for each link (i, j) to
represent the cost incurred by using the link to transmit flow
to destination k. Our objective will be to maximize net-gain∑

s Us(xs)−
∑

(i,j),k λk
i,jf

k
i,j to strike a balance between user

utilities and network cost. Link cost λk
i,j can be a function of

power, link state such as loss rate, or any other link metric.
Following dual decomposition, we can obtain similar cross-
layer congestion control, routing and scheduling algorithms as
follows. In step 3) of Algorithms 1 and 3, find the destination
k(t) such that k(t) ∈ arg maxk(pk

i − pk
j − λk

i,j) and define

wi,j = p
k(t)
i − p

k(t)
j − λ

k(t)
i,j . All other steps in Algorithms 1

and 3 remain the same.
The introduction of λk

i,j facilitates the implementation of
many functionalities. For example, if λ is an increasing
function of transmitting power, we can do energy-aware
scheduling and avoid those links with high power. If it is
an increasing function of link loss rate, we can do link-state-
aware scheduling and avoid less reliable links. It can also help
to improve performance in delay. In our original design, the
flows find their way to destinations by moving in directions of
decreasing congestion price. Thus, some data may take a long
path to its destination, which could lead to significant delay
for large network. By taking λ proportional to the link length,
we can align the nodes to route data in the direction of their
destinations, and thus improve the performance in delay.

C. Stability and Optimality of A Generalized Time-Varying
Queueing Network

The stability and performance bounds obtained in Section
V are rather general. Here we further elaborate this point in
the context of a generalized model of queueing network and
general convex optimization. Consider a model of queueing
network that is served by a generalized switch [27]. The
generalized switch consists of a set L of interdependent
parallel servers with time-varying service capabilities. The
servers are interdependent in that they may not provide
service simultaneously. Switch state h follows a discrete-
time, irreducible finite-state Markov chain. At each time
slot t, the switch can choose a scheduling decision e
from a finite set E, which captures the interdependency
among the servers specifying which subsets of servers can
be active simultaneously. Each scheduling decision has
the associated vector of service rates re(h(t)) at which
queues are served, where h(t) denotes the switch state
at time t. As in Section III and V, for each switch state
h the feasible service rate region is defined as Π(h) :=
{r : r =

∑
e aer

e(h), ae ≥ 0,
∑

e ae = 1}, and let the
switch state distribution be q(h), the mean feasible rate region
is then defined as Π := {r : r =

∑
h q(h)r(h), r(h) ∈ Π(h)}.

Assume that the network is shared by a set S of users, which
will attain a strictly concave utility U(x) when the arrival
rate for each user s is xs. Suppose that we can represent
the “routing” of the user service requirement by a linear
function H(x) of the arrival rates {xs}. Let the achieved
service rate of each server l be denoted by fl, and we represent
the “allocation” of the server capacities by a linear function
A(f) of service rates {fl}. Since the service requirement
should not exceed the allocated service capacity, we have the
following inequality constraint H(x) ≤ A(f). The following
optimization problem

max
x,f

U(x) (29)

subject to H(x) ≤ A(f) & f ∈ Π (30)



can be solved by the following dual algorithm

x(t) = x(p(t)) = arg max
x

U(x) − pT (t)H(x) (31)

f(t) = f(p(t)) ∈ arg max
f

pT (t)A(f) s.t. f ∈ Π(h(t)) (32)

p(t + 1) = [p(t) + γ(H(x(p(t))) − A(f(p(t))))]+. (33)

Using the same notation as in Section V, we can readily show
the following general results:

Theorem 7: The Markov chain described by equation (33)
is stable.

Theorem 8: The algorithm (31)-(33) converges statistically
to within γG2/2 of the optimal of the system problem (29)−
(30), i.e.,

D(E[p(∞)]) ≤ D(p∗) +
γG2

2
(34)

P (E[x(∞)]) ≥ P (x∗) − γG2

2
. (35)

The above model of queueing network is very general and
has many applications in communication networks, including
the model studied in last section. Other examples include joint
congestion control and MAC [3] with time-varying channel,
where each wireless link can be viewed as a server and the
routing is specified by a routing matrix R (i.e., H(x) = Rx);
fair scheduling in cellular network in the downlink [6] where
the servers correspond to the wireless links from the base
station to the users and the routing corresponds to an identity
function; and TCP [20] with time-varying capacity as in last-
hop wireless networks where each (wired or wireless) link
can be seen as a server and the routing is again specified by
a routing matrix. It can include power control as well [4] as
power does not change convexity of the feasible rate region.

Convex optimization has provided a powerful tool in recent
years to formulate and solve network resource allocation
problems with deterministic models. Here we have established
the stability and optimality of dual algorithms under channel-
level stochastic for convex optimization where the constraint
set has the following structure: a subset of the variables lie
in a polytope and other variables lie in a convex set that
vary according to an irreducible, finite-state Markov chain.
Our algorithms only require the knowledge of current network
state such as channel state and queue-lengths, while most other
solutions require the knowledge of the statistics of channel
state or keep a running average of network variables such
as mean source rates. Furthermore, numerical examples in
the next section also highlight robustness under channel-level
stochastic: degradation of objective value due to suboptimal
control over a subset of the variables can be mitigated by
channel variations.

VII. NUMERICAL EXAMPLES

In this section, we provide numerical examples to com-
plement the analysis in the previous sections. We consider a
simple ad hoc network shown in Fig.2, and assume that there
are two network layer flows A → F and B → E with the
same utility Us(xs) = log(xs). We have chosen such a small,
simple topology to facilitate detailed discussion of the results.

A

B

C

D

F

E

Fig. 2. A simple network with two network layer flows. All links are
bidirectional.

A. Fixed Channel and Single-rate Devices

In this subsection, we consider the network with fixed
link capacity. For simplicity, we assume that links (C,E),
(E,C), (B,F ) and (F,B) have one unit of capacity and all
other links have 2 units of capacity when active. We first
simulate Algorithm 1 with perfect scheduling. Fig.3 shows
the evolution of source rate and congestion price of each flow
with stepsize γ = 0.1. We see that they converge quickly to a
neighborhood of the optimal and oscillate around the optimal.
This oscillating behavior mathematically results from the non-
differentiability of the dual function and physically can be
interpreted as due to the scheduling process. However, Fig.4
shows that the average source rates and congestion prices are
smooth and approach the optimum monotonically. We also
note that the performance of the algorithm is much better than
the bound of γG2/2 specified in Theorem 2 and 3.
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Fig. 3. Source rates and congestion prices with Algorithm 1 (perfect
scheduling)
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Fig. 4. The average source rates and congestion prices with algorithm 1
(perfect scheduling)

Table I shows the average link rates allocated to each flow9.
In this table (and similar tables in this section), the first column
is the sending nodes and the first row is the receiving nodes
of each directed link. From this table, we can tell which paths
each flow has used. Note that link 〈B,C〉 is not used. This is
due to the fact that 〈B,C〉 is near the sources and is the link

9In this and other three tables, flows are slightly not conserved at some
nodes. This is because we run numerical simulations for finite time and some
residual effect of the initial condition remains.



with most contention. So, an optimal routing and scheduling
will not activate it.

TABLE I

AVERAGE RATES OF FLOWS AF (UPPER TABLE) AND BE (LOWER TABLE)

THROUGH DIFFERENT LINKS WITH ALGORITHM 1 (PERFECT SCHEDULING)

Rates A B C D E F

A 0 0.265 0.404 0 0 0
B 0 0 0 0 0 0.262
C 0 0 0 0.222 0.182 0
D 0 0 0 0 0 0.222
E 0 0 0 0 0 0.182
F 0 0 0 0 0 0

Rates A B C D E F

A 0 0.000 0.000 0 0 0
B 0 0 0 0.510 0 0.225
C 0 0 0 0 0 0
D 0 0 0 0 0.510 0
E 0 0 0 0 0 0
F 0 0 0 0 0.225 0

We next simulate Algorithm 1 with the distributed, approxi-
mate scheduling (Algorithm 2). The results are shown in Fig.5
and Fig.6. The evolutions of source rates, congestion prices
and their averages are similar to those with perfect scheduling:
they converge quickly to a neighborhood of stable values. As
expected, the source rates are less than those achieved with
perfect scheduling, since the feasible rate region is smaller
under the approximate scheduling. Table II summarizes the
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Fig. 5. Source rates and congestion prices with Algorithm 1 (distributed
scheduling)
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Fig. 6. The average source rates and congestion prices with Algorithm 1
(distributed scheduling)

average link rates allocated to each flow. We see that the
routing pattern has been changed, due to the distributed
scheduling. Also note that every link is used in routing, since
each link has a chance to be a locally heaviest link.

Though its worst case performance bound is 1/2, our simu-
lation results show that the degradation of the performance of

TABLE II

AVERAGE RATES OF FLOWS AF (UPPER) AND BE (LOWER) THROUGH

DIFFERENT LINKS WITH ALGORITHM 1 (DISTRIBUTED SCHEDULING)

Rates A B C D E F

A 0 0.310 0.290 0 0 0
B 0 0 0 0 0 0.307
C 0 0 0 0.070 0.219 0
D 0 0 0 0 0 0.070
E 0 0 0 0 0 0.219
F 0 0 0 0 0 0

Rates A B C D E F

A 0 0.000 0 0 0 0
B 0 0 0.045 0.697 0 0.008
C 0 0 0 0 0.045 0
D 0 0 0 0 0.697 0
E 0 0 0 0 0 0
F 0 0 0 0 0.008 0

Algorithm 1 with distributed scheduling is small. Combined
with its low communication overhead, fast convergence, and
good performance with distributed scheduling, our cross-layer
design scheme is promising for practical implementation.

B. Time-varying Channel and Multi-rate Devices

We now consider the network with time-varying link ca-
pacity. For simplicity, we assume that links (C,E), (E,C),
(B,F ) and (F,B)’s capacities are identically, uniformly dis-
tributed over 0.5, 1 and 1.5 units, while other links’ capacities
are identically, uniformly distributed over 1, 2 and 3 units.
Thus, the average capacity for each link when active is the
same as that in the examples of last subsection.

We first simulate Algorithm 3 with perfect scheduling. Fig.7
and Fig.8 show the evolution of source rates, congestion prices
and their averages with the same step size γ = 0.1. The source
rates and congestion prices have much larger variations than
those with fixed channel, due to the channel variations. But
the average source rates and congestion prices are still smooth,
and converge quickly and monotonically to optimal values.
Note that, although the average link capacity when active is
the same as that in fixed channel, each flow achieves larger
sending rates. This is due to the multi-user diversity that we
exploit when doing scheduling. Also note that the increase
in sending rate of flow BE is much more notable. This is
because node B has four neighbors and thus a much larger
multi-user diversity.

Table III summarizes the average link rates allocated to
each flow. We see that the routing pattern has changed for
flow BE, while almost all the data for flow AF are routed
along the same pathes as those for the network with fixed link
capacities and perfect scheduling. This change is due to the
time-varying capacities, which makes every link have a chance
to be a globally heavy link for some channel state and thus
affects the paths each flow takes.

We next simulate Algorithm 3 with distributed, approximate
scheduling Algorithm 2. The results are shown in Fig.9 and
Fig.10. Compared to the results in the last subsection with
fixed capacities, the performance degradation of Algorithm 3
with distributed scheduling is very small, which means that
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Fig. 7. Source rates and congestion price with Algorithm 3 (perfect
scheduling)
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Fig. 8. The average source rates and congestion price with Algorithm 3
(perfect scheduling)

TABLE III

AVERAGE RATES OF FLOWS AF (UPPER TABLE) AND BE (LOWER TABLE)

THROUGH DIFFERENT LINKS WITH ALGORITHM 3 (PERFECT SCHEDULING)

Rates A B C D E F

A 0 0.328 0.390 0 0 0
B 0 0 0 0.074 0 0.253
C 0 0.001 0 0.243 0.147 0
D 0 0 0 0 0.022 0.295
E 0 0 0 0 0 0.169
F 0 0 0 0 0 0

Rates A B C D E F

A 0 0 0.104 0 0 0
B 0.104 0 0.032 0.504 0 0.211
C 0 0 0 0.012 0.124 0
D 0 0 0 0 0.443 0.072
E 0 0 0 0 0 0
F 0 0 0 0 0.283 0

channel variation improves the performance of the distributed
scheduling algorithm. To see how this happens, note that the
scheduling defined by (25) is optimal only at time t, but not
at other times due to channel’s time-variation. For example,
assume at time t link 〈B,A〉 is a globally heavy link but not
a locally heaviest link, and link 〈B,C〉 is a locally heaviest
link but not a globally heavy link. With perfect scheduling,
link 〈B,A〉 will be scheduled to transmit and 〈B,C〉 will not.
With distributed scheduling, link 〈B,C〉 will be scheduled
to transmit and 〈A,C〉 will not. Now, suppose at later time
slots link 〈A,C〉 has very low capacity while link 〈C,E〉
has a high capacity such that link 〈C,E〉 is scheduled to
transmit. In this situation, with perfect scheduling at time t
data will be stuck at A and thus the sending rate of flow
BE will decrease, but distributed, approximate scheduling at
time t will get more data to the destination. So, in a time-

varying environment, at any time t we cannot say that a
perfect scheduling is necessarily better than an approximate
one. Thus, the optimality of scheduling (25) is relatively not
that important, and a reasonable approximation works well.
Also, Table IV summarizes the link rates allocated to each
flow. As expected, the routing is more complicated in this
situation, since local optimal scheduling combined with time-
varying capacities makes every link has a good chance to be
scheduled for transmission.
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Fig. 9. Source rates and congestion price with Algorithm 3 (distributed
scheduling)
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Fig. 10. The average source rates and congestion price with Algorithm 3
(distributed scheduling)

TABLE IV

AVERAGE RATES OF FLOWS AF (UPPER) AND BE (LOWER) THROUGH

DIFFERENT LINKS WITH ALGORITHM 3 (DISTRIBUTED SCHEDULING)

Rates A B C D E F

A 0 0.330 0.361 0 0 0
B 0 0 0 0.095 0 0.239
C 0 0.006 0 0.232 0.123 0
D 0 0 0 0 0.004 0.323
E 0 0 0 0 0 0.127
F 0 0 0 0 0 0

Rates A B C D E F

A 0 0 0.053 0 0 0
B 0.053 0 0.128 0.523 0 0.144
C 0 0 0 0.010 0.169 0
D 0 0 0 0 0.498 0.035
E 0 0 0 0 0 0
F 0 0 0 0 0.179 0

Our simulation results have confirmed the conclusions from
Theorem 5 and 6, which say that the average source rates
and congestion prices approach the optimum of an ideal
system with the best feasible rate region at link layer, and
that Algorithm 3 can been seen as a distributed algorithm to
solve this ideal system problem. We also have seen that the
distributed scheduling algorithm works well with time-varying



channel, and the channel variations in fact help mitigate the
overall system’s degradation due to suboptimal design in one
layer.

VIII. CONCLUSIONS

We have presented a model for the joint design of con-
gestion control, routing and scheduling for ad hoc wire-
less networks by extending the framework of network util-
ity maximization and applying dual-based decompositions.
We formulate resource allocation in the network with fixed
wireless channels or single-rate wireless devices as a utility
maximization problem with schedulability and rate constraints
arising from contention for the wireless channel. By dual
decomposition, we derive a subgradient algorithm that is not
only distributed spatially, but more interestingly, decomposes
the system problem vertically into three protocol layers where
congestion control, routing and scheduling jointly solve the
network utility maximization problem. We also extend the dual
algorithm to handle the network with time-varying channel and
adaptive multi-rate devices, and surprisingly show that, despite
stochastic channel variation, it solves an ideal reference system
problem which has the best feasible rate region at link layer.

Dual algorithms for convex optimization formulations of
generalized network utility maximization have found many
applications recently for both deterministic and connection-
level stochastic models. We show that, for a large class of
such convex optimization problems, stability and average per-
formance are not affected by channel-level stochastic models.
This provides a general technique to carry out optimization-
based network designs in a time-varying environment.

Further research steps stemming out of this paper include
the following. First, unique features in our algorithm for prac-
tical implementations need to be further leveraged. Second,
we will extend the results to networks with more general
interference models and/or node mobility. Third, scheduling
problem is always a challenging problem for ad hoc network,
and continued exploration of distributed scheduling protocols
will further enhance the performance gain from cross-layer
design involving link layer. Fourth, we will formally quantify
the interesting observation that channel variations in fact help
mitigate the overall system’s degradation due to suboptimal
design in one layer.
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APPENDIX: PROOFS FOR THEOREMS 2, 3, 5 AND 6

(Theorem 2) Proof: By equation (18), we have

||p(t + 1) − p∗||22 = ||[p(t) − γg(p(t))]+ − p∗||22
≤ ||p(t) − γg(p(t)) − p∗||22
= ||p(t) − p∗||22 − 2γg(p(t))T (p(t) − p∗) + γ2||g(p(t))||22
≤ ||p(t) − p∗||22 − 2γ(D(p(t)) − D(p∗)) + γ2||g(p(t))||22

where the last inequality follows from the definition of sub-
gradient. Applying the inequalities recursively, we obtain

||p(t + 1) − p∗||22 ≤ ||p(1) − p∗||22 − 2γ
t∑

τ=1

(D(p(τ)) − D(p∗))

+γ2
t∑

τ=1

||g(p(τ))||22

Since ||p(t + 1) − p∗||22 ≥ 0, we have

2γ
t∑

τ=1

(D(p(τ)) − D(p∗)) ≤ ||p(1) − p∗||22 + γ2
t∑

τ=1

||g(p(τ))||22

≤ ||p(1) − p∗||22 + tγ2G2

From this inequality we obtain

1

t

t∑
τ=1

D(p(τ)) − D(p∗) ≤ ||p(1) − p∗||22
2tγ

+
γG2

2

Since D is a convex function, by Jensen’s inequality,

D(p(t)) − D(p∗) ≤ ||p(1) − p∗||22
2tγ

+
γG2

2

Thus, lim supt→∞ D(p(t))−D(p∗) ≤ γG2

2 , i.e., the algorithm
converges statistically to within γG2/2 of the optimal value.

(Theorem 3) Proof: By equation (18), we have

||p(t + 1)||22 ≤ ||p(t) − γg(p(t))||22
= ||p(t)||22 − 2γg(p(t))T p(t) + γ2||g(p(t))||22
= ||p(t)||22 + 2γ

∑
s

Us(xs(t)) − 2γ(
∑

s

Us(xs(t)) − ps(t)xs(t))

−2γ
∑
i,j,k

pk
i (fk

i,j(t) − fk
j,i(t)) + γ2||g(p(t))||22

≤ ||p(t)||22 + 2γ
∑

s

Us(xs(t)) − 2γ(
∑

s

Us(x
∗
s) − ps(t)x

∗
s)

−2γ
∑
i,j,k

pk
i (t)(fk

i,j(t) − fk
j,i(t)) + γ2||g(p(t))||22

= ||p(t)||22 + 2γP (x(t)) − 2γP (x∗) + γ2||g(p(t))||22
−2γ

∑
i,j,k

pk
i (t)(fk

i,j(t) − fk
j,i(t) − (x∗)k

i )

≤ ||p(t)||22 + 2γP (x(t)) − 2γP (x∗) + γ2||g(p(t))||22
where the second inequality follows from the fact that x(t) is
the maximizer in the problem (10), and the third inequality
follows from the fact that f(t) is the maximizer in problem
(11)-(12). Applying the inequalities recursively, we obtain

||p(t + 1)||22 ≤ ||p(1)||22 + 2γ
t∑

τ=1

(P (x(τ)) − P (x∗)) + γ2
t∑

τ=1

||g(p(τ))||22

Since ||p(t + 1)||22 ≥ 0, we have

2γ

t∑
τ=1

(P (x(τ)) − P (x∗)) ≥ −||p(1)||22 − γ2
t∑

τ=1

||g(p(τ))||22

≥ −||p(1)||22 − tγ2G2

From this inequality we obtain

1

t

t∑
τ=1

P (x(τ)) − P (x∗) ≥ −||p(1)||22 − tγ2G2

2tγ

Since P is a concave function, by Jensen’s inequality,

P (x(t)) − P (x∗) ≥ −||p(1)||22 − tγ2G2

2tγ

Thus, lim inft→∞ P (x(t)) ≥ P (x∗) − γG2

2 .
(Theorem 5) Proof: From the proof of Theorem 4, we

have

E[∆Vt(p)|p] = E[V (p(t + 1)) − V (p(t)) | p(t) = p]

≤ 2γ(D(p∗) − D(p)) + γ2G2

Taking expectation over p, we get

E[∆Vt(p)] = E[V (p(t + 1)) − V (p(t))] ≤ 2γ(D(p∗) − E[D(p)]) + γ2G2

Taking summation from τ = 0 to τ = t, we obtain

E[V (p(t + 1))] ≤ E[V (p(1))] − 2γ
t∑

τ=1

(E[D(p(τ))] − D(p∗)) + tγ2G2

Since E[V (p(t + 1))] ≥ 0, we have

1

t

t∑
τ=1

(E[D(p(τ))] − D(p∗)) ≤ E[V (p1)] + tγ2G2

2tγ

Note that p(t) is ergodic in some steady state by Theorem 4,
and so is D(p(t)). Thus,

lim
t→∞

1

t

t∑
τ=1

(E[D(p(τ))] − D(p∗)) = E[D(p(∞))] − D(p∗)

So,

E[D(p(∞))] − D(p∗) ≤ γG2/2.

Since D(p) is a convex function, by Jensen’s inequality,
D(E[p(∞)])−D(p∗) ≤ γG2/2, i.e., the algorithm converges
statistically to within γG2/2 of the optimal value D(p∗).

(Theorem 6) Proof: x(t) is a stable Markov chain,
since it is a deterministic function of congestion price p(t) and
p(t) is stable. The proof for the second part of the theorem is a
straightforward extension of the proof of Theorem 3, following
similar procedure as in the proof of Theorem 5. We skip the
details here.


