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Abstract— Traditionally, routing is considered solely as a
network layer problem and has been decoupled from application
layer objectives. Although such an approach offers simplicity
in the design of the protocol stack, it does not offer good
performance for certain applications such as video. In this
paper, we explore the problem of how to perform routing
with the objective of optimizing application layer performance.
Specifically, we consider how to perform multipath routing for
multiple description (MD) video in a multi-hop wireless network.
We formulate this problem into an optimization problem with
application performance metric as the objective function and
routing and link layer considerations as constraints. We develop
a formal branch-and-bound framework and exploit the so-called
Reformulation-Linearization Technique (RLT) in the solution
procedure. We show that this solution procedure is able to
produce a set of routes whose objective value is within (1 − ε)
of the optimum. We use simulation results to substantiate the
efficacy of the solution procedure and compare the performance
with that under non-cross-layer approach.

Index Terms— Video communications, multipath routing, mul-
tiple description (MD) coding, optimization.

I. INTRODUCTION

RECENTLY, there has been considerable interest in sup-
porting video applications in multi-hop wireless net-

works (e.g., ad hoc networks or mesh networks). The dynamic
characteristics associated with multi-hop wireless networks
(e.g., mobility, topology change, radio fading and loss) have
posed some unique challenges for video communications.
Existing routing protocols for such networks (e.g., OLSR
[5], DSR [8], AODV [14]) mainly focus on network layer
connectivity problem and do not have explicit consideration
for video application requirements. As a result, such single
layer (network layer) approaches are not optimal to support
video applications.

In this paper, we investigate the important problem of
how to design routing protocols so as to optimally support
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video applications in multi-hop wireless networks. We aim
to develop a cross-layer approach where the routing decision
takes explicit consideration of the application layer objective
function. In other words, the routing engine at the network
layer will not only find routes for connectivity, but will find
optimal routes such that the application layer performance
metric (e.g., PSNR) is maximized.

Throughout this investigation, we will employ multiple
description (MD) video as our target application. MD video is
an important coding technique for error resilience and control
for multimedia applications [17] and has been recognized as
an ideal candidate for video streaming in multi-hop wireless
networks [10]. Under MD coding, multiple equivalent streams
(or descriptions) are generated for a video source for transmis-
sion. At the receiver, any received subset of these descriptions
can be combined to reconstruct the original video and the
quality of the reconstructed video is commensurate with the
number of received descriptions. This video coding technique
is drastically different from traditional layered video coding,
where video reconstruction hinges upon successful delivery of
the base layer.

From cross-layer routing perspective, the problem is to find
a set of routes (or paths) in multi-hop wireless networks, one
for each video description such that the video distortion is
minimized. The optimal multipath routing problem considered
in this paper is formulated into a mixed-integer non-linear
programming (NLP) problem. Such problems are shown to be
NP-hard in general [16]. In a previous work [9], we studied
this problem and addressed it using Genetic Algorithms (GA).
Although GA is an effective algorithm, it nevertheless is a
metaheuristic which does not provide any performance bounds
on how close the solution is to the optimal. As a result, a
theoretical result for multipath routing for MD video remains
an open problem.

In this paper, we aim to bridge this important theoretical
gap in cross-layer optimization for video communications. We
present a formal solution procedure based on the so-called
branch-and-bound [12] framework, which aims to produce an
(1 − ε)-optimal solution. Here ε > 0 is an arbitrarily small
number reflecting required accuracy. A key component in the
solution procedure is a novel method called the Reformulation-
Linearization Technique (RLT) [15], which in essence pro-
duces tight lower bound for a minimization problem. A
global optimal solution can be obtained by embedding RLT
into the branch-and-bound framework. That is, during each
branch-and-bound iteration, we employ RLT to generate an LP
relaxation for the corresponding sub-problem, and by solving
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this LP relaxation we generate a lower bound for the sub-
problem. The corresponding upper bound is computed by a
suitable local search algorithm on the solution provided by the
LP relaxation. Based on the bounds of all the sub-problems
currently in the branch-and-bound tree, the gap between the
lower and upper bounds of the original problem is narrowed
iteratively, until they are within ε of each other.

The remainder of this paper is organized as follows. In
Section II, we present the problem formulation. In Section III,
we describe an RLT-based approach to reformulate and lin-
earize the problem. Section IV presents a branch-and-bound-
based solution procedure. In Section V, we briefly discuss
implementation issues. Simulation results are presented in
Section VI, and related work is discussed in Section VII.
Section VIII concludes this paper.

II. PROBLEM FORMULATION

A. Network Model

We model a multi-hop wireless network as a directed graph
G{V , E}, where V is the set of vertexes representing wireless
nodes and E the set of edges representing wireless links.
We assume that nodes are reliable during the video session,
but links may be up or down with certain probabilities. For
our routing problem, we focus on network layer statistics,
assuming that the physical and MAC layer dynamics from the
underlying radio environment are reflected in these metrics.
We characterize a link {i, j} ∈ E with (i) bij : the available
bandwidth of link {i, j}; (ii) pij : the probability that link {i, j}
is “up”; (iii) lij : average burst length for packet losses on
link {i, j}. Based on these basic metrics, we can derive path-
level bandwidth and failure probability, which are useful to
characterize end-to-end performance at the video application
layer (i.e., distortion). Table I summarizes the notation used
in this paper.

B. Video Distortion and Path Level Statistics

1) Video Distortion: Consider a video session from video
server s to client t. We assume that the video is encoded
into two descriptions, i.e., double description (DD) video, each
with a rate Rh bits/pixel, h = 1, 2. We consider DD video
since it is most widely used for MD video [2]–[4], [10]. Let dh
be the achieved distortion when only description h is received,
h = 1, 2, and d0 the distortion when both descriptions are
received. In this paper, we employ the following distortion-
rate function [1], [9]:⎧⎨

⎩
d0 = 2−2(R1+R2)

2−2R1+2−2R2−2−2(R1+R2) · σ2

d1 = 2−2R1 · σ2

d2 = 2−2R2 · σ2,

(1)

where σ2 is the variance of the source.
From end-to-end perspective, let π00 denote the probability

of receiving both descriptions, π01 the probability of receiving
description 1 only, π10 the probability of receiving description
2 only, and π11 the probability of losing both descriptions.
Then, the expected average video distortion at the receiver
can be approximated as:

D = π00 · d0 + π01 · d1 + π10 · d2 + π11 · σ2. (2)

TABLE I

NOTATION

Symbol Definition
G{V , E} Graph representation of the network
V Set of vertexes
E Set of edges
s Source node
t Destination node
P A path from s to t
{i, j} A link from node i to node j
bij Bandwidth of link {i, j}
pij Success probability of link {i, j}
lij Average length of loss burst on link {i, j}
Rh Rate of description h in bits/pixel, h = 1, 2
R For balanced descriptions, R = R1 = R2

d0 Distortion when both descriptions are received
dh Distortion when only description h is received,

h = 1, 2
D Average distortion
Ton Average “up” period of the joint links
Λ “up” to “down” transition prob. for J (P1,P2)
Ψ “down” to “up” transition prob. for J (P1,P2)
π00 Probability of receiving both descriptions
π01 Probability of receiving description 1 only
π10 Probability of receiving description 2 only
π11 Probability of losing both descriptions

I
(h)
ij Routing index variables, defined in (3)

αij “up” to “down” transition prob. of link {i, j}
βij “down” to “up” transition prob. of link {i, j}
pjnt Average success prob. of joint links

p
(h)
dj Average success prob. of disjoint links on Ph

Note that our solution procedure presented later in this paper
does not depend on the specific structure of the distortion-rate
function.

2) Path-Level Statistics: To characterize a path Ph between
source node s and destination node t, we define:

I
(h)
ij =

{
1, if link {i, j} ∈ Ph,
0, otherwise.

(3)

An arbitrary path Ph can then be represented by a vector I(h)

of |E| elements, each corresponding to a link and having a
binary value.

For a source-destination pair {s, t}, consider two given
paths [P1,P2] in G{V , E}. Since we do not mandate “disjoint-
edness” between the two paths, P1 and P2 may share nodes
and links. For each link {i, j}, the aggregate description rate
should be bounded by its available bandwidth as

I
(1)
ij · R1 + I

(2)
ij · R2 ≤ ρ · bij , (4)

where ρ is a constant. For a video with coding rate f frames/s
and a resolution of W × V pixels/frame, we have ρ = 1/(κ ·
W · V · f), where κ is a constant determined by the chroma
sub-sampling scheme (e.g, κ = 1.5 for QCIF).

We now focus on how to compute the end-to-end path
statistics. Similar to the approach in [2], [3], we classify the
links into three sets: set one consisting of links shared by both
paths, denoted as J (P1,P2), and the other two sets consisting
of disjoint links on the two paths, denoted as J̄ (Ph), h = 1, 2,
respectively. For disjoint portion of the paths, it suffices to
model the packet loss as a Bernoulli event, since losses of the
two descriptions are assumed to be independent on disjoint
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Fig. 1. Link and path models.

portions. The success probabilities on the disjoint portions are:

p
(h)
dj =

{ ∏
{i, j} ∈ J̄ (Ph) pij , if J̄ (Ph) �= ∅, h = 1, 2

1, otherwise, h = 1, 2.
(5)

On the joint portion of the paths, losses on the two streams
are correlated. In order to model such correlation, we model
each shared link {i, j} as an on-off process modulated by a
discrete-time Markov chain, as shown in Figure 1(a). There is
no packet loss when the link is “up”; all packets are dropped
when the link is “down”. Transition probabilities, {αij , βij},
can be computed from the link statistics as βij = 1/lij and
αij = (1 − pij)/(pij lij).

If there are K shared links, the aggregate failure process
of these links is a Markov process with 2K states. In order to
simplify the computation, we model the aggregate process as
an on-off process. Specifically, we lump up all the states with
at least one link failure into a single “down” state, while using
the remaining state where all the links are in good condition
as the “up” state. Let Ton be the average length of the “up”
period. We have

Ton =
1

1 − ∏
{i, j} ∈ J (P1,P2)

(1 − αij)
. (6)

The transition probabilities of the aggregate on-off process can
be computed as

Λ =
1
Ton

, Ψ =
pjnt

Ton(1 − pjnt)
, (7)

where pjnt is the average success probability of the joint
portion, and

pjnt =
{ ∏

{i, j} ∈ J (P1,P2)
pij , if J (P1,P2) �= ∅

1, otherwise.
(8)

Note that Λ = 0 and Ψ = 0 if J (P1,P2) = ∅.
The consolidated path model is illustrated in Figure 1(b),

where J (P1,P2) is modeled as a two-state Markov process
with parameters {Λ,Ψ}, and J̄ (Ph) is modeled as a Bernoulli
process with parameter (1 − p

(h)
dj ), h = 1, 2. With the

consolidated path model, the joint probabilities of receiving

the descriptions are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π00 = pjnt · (1 − Λ) · p1
dj · p2

dj

π01 = pjnt · p1
dj ·

[
1 − (1 − Λ) · p2

dj

]
π10 = pjnt ·

[
1 − (1 − Λ)p1

dj

]
· p2
dj

π11 = 1 − pjnt ·
[
p1
dj + p2

dj − (1 − Λ) · p1
dj · p2

dj

]
.

(9)

C. Problem Formulation

We can now formulate the problem of multipath routing
for MD video into the following mathematical programming
problem.

OPT-MR

Minimize:

D = π00 · d0 + π01 · d1 + π10 · d2 + π11 · σ2 (10)

subject to:∑
j∈V

I
(h)
ij −

∑
j∈V

I
(h)
ji

=

⎧⎨
⎩

1, if i = s, i ∈ V , h = 1, 2
−1, if i = t, i ∈ V , h = 1, 2

0, otherwise,
(11)

∑
j∈V

I
(h)
ij

{ ≤ 1, if i �= t, i ∈ V , h = 1, 2
= 0, if i = t, i ∈ V , h = 1, 2 (12)

I
(1)
ij · R1 + I

(2)
ij · R2 ≤ ρ · bij , {i, j} ∈ E (13)

I
(h)
ij ∈ {0, 1}, {i, j} ∈ E , h = 1, 2. (14)

In Problem OPT-MR, {I(h)
ij } are binary optimization vari-

ables (incorporated in π00, π01, π10, and π11). Constraint
(11) guarantees that the paths originate at the source s and
terminate at the destination t, and constraint (12) ensures that
the paths are loop-free. Constraint (13) guarantees that the
links are stable. For a given pair of paths, the average video
distortion D is determined by the end-to-end statistics and the
correlation of the paths, as given in (1) and (9).

The objective function (10) is a complex ratio of high-order
exponentials of the I-variables. The objective evaluation of a
pair of paths involves identifying the joint and disjoint por-
tions, which is only possible when both paths are completely
determined. Since such problems are NP-hard in general [7],
and Problem OPT-MR does not appear to posses any special
simplifying structure, it is likely to be NP-hard, although a
formal proof is not given in this paper.

III. REFORMULATION AND LINEARIZATION

Our solution approach to problem OPT-MR is to embed the
novel reformulation-linearization technique (RLT) in a branch-
and-bound framework [15]. RLT is a relaxation technique that
can be used to produce tight polyhedral outer approximations
or linear programming relaxations for an underlying non-
linear, non-convex polynomial programming problem. In the
following, we first reformulate problem OPT-MR into a mixed-
integer polynomial programming problem P-MR. Then, we
replace all the non-linear terms and add the corresponding
RLT constraints into the problem formulation, so as to obtain a
linear programming relaxation of problem OPT-MR, denoted
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Fig. 2. Polyhedral outer approximation for y = log(λ) with 0 < λ0 ≤
λ ≤ 1.

as L-MR. In the next section, we will develop a branch-and-
bound based procedure that finds (1 − ε)-optimal solution.

A. Reformulating Problem OPT-MR

As discussed, the objective function of problem OPT-MR
is a complex function of exponential terms of the I-variables.
Our first goal is to reformulate these terms, which will simplify
the objective function and the constraints. Without loss of
generality, we set σ2 = 1 to simplify notation. Note that σ2

only affects the absolute value of distortion, but not optimal
routing selection.

In (9), there are four high order terms that need to be refor-
mulated, namely, pjnt, p

(1)
dj , p(2)

dj , and Λ. From their definitions
in (5) and (8), we can rewrite the success probabilities as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
pjnt =

∏
{i,j}∈E p

{I(1)ij ·I(2)ij }
ij

p
(1)
dj =

∏
{i,j}∈E p

{I(1)ij ·(1−I(2)ij )}
ij

p
(2)
dj =

∏
{i,j}∈E p

{I(2)ij ·(1−I(1)ij )}
ij .

(15)

Taking logarithms on both sides, we can convert the high order
terms on the right-hand-side (RHS) of (15) into summations
of quadratic terms of the I-variables, i.e.,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
log(pjnt) =

∑
{i,j}∈E

[
I
(1)
ij · I(2)

ij · log(pij)
]

log(p(1)
dj ) =

∑
{i,j}∈E

[
I
(1)
ij · (1 − I

(2)
ij ) · log(pij)

]
log(p(2)

dj ) =
∑

{i,j}∈E
[
I
(2)
ij · (1 − I

(1)
ij ) · log(pij)

]
.

(16)

Similarly, we can rewrite Λ according to (6) and (7) as

Λ = 1 −
∏

{i,j}∈E

[
1 − 1 − pij

pij · lij

]{I(1)ij ·I(2)ij }
. (17)

Letting φ = 1 − Λ and taking logarithms on both sides, we
have

log(φ) =
∑

{i,j}∈E

[
I
(1)
ij · I(2)

ij · log(hij)
]
, (18)

where hij = 1 − 1−pij

pij ·lij
is a constant for all {i, j} ∈ E .

Having simplified the high-order terms, we now deal with
the resulting constraints of the form y = log(λ), as shown in
(16) and (18). We can linearize this logarithmic relationship
over some tightly-bounded interval using a polyhedral outer
approximation comprised of a convex envelope in concert with
several tangential supports. For instance, if λ is bounded as
0 < λ0 ≤ λ ≤ 1, these constraints can be written as follows.{

y ≥ log(λ0)
1−λ0

· (1 − λ)
y ≤ log(λk) + λ−λk

λk
, k = 1, ..., kmax,

(19)

where λk = λ0 + (1 − λ0) · (k − 1)/(kmax − 1), for k =
1, 2, · · · , kmax. A four-point tangential approximation can be
obtained by letting kmax = 4, as illustrated in Figure 2. The
corresponding convex envelope consists of a chord connecting
the two end points, which is used in combination with tan-
gential supports at four points including the two end points.
As a result, every logarithmic relationship specified in (16)
and (18) translates to five linear constraints as described in
(19). Note that such polyhedral outer approximations will be
iteratively tightened during the branch-and-bound procedure
(see Section IV).

Substituting φ, we can rewrite constraint (9) as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π00 = pjnt · p(1)
dj · p(2)

dj · φ
π01 + π00 = pjnt · p(1)

dj

π10 + π00 = pjnt · p(2)
dj

π00 + π01 + π10 + π11 = 1,

(20)

and the objective function as

D = π00 · d0 + (pjnt · p(1)
dj − π00) · d1 + (pjnt · p(2)

dj −
π00) · d2 + (1 + π00 − pjnt · p(1)

dj − pjnt · p(2)
dj ). (21)

This reduces OPT-MR into a mixed-integer polynomial
programming problem P-MR, with the objective being mini-
mizing D in (21). The constraints of P-MR include the original
constraints (11)–(14), the reformulated constraint (20), and the
new constraints derived from reformulating the logarithmic
terms (16) and (18) [in the form of (19)].

B. Linearizing Problem P-MR

Although greatly simplified, problem P-MR is still a poly-
nomial programming problem, which is NP-hard in gen-
eral [15]. In this section, we linearize problem P-MR by
employing RLT, which involves variable substitutions and
introducing linear RLT bound-factor constraints.

Consider a quadratic product term of the form (p(1)
dj · p(2)

dj ).
By introducing a new variable z0 = p

(1)
dj · p(2)

dj , we can

substitute the (p(1)
dj · p(2)

dj ) terms in (20) and (21) with z0,
thus removing this quadratic term from the objective function
and constraints. Assuming p(1)

dj and p(2)
dj are each bounded as(

p
(1)
dj

)
L
≤ p

(1)
dj ≤

(
p
(1)
dj

)
U

and
(
p
(2)
dj

)
L
≤ p

(2)
dj ≤

(
p
(2)
dj

)
U

,
respectively, we can add the following relational constraints,
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which are known as the RLT bound-factor product constraints:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{[
p
(1)
dj −

(
p
(1)
dj

)
L

]
·
[
p
(2)
dj −

(
p
(2)
dj

)
L

]}
LS

≥ 0{[
p
(1)
dj −

(
p
(1)
dj

)
L

]
·
[(
p
(2)
dj

)
U
− p

(2)
dj

]}
LS

≥ 0{[(
p
(1)
dj

)
U
− p

(1)
dj

]
·
[
p
(2)
dj −

(
p
(2)
dj

)
L

]}
LS

≥ 0{[(
p
(1)
dj

)
U
− p

(1)
dj

]
·
[(
p
(2)
dj

)
U
− p

(2)
dj

]}
LS

≥ 0,

where {·}LS denotes a linearization step under the substitu-
tion z0 = p

(1)
dj · p(2)

dj . Expanding the above inequalities and

substituting z0 = p
(1)
dj · p(2)

dj , we obtain the following RLT
constraints for z0.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
p
(1)
dj

)
L
p
(2)
dj +

(
p
(2)
dj

)
L
p
(1)
dj − z0 ≤

(
p
(1)
dj

)
L

(
p
(2)
dj

)
L(

p
(1)
dj

)
L
p
(2)
dj +

(
p
(2)
dj

)
U
p
(1)
dj − z0 ≥

(
p
(1)
dj

)
L

(
p
(2)
dj

)
U(

p
(1)
dj

)
U
p
(2)
dj +

(
p
(2)
dj

)
L
p
(1)
dj − z0 ≥

(
p
(1)
dj

)
U

(
p
(2)
dj

)
L(

p
(1)
dj

)
U
p
(2)
dj +

(
p
(2)
dj

)
U
p
(1)
dj − z0 ≤

(
p
(1)
dj

)
U

(
p
(2)
dj

)
U
.

By adding the linear RLT bound-factor constraints for z0 into
the problem formulation, we can therefore replace the second-
order term p

(1)
dj · p(2)

dj with the linear term z0 in (20) and (21).
Similarly, we define new variables for all the remaining

non-linear terms in the reformulated problem OPT-MR(p),
including z1 = pjnt ·p(1)

dj , z2 = pjnt ·p(2)
dj , and z3 = z0 ·φ, and

make substitutions in the same manner. We can then rewrite
the objective function (21) and constraints (20) as

D = π00 · d0 + (z1 − π00) · d1 +
(z2 − π00) · d2(1 + π00 − z1 − z2) (22)

and ⎧⎨
⎩

π01 + π00 = z1
π10 + π00 = z2
π00 + π01 + π10 + π11 = 1.

(23)

The constraints derived from reformulating the logarithmic
terms (16) and (18) [in the form of (19)] can also be linearized
by substituting zij = I

(1)
ij · I(2)

ij , and by introducing the
corresponding linear RLT bound-factor constraints, for all
{i, j} ∈ E .

As a result, we obtain a linear programming relaxation
problem L-MR, which can be solved in polynomial-time.

IV. A SOLUTION PROCEDURE

A. Overview of the Branch-and-Bound Framework

Branch-and-bound is an algorithmic method for solving
optimization problems, especially in discrete and combinato-
rial optimization [15]. Under branch-and-bound, the original
problem is first relaxed using a suitable relaxation technique
to obtain an easier-to-solve, lower-bounding problem. In our
approach, we used RLT to reformulate and linearize OPT-
MR into an LP relaxation L-MR. The optimal solution to
this LP relaxation provides a lower bound LB for the origi-
nal problem. Since such an LP relaxation usually yields an
infeasible solution to the original problem, a local search
algorithm should be employed to obtain a feasible solution
to the original problem. The resulting feasible solution then
provides an upper bound UB for the original problem.

Under branch-and-bound framework, the original problem
O (or OPT-MR) is partitioned into sub-problems, each hav-
ing a smaller feasible solution space, based on the solution
provided by the LP relaxation. New sub-problems are orga-
nized as a branch-and-bound tree, while this partitioning or
branching process is carried out recursively to obtain two new
sub-problems at each node of the tree.

The sub-problems are also inserted into a problem list L,
which records the active nodes in the branch-and-bound tree
structure. More specifically, in the beginning, the problem list
L is initialized with the original problem O. At any given
iteration, the lower and upper bounds for O are computed as{

LB = min{LBk : Problem k ∈ L}
UB = min{UBk : all nodes k explored thus far}. (24)

The method proceeds by choosing the next problem to
partition from the problem list. In our approach, the problem
k ∈ L having the smallest LBk is chosen. This problem k
is then partitioned into two sub-problems k1 and k2, which
replace problem k in L. Every time a problem k is added to
the list, LBk and UBk are computed, and the LB and UB
for the original problem O are updated. At any given iteration,
if LB ≥ (1 − ε) ·UB, the procedure terminates and we have
an (1 − ε)-optimal solution. Also, for any problem k in the
problem list, if LBk ≥ (1 − ε) · UB, no globally optimal
solution that improves beyond the ε-tolerance can exist in
the sub-space of the feasible region represented by this node.
Therefore, this node can be removed (or fathomed) from the
branch-and-bound tree. In this manner, the branch-and-bound
process can fathom certain branches or nodes of the tree,
eliminating them from further exploration. The effectiveness
of the branch-and-bound procedure depends strongly on that
of the employed fathoming strategy.

As far as the partitioning process is concerned, the original
feasible solution space Ω is decomposed into two correspond-
ing hyper-rectangles, based on a so-called branching variable.
In RLT, the discrepancy between an RLT substitution variable
(e.g., z0 in Section III-B) and the corresponding non-linear
term that this variable represents (e.g., p(1)

dj · p(2)
dj ) is called

the relaxation error. In our algorithm, the branching variable
is chosen to be the one that yields the largest relaxation
error. Such a branching rule ensures that all the discrepancies
between the RLT substitution variables and the corresponding
non-linear terms will be driven to zero as the algorithm evolves
over iterations.

B. Details of the Solution Procedure

We now describe the details of the solution procedure,
which we call ALG(ε). Figure 3 shows the flowchart of this al-
gorithm. The iterative branch-and-bound algorithm terminates
when either the lower bound for the original problem is within
(1 − ε) of the upper bound, i.e., LB ≥ (1 − ε) · UB, or the
problem list L is empty. The operation of each step in ALG(ε)
is described in the following.

1) Initialization and Relaxation: We start by initializing
the current “best” solution, denoted as ψ∗, with the solution
ψ̄ obtained as described below, and the current “best” upper
bound UB as the objective value obtained using this solution
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Fig. 3. Flowchart of the solution procedure.

ψ̄. We first solve the relaxed problem L-MR to obtain a
possibly infeasible solution ψ̂, for the original problem. For
example, due to the RLT relaxation, the binary I-variables
in ψ̂ could actually be fractional. If ψ̂ is already feasible to
problem OPT-MR, we set ψ̄ = ψ̂ and then obtain a feasible
solution in one iteration. Otherwise, we apply a local search
algorithm (will be described in Section IV-B.3) to obtain a
rounded feasible solution ψ̄ to problem OPT-MR. If necessary,
we can also perform a restricted search by making a limited
perturbation around the rounded feasible solution ψ̄ in order
to obtain an even better solution. This can be achieved by
incorporating a new constraint to the LP relaxation,∑

{i,j}:ψ̄(h)
ij =0

ψ
(h)
ij +

∑
{i,j}:ψ̄(h)

ij =1

[
1 − ψ

(h)
ij

]
≤ rh, (25)

for some integral deviation tolerance rh, h = 1, 2.
That is, a feasible solution ψ̄ is obtained by solving the root

node of the branch-and-bound tree and applying an efficient
local search to the resulting solution. Due to the properly
designed RLT relaxations (see Section III), the solution ψ̄ is
highly competitive in itself, and in many cases it achieves
(1 − ε)-optimality.

Once ψ∗ is initialized, we then initialize the problem list
L with the original problem (denoted as O). We denote the
objective value obtained from the LP relaxation as the lower
bound LB1 for Problem O. Also, since this is the only
problem in the problem list, we initialize LB1 as the current
“best” lower bound LB for the original problem, i.e., set
LB = LB1.

2) Node Selection: At every iteration, problem k (or the
corresponding node in the branch-and-bound tree) that has
the minimum LBk among all the problems k ∈ L is selected.
As discussed before, this problem is indicative of the lower
bound for the original problem. Subsequent operations of
local search, partitioning and bounding are performed on this
problem k.

3) Local Search: As discussed in Section IV-A, the solution
to the relaxation problem k that is selected in the node
selection step, is usually infeasible to the original problem O.
This is especially true if the original problem involves binary
variables (i.e., the I-variables could be fractions). A local
search algorithm should be used to find a feasible solution
to the original problem starting from the infeasible lower
bounding solution.

Let ψ̂ be the infeasible (or fractional) solution obtained by
solving the LP relaxation of the original problem. Starting
from this fractional solution, we may solve the following

problem to obtain a feasible path for h = 1, 2 respectively:

Minimize
∑

{i,j}∈E

[
−Î(h)

ij

]
· I(h)
ij (26)

subject to the flow constraints, as described in (11) and (12).
Note that for an optimization variable y, ŷ denotes its value in
the infeasible solution ψ̂. Solving these shortest path problems
provides us with a rounded heuristic solution ψ̄ that has a
tendency to round up relatively higher-valued components of
ψ̂ and round down relatively lower-valued components. The
distortion value of the rounded solution ψ̄ is an upper bound
for this subproblem, i.e., UBk.

4) Partitioning : The objective of the partitioning step is
to find the branching variable that will enable us to split the
feasible solution space Ωk of problem k into two solution
sub-spaces Ωk1 and Ωk2 . In ALG(ε), we need to consider
three classes of optimization variables for partitioning, i.e., the
binary I-variables, the substitution variables (e.g., z0), and the
logarithm substitution terms [e.g., φ in (18)].

When partitioning based on the I-variables, we need to
select a variable that will offer the highest gain in terms of
improving the objective value. For this purpose, we should
choose the I-variable that is fractional and closest to 0.5. A
strategy that works well is to first find the index variable
pair {I(1)

ij , I
(2)
ij }, for all {i, j} ∈ E that gives the largest

discrepancy between the RLT substitution variable ẑij and the
corresponding non-linear product (Î(1)

ij · Î(2)
ij ) (see Section III-

B). We then choose I(1)
ij or I(2)

ij to partition the problem (by
fixing it to 0 or 1) depending on which variable is closer to
0.5. We break ties arbitrarily.

In addition to the I-variables, we also need to examine
branching decisions based on the substitution variables such
as z0 = p

(1)
dj · p(2)

dj . For such variables, we first find the
maximum relaxation error between the substitution variable
and the corresponding product term, say, |p̂(1)

dj · p̂(2)
dj − ẑ0|. We

then verify whether the following condition is satisfied:[(
p
(1)
dj

)
U
−

(
p
(1)
dj

)
L

]
min

[
p̂
(1)
dj −

(
p
(1)
dj

)
L
,
(
p
(1)
dj

)
U
− p̂

(1)
dj

]
≥[(

p
(2)
dj

)
U
−

(
p
(2)
dj

)
L

]
min

[
p̂
(2)
dj −

(
p
(2)
dj

)
L
,
(
p
(2)
dj

)
U
− p̂

(2)
dj

]
.

If this condition holds true, we partition the solution space
Ωk of problem k into two new regions Ωk1 and Ωk2 , by

dividing the range
[(
p
(1)
dj

)
L
,
(
p
(1)
dj

)
U

]
into two subregions[(

p
(1)
dj

)
L
, p̂

(1)
dj

]
and

(
p̂
(1)
dj ,

(
p
(1)
dj

)
U

]
. Otherwise, we partition

Ωk by dividing
[(
p
(2)
dj

)
L
,
(
p
(2)
dj

)
U

]
into

[(
p
(2)
dj

)
L
, p̂

(2)
dj

]
and[

p̂
(2)
dj ,

(
p
(2)
dj

)
U

]
.

Finally, the branching decisions also include the logarithm
substitution terms, e.g., φ in (18). In such cases, we first find
the variable that gives the greatest discrepancy between the
logarithm value, say, log(φ̂) and the RHS of the corresponding
substitution [e.g., (18)] among all such terms, and then either
bisect the interval of this variable (e.g., [(φ)L , (φ)U ]) evenly,
or divide this interval at the point φ̂.

5) Bounding : In the bounding step, we solve the RLT
relaxation for the two sub-problems identified in the partition-
ing step, and obtain their corresponding lower bounds LBk1
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TABLE II

PERFORMANCE OF THE PROPOSED ALGORITHM (ε = 0.01)

Number of Nodes Mean Computation Time(sec) Variance
20 0.074 0.002
30 0.381 0.282
50 0.858 0.460

100 6.408 3.196

and LBk2 , thereby updating the incumbent lower bounding
solution. The corresponding upper bounds, i.e., UBk1 and
UBk2 , are obtained by applying the local search algorithm
starting from the relaxation solutions obtained, and the current
LB and UB values for the original problem O are updated
according to (24). If any of the following conditions

(1 − ε) · UB > LBk1 and (1 − ε) · UB > LBk2

are satisfied, we add the corresponding problem into the
problem list L, and remove problem k from the list.

6) Fathoming : For any problem k in the problem list L, if
LBk ≥ (1− ε) ·UB, then the sub-space corresponding to this
problem does not contain any solution that improves beyond
the ε-tolerance of the incumbent solution. Therefore, we can
prune this problem from the problem list.

V. IMPLEMENTATIONS CONSIDERATIONS

We find that the solution procedure is suitable for imple-
mentation as a link-state algorithm, which requires network
topology and link statistics databases at a node. For imple-
mentation, we propose to build our algorithm on top of the
so-called proactive routing protocols, such as Optimized Link
State Routing (OLSR) [5]. Due to its proactive nature, OLSR
maintains an up-to-date global network topology information
in its link-state database. Once such information is available,
computation can be performed to find a set of paths, and
source routing can be used for each video description.

VI. SIMULATION STUDIES

Our simulation study consists of two parts. In the first part,
we will examine the convergence behavior and complexity
issue of the proposed algorithm. In the second part, we will
demonstrate the performance advantage of the proposed cross-
layer approach over a non-cross-layer approach.

Throughout our simulation study, we consider a multi-hop
wireless network deployed over a rectangular region, where
the connectivity between the nodes is determined by the radio
transmission range. The size of the area depends on the
network size (total number of nodes) and will be described
when we introduce the specific network. The source node s
and destination node t are chosen randomly from the nodes
in the network.

At the link level, we associate each link with a
failure probability, available bandwidth, and mean burst
length (for packet loss). Specifically, the failure probabil-
ity is taken uniformly between [0.01, 0.3]; the available
bandwidth is taken with equal probability from the set
[100, 150, 200, 250, 300, 350, 400] Kb/s; and the mean burst
length is chosen uniformly between [2,6]. For ALG(ε), we
set ε = 0.01 (or 1%). We implement the BB/RLT solution

TABLE III

AVERAGE DISTORTION VALUES FOR DIFFERENT NETWORK SIZES

(ε = 0.01)

Number of Nodes Mean Distortion
ALG(ε) 2-SP

20 0.515 0.589
30 0.516 0.591
50 0.508 0.635

100 0.512 0.575

procedure in C program and use the LINDO API 3.0 for
solving the LP relaxation problem.

A. Convergence Behavior of Solution Procedure

We first examine the convergence behavior of the solution
procedure for different network sizes and topologies. We
consider 20-, 30-, 50-, and 100-node networks within a 300m
x 300m, 400m x 400m, 500m x 500m, and 1000m x 1000m
rectangular regions, respectively. The transmission range for
each node is assumed to be 150m. The description rates are
R1 = R2 = 128 Kb/s. For each network size, we generate 100
topologies and run 100 computations to obtain the mean and
variance of convergence time. Table II shows the convergence
time performance for the networks with ε = 0.01. The ALG(ε)
algorithm was run on a standard desktop PC with a Pentium-4
2.4 GHz processor and 512 MB memory. As shown in Table II,
the computational time for convergence to ε = 0.01 is very
fast for small to moderate sized network.

We notice that for most experiments, the algorithm con-
verges very quickly to the (1 − ε)-optimal solutions. To see
the iterative convergence behavior of the solution procedure,
we intentionally pick an experiment with a convergence time
longer than the average. Figures 4 and 5 show such instances
for the 50-node network and 100-node network, respectively
for description rates of R1 = R2 = 320 Kb/s. For this
particular 50-node network, the gap between upper bound
UB and lower bound LB converges to ε = 1% (i.e., LB ≥
99% · UB) after the 57th iteration in about 1.87 s. Similarly,
for the selected 100-node network, the solution procedure
converges to ε = 1% after the 39th iteration in about 9.26
s. Figures 4(b) and 5(b) show the final optimal paths obtained
by ALG(ε) for the 50- and 100-node networks respectively.

B. Comparison with Non-Cross-Layer Routing

In this section, we compare our cross-layer routing approach
with a popular non-cross-layer approach. For the latter, we
consider the k-shortest path (SP) routing algorithm [6], with
k = 2 or 2-SP for DD video. We use hop count as the routing
metric in the 2-SP algorithm.

1) Distortion Comparison: Table III compares the mean
distortion achieved using our ALG(ε) and 2-SP for 4 network
sizes (20, 30, 50 and 100 nodes) with ε = 0.01 and R =
320 Kb/s. Again, for each network size, we generate 100
topologies and run 100 computations to obtain the mean
distortion. As shown in the second and third columns in
Table III, the distortion values under our cross-layer solution
are consistently smaller than those under the 2-SP (non-cross-
layer) solution.
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TABLE IV

AVERAGE PSNR VALUES (DB) FOR DIFFERENT NETWORK SIZES

(ε = 0.01)

Number of Nodes Average PSNR
ALG(ε) 2-SP

20 28.735 19.656
30 27.313 17.203
50 31.865 17.033
100 29.809 20.418
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Fig. 6. Average PSNR values for different description rates.

2) Video Quality Comparison: We now encode a video
sequence in order to transmit the DD video over the network,
and compare the video quality at the receiver (measured
using PSNR) under our cross-layer approach and the 2-SP
approach. There are many ways to generate MD video (see
[17]). We chose a time-domain partitioning coding scheme,
where two descriptions are generated by separating the even-
and odd-numbered frames and encoding them separately. This
simple time-domain partitioning method is widely used in
video streaming studies [2]–[4], [10]. An H.263+ like codec
is implemented to generate the two descriptions. This codec
encodes the video sequence into two balanced descriptions
(i.e., R1 = R2). The QCIF sequence “Foreman” (400 frames)
is encoded at 15 fps for each description. A 10% macroblock
level intra-refreshment is used. Each Group of Blocks (GOB)
is carried in a different packet. When a GOB is corrupted, the
decoder applies a simple error concealment scheme by copy-
ing the corresponding slice from the most recent, correctly
received frame.

The second and third columns in Table IV lists the average
PSNR performance (in dB) achieved using ALG(ε) and 2-
SP for 4 network sizes (20, 30, 50 and 100 nodes) with
ε = 0.01 and R = 320 Kb/s. We find that the average
PSNR values obtained using ALG(ε) are much higher than
those obtained using 2-SP algorithm. This is consistent with
the results obtained for distortion comparison shown earlier.

We now vary the rate of each video description from 64
Kb/s to 320 Kb/s for the 50-node network and compare
the PSNR performance under our solution and 2-SP. This
results are shown in Figure 6. Note that as the description
rate R increases, more links will become ineligible during
path selection process. Again, we find that our cross-layer
approach provides higher PSNR over the 2-SP approach under
all description rates.

To illustrate the quality of video frames, we plot a sample
video frame from the the original video in Figure 7(a) and
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(a) Original (b) 128 Kb/s, ALG(ε) (c) 128 Kb/s, 2-SP (d) 256 Kb/s, ALG(ε) (e) 256 Kb/s, 2-SP

Fig. 7. Frame 278 from the reconstructed video.

compare it to the reconstructed video frames under our ALG(ε)
and 2-SP for R = 128 Kb/s and R = 256 Kb/s, respectively
in Figure 7(b)-(e). The frames under ALG(ε) have a visual
quality very close to the original frame, while the frames under
2-SP are barely recognizable.

VII. RELATED WORK

In this section, we review some related work that have not
been discussed earlier in the paper. Multipath routing has been
a topic of active research over the years. For example, various
polynomial time algorithms have been proposed to compute
k-shortest paths [6]. Other important works include, node-
or link-disjoint path routing [13], [16], and braided multiple
path routing [11]. However, most of these algorithms do not
explicitly consider optimizing performance at the application
layer. The problem of path selection for MD video has recently
been explored in [3], [18]. In [3], Begen et al. studied the
problem of path selection for DD video in the context of
overlay networks, where path selection is formulated as an
optimization problem that minimizes video distortion. The
problem is solved by an exhaustive search over the exponential
solution space. In a recent work [18], Wei and Zakhor present
a distributed heuristic for finding two maximally disjoint
source trees for double description video streaming in ad hoc
networks.

VIII. CONCLUSIONS

In this paper, we studied the problem of how to route MD
video over multi-hop wireless networks with the objective of
optimizing the application layer performance. We formulated
this problem into an cross-layer optimization problem with
an application performance metric as the objective function
and routing and link layer considerations as constraints. We
developed a formal branch-and-bound solution procedure and
employed a novel relaxation technique called RLT in the
solution procedure. We showed that this solution procedure is
able to produce a set of routes with an objective value within
(1 − ε) of the optimal value. Simulation results demonstrated
the efficacy of the proposed solution procedure.
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