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Abstract—Cloud radio access network (C-RAN) aims to im-
prove spectrum and energy efficiency of wireless networks by
migrating conventional distributed base station functionalities
into a centralized cloud baseband unit (BBU) pool. We propose
and investigate a cross-layer resource allocation model for C-
RAN to minimize the overall system power consumption in the
BBU pool, fiber links and the remote radio heads (RRHs). We
characterize the cross-layer resource allocation problemas a
mixed-integer nonlinear programming (MINLP), which joint ly
considers elastic service scaling, RRH selection, and joint beam-
forming. The MINLP is however a combinatorial optimization
problem and NP-hard. We relax the original MINLP problem
into an extended sum-utility maximization (ESUM) problem,and
propose two different solution approaches. We also proposea
low-complexity Shaping-and-Pruning (SP) algorithm to obtain
a sparse solution for the active RRH set. Simulation results
suggest that the average sparsity of the solution given by our SP
algorithm is close to that obtained by a recently proposed greedy
selection algorithm, which has higher computational complexity.
Furthermore, our proposed cross-layer resource allocation is
more energy efficient than the greedy selection and successive
selection algorithms.

Index Terms—C-RAN, elastic service scaling, cross-layer de-
sign, green communication, weighted sum-rate maximization

I. I NTRODUCTION

Cloud radio access network (C-RAN) has emerged as a
promising solution to the operation and bandwidth challenges
faced by future mobile communication infrastructures, which
are required to handle an exponentially increasing demand for
data traffic [1]. A C-RAN utilizes centralized signal processing
in the baseband unit (BBU) pool instead of processing at
distributed base stations (BSs), which can result in signif-
icant capital and operating expenditure savings. Centralized
processing at the BBU pool also allows cooperation between
multiple remote radio heads (RRHs), thus improving spectrum
efficiency and link reliability. Furthermore, the use of cloud
computing technologies as the infrastructure of the BBU pool
greatly improves hardware utilization.

Decoupling the baseband signal processing from the RRHs
is the most attractive feature of C-RAN, which means that
RRHs only need to keep the basic transmission and reception
functionalities, while computationally intensive tasks can be
migrated to the BBU pool in a cloud data center. This

J. Tang and W. P. Tay are with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore. e-mail:{jtang4,
wptay}@ntu.edu.sg.

T. Q. S. Quek is with Singapore University of Technology and Design. He
is also with Institute for Infocomm Research, A*STAR, Singapore. e-mail:
tonyquek@sutd.edu.sg.

BBU pool RRHsFiber links

Fig. 1. Cloud radio access network (C-RAN).

centralized signal processing and scheduling feature in the
BBU pool further makes a variety of prospective technologies
feasible, including centralized encoding and decoding, central-
ized compression and decompression, and joint beamforming.

Although C-RAN makes it possible to transition conven-
tional cellular networks (CCNs) from hardware defined in-
frastructures to a software defined environment, many design
and operational challenges that have been resolved in CCNs
need to be revisited in C-RAN. One particular example of
importance is the resource allocation problem. Specifically, in
CCNs, power control and beamforming strategies have been
used to minimize the system power consumption such that
users’ predefined quality-of-service (QoS) requirements are
fulfilled. Unfortunately, these strategies cannot plug directly
into the C-RAN framework. In CCNs, the BSs’ computation
capacity is fixed. As a result, resource allocation methods in
CCNs are oblivious to the computation capacities of the BSs
although users’ achievable QoS levels are actually dependent
on them. Under the C-RAN architecture, the computation-
al functionalities in conventional BSs are migrated to the
cloud based virtual machines (VMs) in the BBU pool, whose
computation capacity can be scaled according to users’ QoS
requirements and various parameters from different layersof
the OSI stack, including the incoming traffic rate from the
application layer and wireless channel state information from
the physical layer. Therefore, developing a cross-layer resource
allocation scheme is required in order to fully utilize the
features of a C-RAN, and to optimize the overall system power
consumption.

Most of the power in a C-RAN are consumed in the
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following subsytems:

• BBU pool. Having a cloud data center as the BBU
pool not only allows centralized signal processing, but
also elastic service scaling of the resources of the BBU
pool. Specifically, the BBU pool can dynamically adjust
each VM capacity to optimize power consumption for
changing traffic and channel states. An important research
challenge is to design low-complexity algorithms for
dynamic service scaling in the BBU pool.

• Fiber links . Each RRH is connected to the BBU pool
via a high-bandwidth, low-latency fiber link. The power
consumption in the fronthaul links has traditionally been
ignored in the CCN literature since it is relatively much
lower than the power consumption in the BSs of the
CCN. However, in C-RAN, the power consumption in
fronthaul links is comparable to the power consumption
at the RRHs since the RRHs are architecturally much
simpler compared to conventional BSs. By turning off
some redundant fiber links, as well as the RRH connected
to these fiber links, energy savings can be achieved. This
motivates the link or RRH selection problem.

• RRHs. In C-RAN, the functionality of RRHs can be as
simple as just a signal transmission and reception point.
The RRHs can cooperate with each other to perform
centralized joint beamforming to mitigate interference.
Thus, the throughput of the wireless channels to the users
can be significantly enhanced. An important research
issue here is the design of the joint beamforming at the
RRHs in order to achieve an optimal trade-off in channel
throughput and energy efficiency.

In this paper, we consider the problem of optimizing the
allocated VM computation capacities in the BBU pool, the
set of selected RRHs, and the beamforming strategies at the
active RRHs in order to minimize the overall system power
consumption for C-RAN.

A. Related work

C-RAN aims to be a competitive and potential 5G frame-
work, which has been attracting comprehensive research at-
tention from both industry and academia since 2011 [2]–[5].
Many prototypes, test-beds and architecture designs have been
done to show the feasibility and performance gain by adopting
C-RAN [6]–[9]. The concept of RAN as a service (RANaaS)
has also been developed based on the structure of C-RAN [10].

In the fronthaul of C-RAN, i.e., the RRHs and the wireless
channel, Coordinated Multipoint (CoMP) techniques are de-
ployed to enhance the system throughput. In order to enhance
energy efficiency [11], cell, BS or RRH selection for the
fronthaul has been comprehensively studied over the past
several years [12]–[17]. For example, the authors in [12] and
[14] jointly consider the base station selection problem and
linear precoding. Fronthaul link or RRH selection for C-RAN
have been studied by [18]–[23]. For instance, [19] considers
joint BS selection and distributed compression in C-RAN to
improve energy efficiency, while [22] considers RRH selection
jointly with fronthaul beamforming to minimize the system
power consumption.

The joint RRH selection and beamforming problem is NP-
hard [22], therefore to solve it exactly is computationally
intractable when the number of RRHs is large. We summarize
some commonly used approaches here. In the first approach,
the problem is formulated as a mixed-integer nonlinear pro-
gramming (MINLP), and then solved by Branch and Bound
(BnB) or Branch and Cut (BnC) methods [17]. Both the
BnB and BnC methods yield the optimal solution, but have
high time complexity. Another approach is the “sorting-and-
removing” method [13], [22], in which the RRHs are ranked
according to some priority criteria in each iteration, and the
RRH with the lowest priority is removed. The process con-
tinues until the problem becomes infeasible. This method can
produce a near-optimal solution, but still has high computa-
tional complexity. The “sparsity-inducing” method is inspired
by compressive sensing. Reweightedl1-norm relaxation and
sparsity-inducing norms are used to obtain a sparse subset of
RRHs [19], [20], [22]. This method is efficient in compu-
tational complexity but cannot guarantee optimality. Finally,
constructing a Markov Chain Monte Carlo (MCMC) is a
potential way to solve the RRH selection problem as well [16].
In this work, we propose a “Shaping-and-Pruning” method,
which is a trade-off between the sorting-and-removing and
sparsity-inducing methods, in order to obtain a near-optimal
performance with lower computational complexity.

The BBU pool of C-RAN comprises many general purpose
processors (GPP), which forms a cloud computing infrastruc-
ture using virtualization technology [24]. A computationally
aware strategy is proposed to reduce the computational outage
in C-RAN recently [25]. However, most of the previous works
related to the C-RAN BBU pool just makes use of the
centralized processing property offered by cloud computing
to optimize the system. For example, a central encoder is
developed in [26] to jointly encode the messages intended for
the mobile stations, and a cloud decoder in [19] utilizes the
joint statistics of the received correlated signals to decompress
the received signal. Theses works do not consider the issue of
elastic service scaling and resource allocation the BBU pool,
which is one of the focus of this paper. In addition, unlike
most of the works in the literature, which investigate methods
to provide QoS guarantees for specific layers in the OSI stack
(e.g., ensuring bandwidth or latency requirements are met only
in the wireless transmission part), we consider methods to
ensure cross-layer QoS guarantees in this paper.

B. Main contributions

In this paper, we formulate the cross-layer resource al-
location problem as a MINLP by minimizing the system
power consumption, which consists of three parts: the power
consumption in the BBU pool with respect to (w.r.t.) the
VM computation capacity, the power consumption in the fiber
fronthaul links w.r.t. the number of links (or, active RRHs)
and the transmission power on the RRHs w.r.t. the transmit
beamformer. We relax the MINLP into an extended sum-utility
maximization (ESUM) problem, and propose two different
approximate solution approaches. In the first approach, we
approximate the ESUM problem as a quasi weighted sum-
rate maximization (QWSRM) problem, and propose a BnB
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algorithm to solve it. The QWSRM problem is an extension of
the weighted sum-rate maximization (WSRM) problem, which
has been studied in [27], [28]. In the second approach, we
utilize the weighted minimum mean square error (WMMSE)
method to obtain a locally optimal solution to the ESUM
problem. Based on the achievable rates found by either solving
the QWSRM problem or using the WMMSE approach, we
propose an efficient Shaping-and-Pruning algorithm to perform
RRH selection. Our proposed algorithm achieves a trade-off
between computational complexity and solution optimality.
We provide simulation results that suggest that our proposed
approach outperforms the recently proposed greedy selection
algorithm of [22] and successive selection algorithm of [29] in
terms of overall system power consumption, since these meth-
ods only optimize the RRH selection and RRH beamforming
strategies. This shows that cross-layer optimization can result
in higher energy efficiencies for a C-RAN.

The remainder of this paper is organized as follows. We
present the C-RAN system model in Section II, and introduce
the QWSRM problem and its solution in Section III. In
Section IV, we formulate the minimization of system power
consumption as a MINLP, approximate this MINLP problem
as a QWSRM problem, and propose an efficient algorithm
to solve it. We present simulation results in Section V, and
conclude the paper in Section VI.

Notations. We use boldface lower case letters to denote
vectors. The notation‖x‖2 is the Euclidean norm ofx, while
(·)T and (·)H represent transpose and conjugate transpose,
respectively. We useC to denote the set of complex numbers,
and CN (0, σ2) to denote the distribution of a circularly
symmetric complex normal zero mean random variable with
varianceσ2. The log function is the logarithm function with
base 2.

II. SYSTEM MODEL

In this section, we present our C-RAN system model and
problem formulation. Suppose that there areN single-antenna
user equipments (UEs) andL available RRHs, each withK
antennas, in a C-RAN cluster. We denote the sets of all UEs
and all RRHs asN = {1, · · · , N} and L = {1, · · · , L},
respectively. We denote the set of active RRHs (i.e., the setof
RRHs that are servicing the UEs inN , and their associated
fiber links) asA. We haveA ⊆ L. The amount of voice
and data traffic associated with each UEi ∈ N up to timet is
given by∆i(t) (bits), and each UEi is served by one VM with
computation capacityµi in the BBU pool. After processing by
the VM, the data is forwarded to the UE via|A| active RRHs
(we assume data sharing among the RRHs), where|A| ≤ L
is the cardinality of the setA. Let the achievable wireless
transmission rate to UEi using the active RRHs beci.

Queueing model, with the channel capacity as the queue’s
service rate, is widely used to characterize wireless commu-
nication systems [30]. Therefore, we introduce a double-layer
queueing network to represent each UE’s data processing and
transmitting behavior in the C-RAN downlink (cf. Figure 2).
Our model can be easily extended to the C-RAN uplink as
well. Specifically, in the BBU pool, the data of UEi is

Processing

Queue

Transmitting

Queue
∆i(t)

ciµi

Delay ai Delay bi

Fig. 2. Queueing model representation of a C-RAN processingand transmis-
sion path for a UEi.

processed (e.g., encoded) by a VM, which is abstracted as
a processing queue, with mean service rateµi. Then, the
processed data is transmitted to UEi via the RRHs, which are
modeled using a transmitting queue with mean service rateci.
Note that the links between the BBU pool and the RRHs are
high-bandwidth, low-latency optical fiber links with negligible
transmission delay. However, the power consumptionPf of
each fiber link cannot be neglected, compared with the power
consumption in the associated RRH.

For each UEi ∈ N , let ai represent the expected delay in
the processing queue (i.e., the expected delay in the BBU pool)
and bi be the expected delay in the transmitting queue (i.e.,
the expected delay during wireless transmission). Our goalis
to design a cross-layer algorithm such that for each UEi, the
system expected delaydi = ai + bi satisfies the cross-layer
QoS constraint:

di ≤ τi, (1)

whereτi is a predefined QoS requirement for UEi.
We assume that UEi’s packet arrival process to the pro-

cessing queue is a Poisson process with mean rateλi > 0,
where∆i(t) = λit, and the service time of each data packet
in the processing queue follows an exponential distribution
with mean1/µi. Then, the arrival process to the transmitting
queue is the same as the one to the processing queue [31],
[32]. We assume that the service time of each data packet in
the transmitting queue follows an exponential distribution with
mean1/ci. Therefore, the data processing and transmitting for
each UEi in our C-RAN model can be treated as two M/M/1
queues [33] in tandem. We have forµi, ci > λi,

di =
1

µi − λi
+

1

ci − λi
.

In the wireless transmission, C-RAN leverages CoMP trans-
mission to enhance the throughput [34]. There are two types
of CoMP techniques in the downlink: coordinated schedul-
ing/coordinated beamforming (CS/CB) and joint transmission
(JT). In this work, we consider JT as the CoMP technique
in C-RAN, i.e., each UE’s data can be shared among all the
coordinated RRHs. Letxi denote the data symbol for theith
UE with E[|xi|2] = 1, and wij ∈ CK denote the transmit
beamformer for the UEi from RRH j. The channel from
RRH j to UE i is denoted ashH

ij , wherehij ∈ C
K , for i ∈ N

andj ∈ A. Thus, the received signal at UEi is given by

x̂i =
∑

j∈A

hH
ijwijxi +

N
∑

k 6=i

∑

j∈A

hH
ijwkjxk + δi,

where the first term on the right hand side is the useful signal
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for UE i, the second term is the interference to UEi, and
δi ∼ CN (0, σ2

i ) is the additive white Gaussian noise (AWGN)
at UE i.

As such, the signal-to-interference-plus-noise ratio (SINR)
at UE i, with the active RRH setA, becomes

SINRi(A) =
|
∑

j∈A hH
ijwij |2

σ2
i +

∑N
k 6=i |

∑

j∈A hH
ijwkj |2

. (2)

The achievable rate of UEi, ci, should satisfy

ci ≤ Bi log(1 + SINRi(A)), (3)

where Bi is the bandwidth for UEi. Each RRH j has
maximum transmitting power constraint given by

N
∑

i=1

wH
ijwij =

N
∑

i=1

‖wij‖
2
2 ≤ Ej , for j ∈ L. (4)

A. Problem formulation

The BBU pool of C-RAN utilizes a cloud computing
infrastructure with elastic service scaling. In particular, the
BBU pool can dynamically adjust the VMs’ computation ca-
pacities to handle dynamic user traffic and channel states. We
model VM i’s power consumptionϕi(µi) as a function of its
computation capacityµi. We make the following assumptions
regarding the VM’s power consumption functionϕi.

Assumption 1:For each VMi, i ∈ N , the power consump-
tion functionϕi(µi) has the following properties:

1) ϕi(µi) ≥ 0 for all µi ≥ 0,
2) ϕi(µi) is a convex and increasing function ofµi.

The power consumption of a VMi is often modeled as
ϕi(µi) = kiµ

ai

i , whereki > 0 and ai > 1 are positive con-
stants. This power consumption function satisfies Assumption
1, and has been widely adopted in the literature [35]–[38].

Our aim is to minimize the system power consumption in
C-RAN, which consists of three components: the power con-
sumption in the BBU pool, the power consumption in the fiber
links, and the power consumption at the RRHs. Specifically, (i)
the power consumption for each VM in the BBU pool with
computation capacityµi is ϕi(µi), ∀i ∈ N ; (ii) the power
consumption for each active fiber link isPf ; and (iii) the power
consumption at RRHj ∈ A is (1/η)

∑N
i=1 wH

ijwij , where
η ∈ (0, 1) is the inefficiency coefficient of the amplifier in
each RRH. Our optimization problem can then be formulated
as follows:

(P0) min
µi,ci,wij ,A

N
∑

i=1

ϕi(µi) + |A|Pf +
1

η

N
∑

i=1

∑

j∈A

wH
ijwij

s.t.
1

µi − λi
+

1

ci − λi
≤ τi, ∀i ∈ N , (5)

λi < µi, λi < ci, ∀i ∈ N , (6)

ci ≤ Bi log (1 + SINRi(A)) , ∀i ∈ N ,
(7)

N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ L, (8)

where SINRi(A) is given by (2), and “s.t.” stands for “subject
to”.

Problem (P0) is difficult to solve for the following reasons:
(i) it is a combinatorial optimization problem and NP-hard
[20]; and (ii) the problem is nonconvex even if the active RRH
setA is known a priori. However, by first relaxing (P0) into a
ESUM problem, and then into a QWSRM problem, we obtain
a BnB solution. In the following section, we first discuss the
QWSRM problem and its BnB solution.

III. T HE QWSRM PROBLEM

In this section, we extend the classical WSRM problem to
the QWSRM problem, and then propose a BnB solution for
the latter. The QWSRM problem will be used in Section IV
to tackle problem (P0). Throughout this section, we assume
that the active RRH setA is known.

Mathematically, the WSRM problem is typically formulated
as

min
ci,wij

N
∑

i=1

−εici (9)

s.t. ci ≤ Bi log (1 + SINRi(A)) , ∀i ∈ N , (10)
N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ A, (11)

whereci is the throughput of UEi, εi is an arbitrary nonneg-
ative weight, and SINRi(A) is given by (2).

Since the phase rotation of the complex vectorwij has no
impact on the WSRM problem, we can recast the constraint
(10) as

‖r i(A)‖2 ≤
√

1 + 1/(2ci/Bi − 1)Re[Rii(A)], ∀i ∈ N ,

(12)

where vectorr i(A) = [Ri1(A), · · · , RiN (A), σi]
T , Rik(A) =

∑

j∈A hH
ijwkj , andRe(·) stands for the real part of a complex

number [29], [39]. Note that the constraint (12) is a second-
order cone (SOC) constraint only ifci is a constant.

Applying the Cauchy-Schwarz inequality to (7), we have

ci ≤ Bi log



1 +
1

σ2
i

∑

j∈A

‖hij‖
2
2

∑

j∈A

‖wij‖
2
2





≤ Bi log



1 +
1

σ2
i

∑

j∈A

‖hij‖
2
2 Ej



 , c̄i. (13)

Let c̄ = [c̄1, · · · , c̄N ]T .
We define a generalization of the WSRM problem, which

has the same constraints as the WSRM problem but with an
extended objective function as follows:

min
ci,wij

f(c) (14)

s.t. (11) and (12),

wherec = [c1, · · · , cN ]T , and the objective functionf(c), for
0 ≤ c ≤ c̄, has the following properties:

1) f(c) is a function only ofc and
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2) f(c) < ∞ is continuously differentiable, and
3) f(c) is convex in the feasible region defined by (11) and

(12).

To avoid trivial solutions for (14), in what follows, we
assume∂f(c)

∂ci

∣

∣

c=0
< 0, for i = 1 · · ·N . We call (14) the

QWSRM problem, which models a variety of problems in
wireless communications. For example, we can interpretf(c)
as thereverse utility function, corresponding to the concave
utility function in network congestion control problems [40],
[41].

Let c̃ = [c̃1, . . . , c̃N ]T be the root to the system of equations
∂f(c)/∂ci = 0, for all i ∈ N , where each̃ci is set toc̄i if the
solution does not exist. LetF represent the feasible region
of the variablec in (14), andc∗ = [c∗1, . . . , c

∗
N ]T and w∗

ij ,
∀i ∈ N , ∀j ∈ A, be the optimal solution of the QWSRM
problem.

Theorem 1:The optimal achievable ratec∗ of the QWSRM
problem falls inside or on the surface of theN -dimensional
rectangleQinit = {c | ci ∈ [0,min{c̃i, c̄i}], i ∈ N}.

Proof: See Appendix A.

A WMMSE approach to solve the WSRM problem based on
the relationship between SINR and MMSE is proposed in [28].
However, the WMMSE approach cannot always find the global
optimal solution. Subsequently, a BnB method is proposed in
[27], which shows that this method can produce the global
optimal solution. The proposed BnB method uses the fact that
the objective function in WSRM problem is monotonically
non-increasing in the achievable ratesci ≥ 0 , for all i ∈ N .
In what follows, we first give a brief overview of the BnB
algorithm from [27], and then show how to extend it to solve
the QWSRM problem in (14).

The BnB approach is widely used in nonconvex optimiza-
tion problems, e.g., the integer programming problems. For
each iteration step of the BnB algorithm, one needs to generate
a sequence of asymptotically tight upper and lower bounds
for the objective function, with both bounds converging to
the global optimal value eventually. The basic idea in [27] of
using the BnB algorithm to solve the WSRM problem is to first
expand the unknown feasible region of the WSRM problem to
a known initialN -dimensional rectangle, and then sequentially
shrink the rectangle until it is small enough, where at each
iteration, the variablesc are fixed, and a feasibility problem
w.r.t. to the variables{wij : i ∈ N , j ∈ A} is solved. This
avoids having to solve the nonconvex WSRM problem w.r.t.
{ci,wij} directly.

Inspired by the BnB algorithm in [27], we develop a similar
BnB procedure in Algorithm 1 for the QWSRM problem (14).
We useQinit given in Theorem 1 as the initialN -dimensional
rectangle. We shrink theN -dimensional rectangle by making
use of the following upper bound

γub(Q) =

{

f(cmin), cmin ∈ F

+∞, otherwise
(15)

and lower bound1

γlb(Q) =

{

f(cmax), cmin ∈ F

+∞, otherwise,
(16)

for everyN -dimensional rectangleQ , {c | ci,min ≤ ci ≤
ci,max, ∀i ∈ N} ⊆ Qinit , whereci,min and ci,max denotes the
end points of theith edge ofQ, cmin = [c1,min, · · · , cN,min]

T

and cmax = [c1,max, · · · , cN,max]
T . Note thatcmax need not be

in the feasible regionF . At each iteration, for a givenQ, the
following feasibility problem is solved:

find wij , ∀i ∈ N , ∀j ∈ A (17)

s.t. ‖r i(A)‖2 ≤

√

1 +
1

2ci,min/Bi − 1
Re[Rii(A)], ∀i ∈ N ,

N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ A.

Note that (17) is a second-order cone programming (SOCP)
feasibility problem w.r.t.wij , which can be solved by using
interior-point methods on an equivalent SOCP with a trivial
objective function [42].

Algorithm 1 BnB algorithm for QWSRM problem

1: Input: Qinit , A, andf(c).
2: Initialize: Obtainc̃i by solving ∂f(c)

∂ci
= 0, for i ∈ N . Set

k = 1, B1 = Qinit , u1 = γub(Qinit) and l1 = γlb(Qinit).
3: Check the feasibility of problem (17) with giveñc.
4: if feasiblethen
5: co = c̃;
6: else
7: while uk − lk > ǫ do
8: Branching:

•SetQk = Q, whereQ satisfiesγlb(Q) = lk.
•Split Q into QI andQII , along one of its longest

edges.
•UpdateBk+1 = (Bk\{Qk}) ∪ (QI ,QII).

9: Bounding:

•Updateuk+1 = minQ∈Bk+1
{γub(Q)}.

•Updatelk+1 = minQ∈Bk+1
{γlb(Q)}.

10: Setk = k + 1;
11: end while
12: Setco = cmin;
13: end if
14: Output:co.

The rationale of using the BnB algorithm to solve the
QWSRM problem is the same as that for the WSRM problem,
i.e., we sequentially shrink the givenN -dimensional rectangle
Qinit , where the optimal solution falls in, until the the lower
and upper bounds satisfyuk − lk ≤ ǫ, where ǫ > 0 is a
predefined accuracy level. The following result shows that
Algorithm 1 converges to the optimal solution of the QWSRM.
The proof is similar to Theorem 1 in [27] and the convergence
analysis in [43], which we omit for brevity.

1Although [27] provides an improved lower bound with additional compu-
tational overhead, we use the basic lower bound in this paperfor simplicity.



6

Theorem 2: The output co generated by Algorithm 1,
converges arbitrarily close to the optimal solutionc∗ of the
QWSRM problem, within a finite number of iterations, i.e.,
for any ǫ > 0, there existsM > 0 such thatuM − f(c∗) ≤ ǫ.

Remark 1:The reason that the upper and lower bounds in
(15) and (16) are suitable for the QWSRM problem isf(c) is
monotonic in each intervalci ∈ [0, c̃i], for all i ∈ N . Thus,
by fixing the variablec in the QWSRM problem, instead of
solving the nonconvex problem (14) directly, we just need to
solve a SOCP (17) in each iteration of the BnB algorithm. For
Algorithm 1, the inputN -dimensional rectangleQinit provided
by Theorem 1 can be further shrunk if a priori upper and lower
bounds ofc are known.

IV. CROSS-LAYER POWER CONSUMPTION MINIMIZATION

In this section, we reformulate problem (P0) into a MINLP
(P1), which we further decompose into a ESUM problem and
a RRH selection problem.

In fact, RRH j is inactive means that there is no signal
transmitted from RRHj to all the UEs. Hence, RRHj is active
or not is equivalent to

∑N
i=1 ‖wij‖

2
2 > 0 or = 0, respectively.

In addition, fori ∈ N ,

∑

j∈A

wH
ijwij =

L
∑

j=1

wH
ijwij , (18)

since
∑

j∈Ac wH
ijwij = 0, whereAc is the complementary set

of A.
Let the vector

m =
[

N
∑

i=1

‖wi1‖
2
2 ,

N
∑

i=1

‖wi2‖
2
2 , · · · ,

N
∑

i=1

‖wiL‖
2
2

]T
.

Hence,|A| = ‖m‖0. Combining (18), (12) and|A| = ‖m‖0,
we can reformulate problem (P0) as

(P1) min
µi,ci,wij

N
∑

i=1

ϕi(µi) + ‖m‖0 Pf +
1

η

N
∑

i=1

L
∑

j=1

wH
ijwij

s.t.
1

µi − λi
+

1

ci − λi
≤ τi, ∀i ∈ N ,

λi < µi, λi < ci, ∀i ∈ N ,

‖r i(L)‖2 ≤

√

1 +
1

2ci/Bi − 1
Re[Rii(L)],

∀i ∈ N , (19)
N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ L,

where (19) is derived from (12) due to the fact thatwij = 0,
for j ∈ Ac.

Proposition 1: In problem (P1), constraint (5) is an active
inequality constraint, i.e., the optimal{µi, ci} for problem (P1)
satisfies the following equation:

µi = λi +
1

τi
+

1

τ2i (ci − λi)− τi
, ∀ i ∈ N .

Proof: See Appendix B.

Based on Proposition 1, we let

gi(ci) , ϕi(µi) = ϕi

(

λi +
1

τi
+

1

τ2i (ci − λi)− τi

)

, (20)

where

ci > λi +
1

τi
, ∀i ∈ N . (21)

Since problem (P1) is a MINLP, we now propose a two-
step approach to find an approximate solution to it (cf. Figure
3). Specifically, we first relax problem (P1) to the ESUM
problem (P2) below. Then, for problem (P2), we propose
two different algorithms to solve it in Section IV-A and
Section IV-B respectively. Using the optimal achievable rates
obtained by solving problem (P2), problem (P1) becomes a
RRH selection problem (cf. problem (Q2) in Section IV-C).
We finally propose an efficient Shaping-and-Pruning algorithm
to obtain the sparse solution of the RRH selection problem.

Inspired by compressive sensing,l1-norm is utilized as a
convex relaxation ofl0-norm, since thel1-norm is a convex
envelop of thel0-norm [20]. We can applyl1-norm relaxation
to the objective function of problem (P1) and using Proposi-
tion 1, we obtain the following ESUM problem, which is a
nonconvex optimization problem.

(P2) min
ci,wij

N
∑

i=1

gi(ci) + (Pf +
1

η
)

N
∑

i=1

L
∑

j=1

wH
ijwij

s.t. ‖r i(L)‖2 ≤

√

1 +
1

2ci/Bi − 1
Re[Rii(L)],

∀i ∈ N ,

ci > λi +
1

τi
, ∀i ∈ N .

N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ L.

A. Approximating the ESUM problem with a QWSRM problem

Similar to (13), we apply the Cauchy-Schwarz inequality to
(7), and combining with (18), we have

ci ≤ Bi log



1 +
1

σ2
i

L
∑

j=1

‖hij‖
2
2

L
∑

j=1

‖wij‖
2
2



 , ∀i ∈ N ,

(22)

which further yields

L
∑

j=1

wH
ijwij ≥

(2ci/Bi − 1)σ2
i

∑L
j=1 ‖hij‖

2
2

. (23)

Hence, problem (P2) can be approximated as

(Q1-1) min
ci,wij

N
∑

i=1

fi(ci)

s.t. constraints in problem (P2),

where

fi(ci) = gi(ci) + (Pf +
1

η
)
(2ci/Bi − 1)σ2

i
∑L

j=1 ‖hij‖
2
2

.
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Cross-layer

Optimization

ESUM

Problem
Cross-layer

Optimization

RRH selection

Problem

Relaxation

Substitution

Relaxation

MINLP SOCP

Shaping-and-Pruning

Algorithm
WMMSE Algorithm

QWSRM

Problem

Approximation

BnB Algorithm

Substitution

(P1):{µi, ci,wij} (P2):{µi, ci}

(Q1-2):{µ∗
i , c

∗
i }

(Q2):{wij}

{w∗
ij}

(Q1-1):{µi, ci}

(Q1-1):{µ∗
i , c

∗
i }

Fig. 3. The two-step approach to solve problem (P1).

Proposition 2: Suppose that Assumption 1 holds. Then,
problem (Q1-1) is a QWSRM problem, whose optimal
solution c∗ falls inside or on the surface of theN -
dimensional rectangleQ̂init = {c = [c1, . . . , cN ]T |
ci ∈ (λi + 1/τi,min{c̃i, c̄i}], for i ∈ N}, where c̃i is
the root of the equation∂fi(ci)/∂ci = 0, and c̄i =

Bi log
(

1 + 1
σ2
i

∑L
j=1 ‖hij‖

2
2 Ej

)

.
Proof: See Appendix C.

To obtain the optimal achievable ratesc∗ = [c∗1, . . . , c
∗
N ]T

for (Q1-1), we utilize Algorithm 1 with the following inputs:

1) f(c) =
∑N

i=1 fi(ci), wherec = [c1, . . . , cN ]T

2) Qinit = Q̂init

3) A = L

The optimal VM computation capacity for UEi as implied by
(Q1-1) is then given byµ∗

i = λi +
1
τi

+ 1
τ2
i
(c∗

i
−λi)−τi

. Note
that the solution{(µ∗

i , c
∗
i ) | i ∈ N} is in general sub-optimal

for (P1) because of the relaxations we have done to obtain
(Q1-1), but is guaranteed to be feasible for (P1).

B. A WMMSE approach to solve the ESUM problem

Although problem (P2) can be approximated as a QWSRM
problem (Q1-1) and then solved by the BnB algorithm, which
obtains the global optimal solution for problem (Q1-1), the
complexity of the BnB algorithm is still high. In this subsec-
tion, we develop a lower complexity algorithm to obtain a local
optimal solution for problem (P2) directly. This is done based
on an extension of the algorithm proposed by [28], which
aims to solve the sum-utility maximization problem using the
WMMSE algorithm.

Let θi(·) = gi(−Bi log(·)) and denotẽθi(·) as the inverse
mapping of the gradient map∇θi(ei). It can be verified that
θi(ei) is a strictly concave function in the interval(2−ĉi , ∞),
whereĉi = (λi + 1/τi)/Bi.

Proposition 3:The optimal transmit beamformer vectorswij

for the ESUM problem are the beamforming solutions of the

following problem:

(Q1-2) min
xi,yi,wij

N
∑

i=1

xiei +
N
∑

i=1

θi(θ̃i(xi))−
N
∑

i=1

xiθ̃i(xi)

+ (Pf +
1

η
)

N
∑

i=1

L
∑

j=1

wH
ijwij

s.t. ‖r i‖2 <
√

1 + 1/(2ĉi − 1)Re[Rii], ∀i ∈ N ,

N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ L,

wherexi > 0 is the MSE weight for UEi, yi is the receive
beamformer weight at UEi (note that each UE has a single
antenna), and

ei , E
[∥

∥yHi ûi − ui

∥

∥

2

]

=

∣

∣

∣

∣

∣

∣

yHi
∑

j∈L

hH
ijwij − 1

∣

∣

∣

∣

∣

∣

2

+

N
∑

l 6=i

∣

∣

∣

∣

∣

∣

yHi
∑

j∈L

hH
ijwlj

∣

∣

∣

∣

∣

∣

2

+ σ2
i |yi|

2
,

=

N
∑

l=1

∣

∣

∣

∣

∣

∣

yHi
∑

j∈L

hH
ijwlj

∣

∣

∣

∣

∣

∣

2

− 2Re



yHi
∑

j∈L

hH
ijwij



+ σ2
i |yi|

2
+ 1.

(24)

Moreover,θi(θ̃i(xi))− xiθ̃i(xi) is strictly convex w.r.t.xi.
Proof: The proof is similar to that in Appendix B of [28],

and is omitted for brevity.
From Proposition 3, instead of solving problem (P2) di-

rectly, we can solve problem (Q1-2) to obtain the optimal
transmit beamformer vectorswij . Since problem (Q1-2) is
convex w.r.t. each variable while keeping other variables fixed,
problem (Q1-2) is much easier to solve than problem (P2).
Specifically, problem (Q1-2) can be solved via the following
alternating optimization procedure:

• For givenwij , ∀ i ∈ N and j ∈ L, the optimal receive
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beamformer of problem (Q1-2) can be calculated by the
well-known MMSE receiver:

yi =

∑

j∈L hH
ijwij

∑

k∈N

(

∑

j∈L hH
ijwkj

)(

∑

j∈L wH
kjhij

)

+ σ2
i

.

(25)

• For fixed yi and wij , ∀ i ∈ N and j ∈ L, the optimal
MSE weightxi of problem (Q1-2) can be obtained by

xi = ∇θi(ei). (26)

• For fixed xi and yi, ∀ i ∈ N , the optimal transmit
beamformer vectorwij can be obtained by solving the
following quadratically constrained quadratic program
(QCQP), which can be easily reformulated as a SOCP:

min
wij

N
∑

i=1

xiei + (Pf +
1

η
)

N
∑

i=1

L
∑

j=1

wH
ijwij (27)

s.t. ‖r i‖2 <
√

1 + 1/(2ĉi − 1)Re[Rii], ∀i ∈ N ,

N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ L.

whereei is given by (24).
Therefore, we can solve problem (P2) with the iterative

WMMSE method as elaborated in Algorithm 2, in which

O(p) =

N
∑

i=1

gi(c
(p)
i ) + (Pf +

1

η
)

N
∑

i=1

L
∑

j=1

∥

∥

∥w(p)
ij

∥

∥

∥

2

2
,

and

c
(p)
i = Bi log

(

1 +
|
∑

j∈L hH
ijw(p)

ij |2

σ2
i +

∑N
k 6=i |

∑

j∈L hH
ijw(p)

kj |
2

)

.

Algorithm 2 Iteratively WMMSE approach for the ESUM
problem

1: Initialize: w(0)
ij andp = 1.

2: while
∣

∣O(p) −O(p−1)
∣

∣ > ξ do
3: Givenw(p−1)

ij , obtain receive beamformery(p)i by (25);

4: Fix w(p−1)
ij andy(p)i , obtain the MSE weightx(P )

i from
(26) and (24);

5: Given x
(p)
i , y

(p)
i and z

(p)
ij , obtain the transmit beam-

former w(p)
ij by solving the convex optimization prob-

lem (27);
6: Updatec(p)i ;
7: Let p = p+ 1.
8: end while
9: Output:co = [c

(p)
1 , · · · , c

(p)
N ]T .

C. The RRH selection problem

After obtaining the achievable ratesc∗ = [c∗1, . . . , c
∗
N ]T via

solving problem (P2) by Algorithm 1 or Algorithm 2, we now
turn to the RRH selection problem since the active RRH set
A is relaxed to the full setL in the ESUM problem. The main

focus of this subsection is to recover the active RRH setA,
based on the given optimal UE achievable rate vectorc∗ from
Algorithm 1 or Algorithm 2.

Replacingµi and ci in problem (P1) by the solutionsµ∗
i

and c∗i obtained from Algorithm 1 respectively, we have the
following RRH selection problem:

min
wij

Pf ‖m‖0 +
1

η

N
∑

i=1

L
∑

j=1

wH
ijwij (28)

s.t.
N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ L.

‖r i(L)‖2 ≤
√

1 + 1/(2c
∗

i
/Bi − 1)Re[Rii(L)],

∀i ∈ N , (29)

which is a MINLP.
We introduce an auxiliary binary variableβj ∈ {0, 1}, ∀j ∈

L, whereβj = 1 if and only if RRH j is active (the fiber link
j is turned on). Then, problem (28) becomes

min
βj ,wij

Pf ‖m‖0 +
1

η

N
∑

i=1

L
∑

j=1

wH
ijwij (30)

s.t.
N
∑

i=1

wH
ijwij ≤ βjEj , ∀j ∈ L.

‖r i(L)‖2 ≤
√

1 + 1/(2c
∗

i
/Bi − 1)Re[Rii(L)],

∀i ∈ N ,

βj ∈ {0, 1}, ∀j ∈ L,
L
∑

j=1

βj ≥ 1, (31)

where (31) ) indicates that at least one RRH is turned on.
Applying l1-norm relaxation to‖m‖0 and the binary-to-
continuous relaxation to the variableβj , the relaxed RRH
selection problem becomes

(Q2) min
βj ,wij

L
∑

j=1

βjEj

s.t. ‖r i(L)‖2 ≤
√

1 + 1/(2c
∗

i
/Bi − 1)Re[Rii(L)],

∀i ∈ N ,
N
∑

i=1

wH
ijwij ≤ βjEj ,

L
∑

j=1

βj ≥ 1,

0 ≤ βj ≤ 1, ∀j ∈ L,

where the constraint
∑L

j=1 βj ≥ 1 can improve the accura-
cy of relaxation from problem (30) to (Q2), although it is
redundant for problem (30). Problem (Q2) is a SOCP and
can be solved easily by standard convex programming tool
boxes [42]. Let the optimal solution of problem (Q2) be
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{β̃j, w̃ij | i ∈ N , j ∈ L}.

We can interpretβ̃j to be the priority of RRHj being
chosen to be active, where a RRH with relatively lower priority
value should be turned off. However, [17] suggests that some
incentive algorithms can help improve the RRH selection.
We utilize the reweightedl1-norm relaxation as the incentive
strategy and propose the followingShaping-and-Pruning (SP)
algorithm, which has two main steps:

1) Shaping. We use the reweightedl1-norm relaxation [44]
in (Q2) to “shape” the solutions into a sparse form.
Specifically, we solve the reweighted problem

min
βj ,wij

N
∑

i=1

L
∑

j=1

ρjβjEj (32)

s.t. constraints in problem (Q2),

where ρj = 1/
(

β̃j + ξ
)

, ξ is adaptively chosen by

ξ = max
{

min
(

β̃1, · · · , β̃L

)

, φ
}

, and φ is a small
positive value to ensure numerical stability [21]. We
denote the optimal solution obtained from problem (32)
as theshaped priorities{β̂j | j ∈ L}.

2) Pruning. Sort the shaped priorities{β̂j | j ∈ L} in
ascending order, so that̂βπ1

≤ β̂π2
· · · ≤ β̂πL

, for some
permutation(π1, . . . , πL) of the setL. We define theJ th
active RRH set to beAJ , {πJ+1, · · · , πL}. Then, we
apply the bisection search to findJ∗, which is the largest
index J such thatβπ1

= · · · = βπJ
= 0 andβπj

= β̂πj
,

for all j ≥ J+1, form a feasible solution to (Q2). Finally,
take the active set to beA∗ = AJ∗ .

After obtaining the active setA∗, the corresponding beam-
forming weightsw∗

ij can be found by solving the following
SOCP:

min
wij

N
∑

i=1

∑

j∈A∗

wH
ijwij (33)

s.t.
N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ A∗,

‖r i(A∗)‖2 ≤
√

1 + 1/(2c
∗

i
/Bi − 1)Re[Rii(A

∗)],

∀i ∈ N ,

wherew∗
ij = 0, ∀i ∈ N , and∀j /∈ A∗.

The proposed SP algorithm makes a trade-off between
the conventional sorting-and-removing and sparsity-inducing
algorithms [20], [22]. Specifically, the computational com-
plexity is reduced by utilizing the bisection search, instead
of the sequential and iterative search in sorting-and-removing
algorithms. We summarize the Shaping-and-Pruning algorithm
in Algorithm 3.

Remark 2: Note that, in the Shaping step in line 2 of
Algorithm 3, we only need to solve problem (32) once, instead
of iteratively updating the weights{ρj | j ∈ L}, as is
done in [20]. Suppose that the interior-point method is applied
to solve the feasibility problem of (Q2), which is a SOCP,
in each iteration. The time complexity to solve each SOCP

Algorithm 3 Shaping-and-Pruning Algorithm

1: Initialization. Solve problem (Q2) to obtain{β̃j | j ∈ L}.
Let Jmin = 0 andJmax = L.

2: Shaping: Solve problem (32), whereρj , j = 1, . . . , L, are
defined by{β̃j | j ∈ L}, to obtain the shaped priorities
{β̂j | j ∈ L}.

3: Pruning: Sort the shaped priorities{β̂j | j ∈ L} in
ascending order, to obtain̂βπ1

≤ β̂π2
· · · ≤ β̂πL

.
4: while Jmax− Jmin ≥ 2 do
5: J = ⌊(Jmax+ Jmin)/2⌋;
6: Check the feasibility of problem (Q2) ifA = AJ ;
7: if feasiblethen
8: Jmin = J ;
9: else

10: Jmax = J ;
11: end if
12: end while
13: Output J∗ = ⌊(Jmax + Jmin)/2⌋, A∗ = AJ∗ =

{πJ∗+1, · · · , πL} and its corresponding beamforming
weightsw∗

ij by solving (33).

is O((NLK)3.5),2 where K is the number of antennas in
each RRH [45]. The complexity of solving (32) and (33) are
also bothO((NLK)3.5). Therefore, the complexity of our SP
algorithm isO((NLK)3.5 logL).

In summary, the proposed solution for problem (P1) is
obtained as follows: the optimal VM computation capacities
and achievable rates{(µ∗

i , c
∗
i ) | i ∈ N} are obtained from Al-

gorithm 1 or Algorithm 2, which are then used to determine the
optimal active RRH setA∗ and its corresponding beamforming
weightsw∗

ij from Algorithm 3. For ease of reference, we call
the whole procedure that solve problem (P1) by Algorithm
1 and Algorithm 3 in tandem as Cross-Layer Shaping-and-
Pruning algorithm 1 (CLSP1) and the whole procedure that
solve problem (P1) by Algorithm 2 and Algorithm 3 in tandem
as Cross-Layer Shaping-and-Pruning algorithm 2 (CLSP2).

V. SIMULATION RESULTS

In this section, we present simulation results to verify the
performance of the proposed CLSP1 and CLSP2 algorithms,
and compare them to several existing algorithms in the litera-
ture.

A. Simulation setup

We consider a heterogeneous C-RAN system of 7 RRHs,
where RRH 1 to 6 are located on a circle centered at a macro
RRH, with radius 0.5 km. The RRHs 1 to 6 are placed at
equal distances apart, as shown in Figure 4. The maximum
transmitting power from RRH 1 to RRH 6 isE1 = E2 =
· · · = E6 = E, and the maximum transmitting power for the
macro RRH isEm. The wireless transmission bandwidth is
10 MHz. We adopt the path loss model used by the 3GPP
specification for Evolved Universal Terrestrial Radio Access

2We say thatq(n) = O(g(n)) if lim sup
n→∞

|q(n)/g(n)| < ∞.
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TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
L 7 K 2
σ2 -83.98 dBm η 0.2
E 1 W Em 10 W
ϑ 5 dB s 10 dB
Pf 5 W

0.5 km

0.5 km

RRH 1RRH 6

RRH 5

RRH 4 RRH 3

RRH 2

Marco RRH

Fig. 4. Simulation setup in a heterogeneous C-RAN.

in [46], where the received power at a UEd km from a RRH
is given by

p (dB) = 128.1 + 37.6 log10 d.

The transmit antenna gain at each RRH isϑ. The lognormal
shadowing parameter iss. In our simulations, we consider
homogeneous UEs withσ1 = σ2 = · · · = σN = σ, and
τ1 = τ2 = · · · = τN = τ .

For the power consumption functionϕi(µi), we adopt the
formula ϕi(µi) = kiµ

3
i , whereki > 0 is a constant. This

power consumption formula was proposed by [35] and adopted
by [36], [37]. We summarize our simulation parameters in
Table I [20], [29].

B. The effect of shaping

In this subsection, we show the performance of the proposed
SP algorithm for the RRH selection problem, compared with
the following benchmark algorithms:

• Exhaustive Search (ES) Algorithm.This algorithm solves
the RRH selection problem (28) using an exhaustive
search over all possible RRH selections to obtain the opti-
mal solution for problem (28). It has a high complexity of
O((NLK)3.52L), which makes the algorithm intractable
whenL becomes large. This is used as a benchmark to
compare other algorithms against.

• Bisection Search (BS) Algorithm.This algorithm, which
was proposed in [47], skips the shaping step in the SP
algorithm, and uses̃βj in place ofβ̂j for all j ∈ L in the
pruning step of the SP algorithm. We use this algorithm
as a benchmark to show the effect of the shaping step in
the SP algorithm. The complexity of the BS algorithm is
O((NLK)3.5 logL).
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Fig. 5. Number of active RRHs using different RRH selection algorithms.

• Full Cooperation (FC) Algorithm.This algorithm as-
sumes all the RRHs are chosen to be active, i.e.,A∗ = L.
The complexity of the FC algorithm isO((NLK)3.5).

• Successive Selection (SS) Algorithm.This algorithm was
proposed in [29], and lets all RRHs to be active in
the initial iteration, with a RRH having the least pow-
er consumption removed at each subsequent iteration.
The iterations are performed until the problem (28)
becomes infeasible. The complexity of the SS algorithm
is O((NLK)3.5L).

• Greedy Selection (GS) Algorithm.This algorithm was
proposed in [22]. It considers all RRHs to be active
in the initial iteration, and then removes the RRH that
reduces the system power consumption by the largest
amount at each iteration until the problem (28) becomes
infeasible. Simulation results in [22] suggest that this
algorithm produces a near-optimal solution, compared
with the global solution obtained by solving a MINLP.
The complexity of the GS algorithm isO((NLK)3.5L2).

To compare the performance of all the RRH selection
algorithms, we suppose the optimal achievable ratec∗i for each
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UE i is identical in problem (28), i.e.,c∗1 = · · · = c∗N = c.
In Figure 5(a), we show the mean number of active RRHs
versus each UE’s optimal achievable ratec under different
RRH selection algorithms when the number of UEsN = 6.
We see that the SP algorithm outperforms the FC, SS and
BS algorithms over all mean arrival rates. Whenc ≤ 17
Mb/s, the SP algorithm has comparable or even better sparsity
performance than the GS algorithm. Whenc ≥ 17 Mb/s,
compared to the SP algorithm, the GS algorithm produces a
solution with about 5% less active RRHs, but at the expense of
L2/ logL = 17.5 times computational complexity overhead.

Next, we let c = 20 Mb/s, and show the mean number
of active RRHs versus the number of UEsN under different
RRH selection algorithms in Figure 5(b). We see from Figure
5(b) that the SP algorithm has similar sparsity performance
as the GS algorithm, and outperforms the FC, SS and BS
algorithms. From both Figures 5(a) and 5(b), we can see that
although we incur an overhead to perform the shaping step in
the SP algorithm, its solution sparsity is improved by 5% -
10%.

C. The importance of cross-layer design

In this subsection, we present simulation results to verify
the performance gain using a cross-layer design in which the
both the BBU pool power consumption and the RRH power
consumption are jointly optimized. Most of the previous work
in C-RAN optimizes the power consumption for the wireless
transmission layer and BBU pool independently, for instance,
[29] and [22]. We call this class of algorithms the decoupled-
layer (DL) algorithms. We assume that, for the DL algorithms,
the delay in the BBU processing queueai and the delay in the
RRH transmitting queuebi satisfy ai ≤ τi/2 and bi ≤ τi/2
respectively. We formulate optimization programs, similar to
problem (P0), for finding optimal UE achievable rates, VM
computation capacities, beamformer vectors, and active RRH
set separately. The RRH selection problem can then be solved
using either the SS or GS algorithms. We call these the DLSS
and DLGS method respectively.

In this paper, we have provided a general framework that
allows us to perform cross-layer (CL) optimization of the
overall system power consumption. Our two-step approach
(cf. Figure 3) allows us to first solve a QWSRM using
Algorithm 1 and then a RRH selection problem. For the
RRH selection problem, we can again adopt the ES, BS, and
FC algorithms. We call these the CLES, CLBS, and CLFC
methods respectively3. We let UEs’ mean arrival rates to be
identical, i.e.,λ1 = · · · = λN = λ.

In Figure 6, we show the relationship between the UEs’
mean arrival rate and the system power consumption for
N = 6 in Figure 6(a). We observe that, firstly, CL algorithms
outperform the DL algorithms, especially in high traffic rate
regime. Secondly, CLSP1 outperforms CLSP2. Finally, as the
incoming traffic rate increases, the performance gap between
CLFC and CLSP1 (CLSP2) becomes smaller since CLSP1

3Since SS and GS have high complexity and have performance lower
bounded by ES, we do not include these methods in tandem with Algorithm
1 as our benchmarks for comparison.
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Fig. 6. System power consumption under different algorithms.

(CLSP2) needs more active RRHs to support the higher
rate demand. The performance of system power consumption
versus the number of UEs is depicted in Figure 6(b) when
λ = 20 Mb/s. We see again that CL algorithms are better than
DL algorithms. CLSP1 and CLSP2 also outperforms CLBS,
which again shows the importance of the shaping step in the
SP algorithm.

VI. CONCLUSION

In this paper, we have investigated the problem of mini-
mizing the overall system power consumption (including the
power consumption in the BBU pool, the fiber links and the
RRHs) in a C-RAN, such that the cross-layer QoS and per-
RRH power constraints are satisfied. We formulated a MINLP
and then relax it to an ESUM problem, which gives the
optimal achievable rate for each UE. Based on the optimal
achievable rate, we proposed an efficient SP algorithm, with
lower computational complexity than several state-of-the-art
RRH selection methods, to recover a sparse solution for the
RRH selection problem. Simulation results suggest that our
proposed SP algorithm outperforms various other methods,



12

and the proposed cross-layer algorithm is more energy efficient
than existing decoupled-layer methods.

C-RAN provides a centralized BBU pool, instead of the
distributed BSs, to improve resource utilization, and enable
the use of centralized processing like joint beamforming.
However, there are two main side effects. The first is the
large channel state information (CSI) overhead, and the second
is the high amount of data transfer in the fronthaul, whose
capacity is limited in practice. As the number of RRHs and
UEs in C-RANs becomes large, our proposed algorithms
may be restricted by the large CSI overhead and limited
fronthaul capacity, and may become unsuitable for real-time
implementation. Therefore, in future work, it would be of
interest to incorporate CSI overhead reduction techniques
based on historical traffic arrival rates, and statistical properties
of the channel states, in order to perform approximate real-
time cross-layer optimization in limited fronthaul capacity
systems.

APPENDIX A
PROOF OFTHEOREM 1

Suppose that there exists somei ∈ N such thatc̃i < c̄i,
andc∗i ∈ (c̃i, c̄i]. Sincef(c) is convex and finite, there exists
ĉi ∈ (c̃i, c

∗
i ) such thatf(ĉ) < f(c∗), whereĉ is c∗ with the

i-th elementc∗i replaced bŷci. In addition, we have

‖r∗i (A)‖2 ≤
√

1 + 1/(2c
∗

i
/Bi − 1)Re[R∗

ii(A)]

<
√

1 + 1/(2ĉi/Bi − 1)Re[R∗
ii(A)],

which implies that̂c is a feasible rate vector for the QWSRM
(14). Butf(ĉ) < f(c∗), which contradicts the assumption that
c∗ is optimal for the QWSRM. The theorem is now proved.

APPENDIX B
PROOF OFPROPOSITION1

If we fix the variables{µi, ci} in problem (P1), then
problem (P1) is reduced to

min
wij

N
∑

i=1

L
∑

j=1

wH
ijwij (34)

s.t. ‖r i(L)‖2 ≤

√

1 +
1

2ci/Bi − 1
Re[Rii(L)],

∀i ∈ N ,
N
∑

i=1

wH
ijwij ≤ Ej , ∀j ∈ L,

which is a SOCP. Then, we can observe that, if we slightly
increase the value of constantci, the feasible region of problem
(34) is shrunk accordingly. That means the optimal value of
problem (34) is nondecreasing w.r.t.ci.

On the other hand, from Assumption 1,ϕi(µi) is increasing
w.r.t. µi. Therefore, the optimal{µi, ci} of problem (P1) must
achieve equality in the system delay constraint (5) since the
left hand side of (5) is monotonically decreasing w.r.t.µi and
ci respectively. The proposition is now proved.

APPENDIX C
PROOF OFPROPOSITION2

On the one hand, from Assumption 1,ϕi(·) is convex and
increasing; on the other hand,λi+

1
τi
+ 1

τ2
i
(ci−λi)−τi

is convex
w.r.t. ci > λi+1/τi. Then it can be shown that for eachi ∈ N ,
if ci > λi + 1/τi, fi(ci) is convex, based on the composition
rules, which preserve convexity [48].

Therefore,
∑N

i=1 fi(ci) is a convex function over̂Qinit , and
it also satisfies the three properties of the objective function
f(c) in a QWSRM problem (14) in Section III. Therefore,
problem (Q1-1) is a QWSRM problem. In addition,c̄i is an
upper bound ofci derived from (22), since for anyi ∈ N , j ∈
L, we have‖wij‖

2
2 ≤ Ej . The proposition is now proved.
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