Cross-layer Optimization to Maximize Fairness
among TCP Flows of different TCP Flavors

Toktam Mahmoodi, Vasilis Friderikos, Oliver Holland, Hamid Aghvami
Centre for Telecommunications Research, King’s College London,
Strand, London WC2R 2LS, UK
{toktam.mahmoodi, vasilis.friderikos, oliver.holland, hamid.aghvami} @kcl.ac.uk

Abstract—A significant body of recent research has analyzed
the problematic behavior of TCP over wireless links, and a
plethora of modifications to TCP have been proposed in order
to increase its performance in such contexts. Two schools of
thought have emerged: the first proposes changes to the end-to-
end protocol, while the second explores the potential to enhance
lower layers as a means to improve the end-to-end performance
of TCP. This paper focuses on the latter, and in contrast to
most research in this area, which thus-far has concentrated on a
single TCP flavor, examines the case where different TCP flavors
are competing over a wireless link. To this end, we present and
assess a cross-layer solution that involves the adaptation of lower
layer characteristics (i.e., the coding rate) based on the detected
TCP flavor, in order to maximize the fairness among TCP flows.
Through extensive numerical investigations, we show that the
proposed scheme considerably improves the fairness over wireless
links among different TCP flavors. Our approach also has a
minimal effect on the aggregate throughput of the TCP flows,
and in cases where the packet error rate is very low, has a small
positive effect on throughput.

Index Terms—Transmission Control Protocol, FEC, Fairness,
Wireless Packet Transmission.

I. INTRODUCTION

Transmission Control Protocol (TCP) is the most widely
used reliable end-to-end transport protocol over the Internet. It
is expected that as the take-up of wireless technologies further
increases, TCP will used much more over wireless networks.
A significant body of work has therefore evolved over the past
few years aimed at improving the performance of TCP over
wireless networks [1]. Many such enhancement algorithms fit
into one of two categories, the first of which proposes changes
to the end-to-end protocol, and the second of which explores
the potential to enhance lower layers in order to optimize end-
to-end performance.

The mass of previous work on cross-layer design to improve
wireless TCP performance has thus far assumed that all
competing TCP flows are of the same flavor. However, with the
spiraling number of TCP flavors in operation over the Internet
[2], the end-to-end performance characteristics of TCP have
become increasingly diverse. In this paper, we therefore study
a more general framework where the different TCP flows are
heterogeneous in nature, i.e., they can be based on different
TCP flavors (such as Reno, NewReno, or TCP Westwood). In
this context, because TCP flavors react differently to random
packet losses, a significant degree of unfairness among TCP
flows can surface in terms of achieved end-to-end rates. The

performances seen by the different TCP flows are therefore
not only dependent on packet loss rates across the wireless
link, but also dependent on the TCP flavors of competing
flows. Hence cross-layer designs to improve end-to-end TCP
performance should also take into consideration the mix of
TCP flavors at the wireless link.

To this end, based on the constraints imposed by the
wireless link, we detail an optimization problem that strives
to maximize Jain’s fairness index in order to achieve a fairer
allocation with respect to realized end-to-end throughputs of
TCP flows. Moreover, through introducing an algorithm which
dynamically enhances link-layer characteristics, we propose a
means to maintain fairness among different TCP flavors com-
peting over wireless networks. This suggested algorithm builds
on our past work on top-down cross-layer TCP optimization
(e.g., [3] and [4]), and is compatible with active solutions to
improve end-to-end performances of reliable services, such as
[5].

This paper is structured as follows. In the next section,
we review the literature in terms of fairness studies among
TCP flows over wireless networks. In Section III, we briefly
introduce some common TCP flavors, and discuss their perfor-
mances and procedures under packet losses. We also discuss
TCP throughput modeling in Section III, thereby verifying
some aspects of our utilized analytical models. In Section
IV, we use Jain’s fairness index as an objective function for
our optimization framework, and propose a heuristic approach
to solve the resulting problem. Various numerical results are
presented in Section V, through which we argue the validity
of our approach. This paper concludes in Section VI.

II. RELATED WORK

As wireless networks become increasingly heterogeneous,
it is important for service providers to ensure that the QoS
obtained by different users and applications remains relatively
equal. Since the majority of applications in the Internet use
TCP, TCP’s fairness has been well studied in the literature.
The unfairness among TCP flows in WLAN networks is
investigated in [6] and [7], where it has been shown that
the base station’s buffer size affects fairness. Reference [6]
takes into account that the majority of applications involve
download rather than upload, and proposes a rate control
mechanism which modifies the TCP advertised window size in
order to avoid loss in the downlink buffer. In [7], a smoother

978-1-4244-2324-8/08/$25.00 © 2008 IEEE.

1

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.

rate control mechanism is proposed to improve fairness in
two highly congested scenarios that may cause starvation to
TCP connections. The first scenario studied is the case where
packets which belong to multiple TCP flows are competing in
the WLAN base station transmission buffer, and the second
scenario is where the base station is congested with TCP
ACKnowledgements (ACKs) to be transmitted to the mobile
users. The coefficient of variation of throughput is evaluated as
the “unfairness index” in that paper, whereby the authors show
that the performance of the above scheme is not affected by the
version of TCP (Reno and NewReno are studied). However,
neither in that publication, nor in the literature in general,
has the effect of combining multiple TCP versions on fairness
degradation been extensively studied.

Various different fairness measures have been proposed in
the literature. Jain’s Index, which was conceived to measure
fairness in computer networks [8], is a very well used measure
of fairness thanks to its advantageous mathematical properties.
Jain’s index is independent of the scale of the allocation metric,
and is bounded between 0 and 1. In addition, Jain’s index is
continuous such that any change in allocation also changes
the fairness. In this paper, we therefore utilize Jain’s index to
measure fairness among TCP flows in a wireless network.

Another issue important to this paper is the identification
of the TCP flavor. Referring to the literature in this area, TCP
flavors can be identified via the mechanism presented in [9].
Here, the TCP flavor and state are determined by monitoring
changes in the estimated congestion window (cwnd), where
the cwnd can be estimated passively at any point within the
network (i.e., at routers) using this approach. Of the TCP
flavors, TCP Reno, and TCP NewReno are covered by [9],
but TCP Westwood is not investigated. We therefore use
our own mechanism to identify TCP Westwood, whereby if
a DupACK-triggered loss indication does not result in an
approximate halving of the cwnd, the flavor is assumed to
be TCP Westwood by deduction.

III. TCP FLAVORS AND PACKET LOSSES

For the vast majority of the time, TCP connections are likely
to be in one of two phases: slow start or congestion avoidance.
In the slow start phase, TCP increases its cwnd exponentially,
leading to a doubling of the size of the cwnd per Round
Trip Time (RTT). In the congestion avoidance phase, which
is initiated upon the cwnd reaching the slow-start threshold
(ssthresh), the cwnd is increased linearly (by one packet per
RTT).

Packet losses in a TCP connection can be inferred by
the detection of Duplicate ACKnowledgements (DupACKs),
or by retransmission timer expirations. DupACKs (i.e., ac-
knowledgements where the sequence number has not been
incremented) are returned by the TCP receiver as an immediate
response to receiving an out-of-order segment. From the
sender’s perspective however, DupACKs might be caused by
a number of other issues (e.g., re-routing and traffic shaping)
in addition to packet loss. Hence, to be conservative, loss

detection is trigged only upon receiving three consecutive
DupACKs.

A. TCP Congestion Control in the Presence of Losses

In the presence of losses, the behavior of TCP congestion
control varies dependent on the TCP flavor. In this paper,
we concentrate on the TCP Reno (TCPR), TCP NewReno
(TCPNR), and TCP Westwood (TCPW) (which is built on
TCPR) flavors. Characteristics of these versions of TCP can
be summarized as follows.

TCPR congestion control [10], which can be considered
the baseline for modern TCP implementations, supports fast
retransmit and fast recovery upon segment losses. In TCPR,
when a sender detects a segment loss through a retransmission
timer expiration, the cwnd is set to one segment and the
ssthresh is set to half of the FlightSize, where the FlightSize
is the amount of outstanding data in flight within the network.
If it detects packet loss through incoming DupACKs, the TCP
sender invokes fast retransmit, which performs a retransmis-
sion of the lost segment immediately without having to wait
for timer expiry. Fast recovery, which is used in conjunction
with fast retransmit in TCPR and later flavors, sets the ssthresh
to half of the FlightSize and the cwnd to the ssthresh plus
three segments; this is deemed appropriate because although a
loss has happened, packets are still getting through hence any
reversion to slow-start would be far too severe. Upon receipt
of the next ACK for new data, the cwnd is set to ssthresh,
and congestion avoidance phase resumes. This received ACK
therefore acknowledges all segments sent between the initial
lost segment and its retransmission (including segments that
triggered DupACKs, as well as those transmitted since and
that were already in flight).

TCPR is known to generally not recover efficiently if there
are multiple losses in a single flight of packets. TCPNR on
the other hand presents a modification to the fast recovery
algorithm of TCPR to improve recovery from multiple packet
losses per window [11]. In the case of TCPNR, the ACK for
new data is a partial ACK. The algorithm then retransmits
the first unacknowledged segment, and deflates the congestion
window by the amount of new data acknowledged by the
cumulative acknowledgement field. Upon receipt of an ACK
which acknowledges all segments, fast recovery phase exits.

The mechanisms described above can handle competition
fairly well through cwnd and ssthresh changes in response to
congestion-related losses. However, in shared medium access
networks the available bandwidth for a TCP flow is highly
variable dependent on channel utilization and medium access
protocol dynamics. If a sudden change in available bandwidth
occurs, TCP may be too slow to converge to this bandwidth.
Moreover, TCPR/TCPNR are not usually robust when random
(e.g., wireless) losses occur, as they misinterpret these losses as
being caused by congestion. Alternatively, TCPW [12], which
only requires modifications to the sender-side TCP, has been
proposed to solve these problems. In response to a packet loss
as detected by DupACKs, TCPW sets the cwnd and ssthresh
to an estimated eligible bandwidth (BWE), which is calculated

978-1-4244-2324-8/08/$25.00 © 2008 IEEE.

2

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.

51
m
Q
s
=4
3
Q
<
[=2)
3
£ 3r
=
°
[=
w
é ol | = TCPR (analysis)
5 —<— TCPNR (analysis)
& —o&— TCPW (analysis)
1 x -+ TCPR (simulation)
v -+ TCPNR (simulation)
O - TCPW (simulation) v
0 5 ‘74 ‘73 2
10 10 10 10
Packet loss probability
Figure 1. Single-flow analytical model and simulation results comparison

for TCPR, TCPNR, and TCPW.

by low-pass filtering the rate of incoming ACKs (i.e., if ACKs
are being returned at a certain rate, then packets are getting to
the receiver at that same rate hence the network can support
that rate). Moreover, if a loss is the result of DupACKs, the
values for cwnd and ssthresh are set to

ssthresh = BWE - RTT yin/SegmentSize,

cwnd = min(cwnd, ssthresh),

whereas in the case of a retransmission timer expiring under
TCPW, these values are set to

ssthresh = max(BWE - RTT ,in/SegmentSize, 2),
cwnd = 1.

B. TCP Throughput Modeling

The three TCP flavors described previously are analyti-
cally modeled in the literature [13][14][15][16]. These models
express TCP throughput as a function of the Packet Error
Rate (PER) and the end-to-end RTT that each TCP flow
experiences. Using these models, we study the effect of PER
on the TCP throughput of each flavor. Furthermore, each TCP
flavor is also simulated in a single-flow scenario in OPNET,
and the results are compared. OPNET implementations of
TCPR and TCPNR are based on the existing RFCs; the
simulation code for TCPW in OPNET has been created by
ourselves based on adapting the available ns-2 model.

The same conditions of 100ms RTT, 6Mbps bottleneck
link, and a random packet loss rate varied in range [1072,
10~2] are applied to the analytical model and the OPNET
simulations; moreover, the simulations are all performed over
a download file size of 16MB (approximately 11,000 packets)
where packet size is 1460B. Figure 1 clearly shows that these
three versions of TCP react significantly different when the
packet loss increases. In addition, Figure 1 gives a comparison
of the OPNET TCP models, with the analytical models.

For simplicity in using the analytical TCP throughput
models in our framework, without loosing the generality, we
assume that the packet loss is detected only via DupACKs,

hence TCP does not face timer expiration.

Under the assumption of independency of packet losses
between rounds, and that the sender’s rate is not limited by
the receiver’s advertised window, a closed form for TCPR
throughput in the steady state is proposed in [13] and revised
in [14]. This gives the TCPR throughput, Bg (p), as follows,

B =2+ B[W]
CRIT(5-EW]+b+1)

In the above expression, b represents the number of down-
load packets that each acknowledgement applies to (in the
most commonly used implementations of TCP, the default
value of this is 1), p is the packet loss probability, and RTT
is the average value of the RTT. Packet loss is only detected
via DupACKs. Finally, E[WW], the expectation of the cwnd, is

3b—2

defined by,
8(1—p) (3b—2\°
. 2
3b +\/ 3bp +(3b>)

An analytical model for TCPNR throughput is proposed in
[15], where the same assumptions as above apply. This model
gives

Br (p) (D

EW] =

Ban(p) = 1—p+ E[W]
N RTT-(1)2E[W]+b(1/2E[W]+ 1)+ 1)
(3
where,
b+25
%4’
s(1-p) , 4(°+6-2) bios)? s
E[W]= T T _’_(3;%2)’ 6 < E[W]
—3b-1 S(=p). (—%_1)2 otherwise
3b+1 P(36+1) 3b+1) :
4)

and 0 is the average number of segments lost per loss event.

A TCPW analytical throughput model is proposed in [16].
In this model, it is assumed that the system is always in the
congestion avoidance phase, and that only a single packet
loss occurs in each cycle. Denoting 7' as the RTT excluding
queuing delay in buffers, ;x as the packet transmission rate
(assumed to be constant), and B; as the burst at which the
pipe capacity is reached, throughput model is formulated. &*
is determined from k* = C' — Wy + 1, where C is the pipe
capacity and W, is the initial congestion window. Assuming
that the buffer can hold up to B packets, the packet number
dropped due to buffer overflow, n,f, can be formulated as
follows,

Nog = Sk + 2(C + B), 5)
where s is the first packet of burst By,
k(k—1
skzl—l—(WO—l)(k‘—l)—l-%. (6)

Denoting the number of the burst that contains packet number
n as ky, and the offset of the packet in burst By, as r,,

fn= | -Wo+ 3+ JWg - Wo—T+2:n],
Tk, =N — Sk,,-

N

978-1-4244-2324-8/08/$25.00 © 2008 IEEE.

3

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.

The instant at which the nth ACK is received is then given by

t(Wmn) = {

The probability pyy, ., that packet n is dropped is expressed
as

r

Tkn, + ﬁ,
n—spx*

T+ + Tk’

’I’LSSk’u

®)

n > Sk*.

)nil y N <TNof (WO)a

n=mnes (Wo).

_fp-p
Pwy,n = (1 _p)n—l

Finally, denoting 7y, as the asymptotic probability of the
initial window size being W), the average throughput is given
by

€))

Nof

5 Y nol T

Wo=2 nl

By = (10)

IV. FAIRNESS AMONG TCP FLOWS IN MULTIPLE-FLAVOR
SCENARIOS

In the case where all flows are based on the same TCP
flavor, congestion control algorithms guarantee fairness among
TCP flows. However, in cases where multiple TCP flavors are
coexisting in the network, fairness is affected by the different
reactions of TCP flavors to packet losses. In this work, the
well-known Jain’s Fairness Index is used to measure fairness
[8]. Jain’s index is defined by the following equation:

: =7C(Pi)>2

(5

where n is the number of TCP flows, p; the associated PER
for flow 4, [P], = p;, and z(p;) expresses the ratio between
the TCP throughput and the optimal throughput that can be
achieved by each TCP flow as shown in Equation (12).

By (pi
z(pi) = #
Optimal

J(P) = ; an

12)

A. Problem Definition

We consider n TCP flows, denoted by ¢ = 1..n, where each
TCP flow ¢ can be served by any one three flavors Reno,
NewReno or Westwood, enumerated by & = 1..3. These n
flows compete for the limited capacity of the wireless link,
where their throughputs are affected by the wireless error rate
as described in Section III-B. Therefore, the throughput of
each flavor is given By, (p;) as a function of the corresponding
flow’s PER, p;. Assume that the probability of a packet
being in error can be adjusted according to p; - 10%¢ due
to the specified link-layer error recovery algorithm. There-
fore, the description of TCP throughput can be adjusted to
By, (p; - 10¥¢). Our aim is to maximize fairness among the
n flows chosen among k£ TCP flavors. As mentioned above,
x(p;) is the normalized TCP throughput with the optimal rate
value which can be achieved by each flow. The optimal TCP
rate for flow 7 is defined as the TCP throughput when all the
other n— 1 users have the same TCP flavor and the PER is the

minimum feasible value, p; - 10~°. In this work, we consider
an optimization problem with the objective function being to
maximize Jain’s fairness index. In addition, we illustrate that
maximizing the fairness index under this framework does not
affect the overall TCP throughput significantly. The proposed
non-linear optimization problem is outlined below:

n 2
(£)
(P) : maximize J(P) = ~=L 72
n- ;x(pz)
subject to,
> Bi(p) <W, Vke{l.3}, (13)
i=1
pi - 107¢ < p; <p;-10° Vie {l.n}, (14)
0<p; <1, Vie{l.nl), (15)

where W is the channel capacity which depends on the
wireless access method.

The TCP throughput is a non-linear but differentiable func-
tion over p; - 10¥¢. The details of the congestion control
algorithm behavior and the throughput modeling for TCPR,
TCPNR and TCPW, are described in Section III, hence we
utilize the throughput expressions of Equations (1), (3), and
(10). It is assumed that TCP connections are sufficiently long-
lived and are greedy in competing to access bandwidth.

B. Using the Logarithmic Barrier Method to Solve the Opti-
mization Problem

The above problem needs to be solved in real time, at base
stations. Here we therefore transform the problem such that
Newton’s method can be applied ([17], Chapter 9.5). It is
noted that the constrained problem (P) can be approximated
as an unconstrained optimization problem with the Logarith-
mic barrier function ([17], Chapter 11.2). However, through
approximating with the Logarithmic barrier function, the in-
equality constraints of Equations (13)-(15) can be implicit
in the objective function (see problem P). The optimization
problem can therefore be rewritten as

minimize Y (P) = —J(P) — 1/t - &(P), (16)
where
o) = 1og (= 5 B+ W) +
3" log (—B(p:) + By(pi - 1072)) +
i1 (17)
;1 og (Br(pi) — Br(pi - 10°)) +
iflog<pn«+ 3 log (1 - pi).

i=1

.
\ |

The parameter ¢ sets the accuracy of the approximation; in the
other words, the approximation becomes more precise as the
parameter ¢ grows. The modified objective function is convex,
therefore Newton’s method can be used to solve it.

978-1-4244-2324-8/08/$25.00 © 2008 IEEE.

4

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.

0.7 B

0.6 B

CDF

0.5F 1

0.4 B

0.1 . . .
0 10 20 30 40 50
Number of lterations

Figure 2. CDF of the number of iterations required in solving the problem
using Newton’s method.

We define the Hessian Matrix to formulate the Newton step:

H=-V>J(P) + (~1/t) - V*®(P), (18)
giving Ap,,;, the Newton step as,
Apny = H™ '+ (V = J(P) + (=1/t) - VO(P)), (19)

where V and V? are the first and the second gradient.

The optimal values of p; are the results of the Newton
iterations initiated from the current operation point of each
flow. This iteration is described in further detail as follows:

1) Start from the current operational point as py—1,

2) Compute the first gradient, VY (P), and the second

gradient, H, of the objective function,

3) Compute Ap,; (= prr1 — pr) from Equation (19),

4) If VY (P)|| < ¢ stop,

else go back to 2.
We increase parameter ¢ in sequential steps, whereby as
mentioned earlier, increasing ¢ increases the accuracy of the
approximation. When ¢ is large, the problem is difficult to
solve by Newton’s method, as its Hessian varies rapidly near
the boundaries. In our problem, it can be seen that setting ¢
to five leads to the optimal region.

It can be seen in Figure 2 that, given this approximation,
the problem is solved in a small number of iterations. Figure
2 shows that, the heuristic approximation is solved in a
maximum 50 iterations, while the average number of required
iterations is approximately 12. Moreover, in 70% of cases, the
optimal value is attained in less than 15 iterations.

V. NUMERICAL RESULTS

The optimization problem (P), has been solved using MAT-
LAB’s optimization Toolbox. TCP’s PER is assumed to be a
random variable in the range [107°, 1072], and e is 2, thus
the exponent of PER is bounded by £2.

It is assumed that all the flows terminate at the same point
in the wired network, which results in an equal RTT for all

flows, set as 100ms in this work. Thus, unfairness arises solely
from reactions of TCP flavors to packet losses.

Our simulation scenarios need to be defined over a system
which supports adaptive coding, such as a WLAN. We there-
fore assume an IEEE802.11a network with a 54Mbps data rate.
15 mobile users connect to the end-host via a unique wireless
access point, and each user receives a single TCP flow. The
optimization framework is implemented in the access point
through which all 15 flows pass. The PER can be varied by
changing the code rate of the Forward Error Correction (FEC)
scheme. It can be assumed that over a small period of time
the wireless channel is fixed, therefore the operating values
of PER are entered to the optimization framework, and the
optimal values are computed for each flow. To examine the
fairness level achieved, we study three different Scenarios over
a small time frame.

In Scenario 1, there are five flows of each TCP flavor
(TCPR, TCPNR, and TCPW). In Scenario 2, there are nine
flows of TCPR, four flows of TCPNR, and two flows of
TCPW. Finally, in Scenario 3, there are three flows of TCPR,
eight flows of TCPNR, and four flows of TCPW. Under the
three scenarios, Figures 3(a)-5(a) presents results showing the
achieved fairness over the wireless link for our proposed cross-
layer optimization of the link-layer, compared with the fairness
among TCP flows that would be achieved otherwise. It is
clear that our optimization approach has an extremely positive
effect on the fairness achieved among the flows. In these three
scenarios, we can see up to 50% increase in the fairness
index. The increment in the fairness index is considerable in
the high values of PER where, the end-to-end performance is
more affected by the errors. As the probability of a packet in
error gets smaller, the improvement in the fairness is also less
significant.In average over the range of PER values, fairness
is increased approximately 12.5% using our scheme.

The effect of our fairness maximization scheme on TCP
throughput also needs to be investigated. The aggregated TCP
throughput, for the three studied scenarios, are plotted against
the average PER in Figures 3(b)-5(b). It can be seen that,
given a small PER, the aggregated TCP throughput remains
the same and in some cases slightly increased under which
case the improvement in the fairness is not considerable. As
the PER increases however, the improvement in the fairness
index becomes significant while the aggregate TCP throughput
is decreased. From Figures 3(b)-5(b) we can see that at the
PER value of 103, overall throughput starts to decrease.

To summarize, the results for the three studied scenarios
show that the fairness index is increased on average by 12.5%,
or potentially by up to 50% through our scheme, while across
all PERs the decrease in aggregate throughput through our
scheme is approximately 4% on average.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a cross-layer mechanism
to optimally set the FEC rate at the link-layer for packet
transmissions, based on the end-to-end TCP flavor for each
flow as detected at the wireless link. We have demonstrate a

978-1-4244-2324-8/08/$25.00 © 2008 IEEE.

5

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.

&8

—p -0-00
—— Sc.1: Iniial Operating Points
— ©— Sc.1: Optimization results

107" 10° 107 10° 107° 107

Average PER

Jain Fairness Index
°
&
Overall TCP Throughput (Mbps)

—— Sc.1: Iniial Operating Points
085F | — -0 - Sc.1: Optimization results

")

=

10°
Average PER

(a) Fairness Index (b) Aggregated TCP throughput

Figure 3. Results for our cross-layer optimization scheme compared with
what would otherwise be achieved, for scenario 1.

Jain Fairness Index
°
&
Overall TCP Throughput (Mbps)

—p— Sc.2: Initial Operating Points X
0.65[| — -o— - Sc.2: Optimization results

=

5
—p— Sc.2: Initial Operating Points
~ -8- - Sc.2: Optimization results

107 10° 107 ¢ 10° 107

107
Average PER

10° 107

10°
Average PER

(a) Fairness Index (b) Aggregated TCP throughput

Figure 4. Results for our cross-layer optimization scheme compared with
what would otherwise be achieved, for scenario 2.

framework to maximize fairness among competing TCP flows
of different flavors across wireless links. Numerical results
for our framework indicate up to 50% improvement in the
Jain’s fairness index as compared with a conventional fixed
coding choice, while the overall TCP throughput is minimally
affected (or is actually improved in cases of low packet error
rate, due to the implied coding benefits of our scheme).
Moreover, we present a heuristic optimization approach to find
the optimum link-layer coding in the wireless base station,
whereby convergence of the proposed scheme is studied.
Although we study three well-used TCP flavors in this
paper, it would also be useful to expand the frame work to
include TCP options (e.g., SACK). Another area of interesting
future work would be to investigate the performance of the
proposed scheme in advanced network-level simulations.

VII. ACKNOWLEDGMENT

The work reported in this paper has formed part of the
Delivery Efficiency Core Research Programme of the Virtual
Centre of Excellence in Mobile & Personal Communications,
Mobile VCE, www.mobilevce.com. This research has been
funded by EPSRC and by the Industrial Companies who are
Members of Mobile VCE. Fully detailed technical reports on
this research are available to Industrial Members of Mobile
VCE.

REFERENCES
[1]1 V. Tsaoussidis and 1. Matta, “Open Issues on TCP for Mobile Com-

puting,” Wireless Comm. and Mobile Computing, vol. 2, pp. 3-20, Feb.
2002.

—— Sc.3: Initial Operating Points
— —#— - Sc.3: Optimization results

—— Sc.3: Initial Operating Points
085['| — —— - 50.3: Optimization results

=

N 107 107

10°
Average PER

107 107 10" 10° 107

10°
Average PER

(a) Fairness Index (b) Aggregated TCP throughput
Figure 5. Results for our cross-layer optimization scheme compared with
what would otherwise be achieved, for scenario 3.

[2] A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of
Transport Protocols in the Internet,” Comp. Comm. Review, vol. 35,
pp. 37-52, Apr. 2005.

[3] T. Mahmoodi, V. Friderikos, O. Holland, and A. H. Aghvami, “Cross-
Layer Design to Improve Wireless TCP Performance with Link-Layer
Adaptation,” Proc. IEEE VTC Fall, pp. 1504-1508, Maryland, Oct.
2007.

[4] T. Mahmoodi, O. Holland, V. Friderikos, and A. H. Aghvami, “Cross-
Layer Optimization of the Link-Layer based on the Detected TCP
Flavor,” proc. IEEE PIMRC’08, France, Sep. 2008.

[5]1 O. Holland, T. Mahmoodi, and A. H. Aghvami, “A Software Download
Management Module,” Proc. IEEE VTC Fall, pp. 1984-1989, Maryland,
Oct. 2007.

[6] S. Pilosof, R. Ramjee, Y. Shavitt, and P. Sinha, “Understanding TCP fair-
ness over Wireless LAN,” Proc. IEEE INFOCOM’03, vol. 2, pp. 863—
872, California, Mar. 2003.

[7] N. Blefari-Melazzi, A. Dett, I. Habib, A. Ordine, and S. Salsano,
“TCP Fairness Issues in IEEE 802.11 Networks: Problem Analysis and
Solutions Based on Rate Control,” IEEE Trans. Wireless Comm., vol. 6,
pp. 1346-1355, Apr. 2007.

[8] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure Of Fairness
And Discrimination For Resource Allocation In Shared Computer Sys-
tems,” DEC Research Report TR-301, Sep. 1984.

[9]1 S.Jaiswal, Measurement in the Middle: Inferring End-End Path Proper-

ties and Characteristics of TCP Connections through Passive Measure-

ment. PhD thesis, University of Massachusetts Amherst, Sep. 2005.

M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,” IETF

RFC 2581, Apr. 1999.

S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to

TCP’s Fast Recovery Algorithm,” IETF RFC 3782, Apr. 2004.

R. Wang, K. Yamada, M. Y. Sanadidi, and M. Gerla, “TCP with Sender-

side Intelligence to handle Dynamic, Large, Leaky Pipes,” IEEE J Sel.

Areas Comm., vol. 23, pp. 235-248, Mar. 2005.

J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP

Reno Performance: A Simple Model and Its Empirical Validation,”

IEEE/ACM Trans. Net., vol. 8, pp. 133—145, Apr. 2000.

Z. Chen, T. Bu, M. Ammar, and D. F. Towsley, “Comments on Modeling

TCP Reno Performance: A simple model and its Empirical Validation,”

IEEE/ACM Trans. Net., vol. 14, pp. 451-453, Apr. 2006.

R. Dunaytsev, Y. Koucheryavy, and J. Harju, “TCP NewReno Through-

put in the Presence of Correlated Losses: The Slow-but-Steady Variant,”

Proc. IEEE INFOCOM’06, Global Internet Workshop, pp. 115-120,

Spain, Apr. 2006.

A. Zanella, G. Procissi, M. Gerla, and M. Y. Sanadidi, “TCP Westwood:

Analytic Model and Performance Evaluation,” Proc. IEEE GLOBE-

COM’01, vol. 3, pp. 1703-1707, Texas, Dec. 2001.

S. Boyds and L. Vandenberghe, Convex Optimization.

University Press, 2004.

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17] Cambridge

978-1-4244-2324-8/08/$25.00 © 2008 IEEE.

6

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE "GLOBECOM" 2008 proceedings.

