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Cross-Layer Resource Allocation with Elastic
Service Scaling in Cloud Radio Access Network

Jianhua TangStudent Member, IEEBMee Peng TaySenior Member, IEEEand Tony Q.S. QuekSenior
Member, IEEE

Abstract—Cloud radio access network (C-RAN) aims to im- BBU pool Fiber links RRHs
prove spectrum and energy efficiency of wireless networks by e
migrating conventional distributed base station functioralities
into a centralized cloud baseband unit (BBU) pool. We propos
and investigate a cross-layer resource allocation model foC-
RAN to minimize the overall system power consumption in the
BBU pool, fiber links and the remote radio heads (RRHs). We
characterize the cross-layer resource allocation problenas a
mixed-integer nonlinear programming (MINLP), which joint ly
considers elastic service scaling, RRH selection, and jdibbeam-
forming. The MINLP is however a combinatorial optimization
problem and NP-hard. We relax the original MINLP problem
into an extended sum-utility maximization (ESUM) problem, and
propose two different solution approaches. We also proposea
low-complexity Shaping-and-Pruning (SP) algorithm to obain
a sparse solution for the active RRH set. Simulation results s b s
suggest that the average sparsity of the solution given by o8P . .
alggogrithm is close to thgt olftaine)él by a recently p?oposeg gredy Fig. 1. Cloud radio access network (C-RAN).
selection algorithm, which has higher computational compxity.
Furthermore, our proposed cross-layer resource allocatio is
more energy efficient than the greedy selection and succeesi centralized signal processing and scheduling feature én th
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selection algorithms. BBU pool further makes a variety of prospective technolsgie
Index Terms—C-RAN, elastic service scaling, cross-layer de- feasible, including centralized encoding and decodingtreé
sign, green communication, weighted sum-rate maximizatio ized compression and decompression, and joint beamforming
Although C-RAN makes it possible to transition conven-
I. INTRODUCTION tional cellular networks (CCNs) from hardware defined in-

) frastructures to a software defined environment, many desig
Cloud radio access network (C-RAN) has emerged as,dq gperational challenges that have been resolved in CCNs
promising solution to the operation and bandwidth chakeng..q to be revisited in C-RAN. One particular example of

faced by_ future mobile communica’gion i_nfrastrgctures,chhi importance is the resource allocation problem. Specifical

are required to handle an exponentially increasing demand £cns power control and beamforming strategies have been
data traffic [1]. A C-RAN utilizes centralized signal pros#8) | seq o minimize the system power consumption such that
in the baseband unit (BBU) pool instead of processing ﬁgers’ predefined quality-of-service (QoS) requirements a

distributed base stations (BSs), which can result in signi{fjieq. Unfortunately, these strategies cannot plugedily
icant capital and operating expenditure savings. Cer&dli j.i1 the C-RAN framework. In CCNS, the BSs' computation

processing at the BBU pool also allows cooperation betweggy ity is fixed. As a result, resource allocation methads i
multiple remote radio heads (RRHSs), thus improving Sp@etiuscns are oblivious to the computation capacities of the BSs
efficiency and link reliability. Furthermore, the use of Wb 5ji,0gh users’ achievable QoS levels are actually depende
computing technologies as th.e. mfrastructure of the BBUIPOG, them. Under the C-RAN architecture, the computation-
greatly IMproves hardware utl_I|zat|on. ) al functionalities in conventional BSs are migrated to the
~ Decoupling the baseband signal processing from the RRHS, 4 hased virtual machines (VMs) in the BBU pool, whose
is the most attractive feature of_C—RAN, _wh_|ch means thfﬁbmputation capacity can be scaled according to users’ QoS
RRHSs only need to keep the basic transmission and receptigpirements and various parameters from different lagérs
fupct|onal|t|es, while computqtlonally intensive taskanche the OSI stack, including the incoming traffic rate from the
migrated to the BBU pool in a cloud data center. Thignyjication layer and wireless channel state informatiomf

J. Tang and W. P. Tay are with the School of Electrical and tEee the ph)_/smal layer. Tr_‘erefo“?' de\{eloplng across Iaysaq_uece
Engineering, Nanyang Technological University, Singap@-mail: {jtang4, ~allocation scheme is required in order to fully utilize the
wptay} @ntu.edu.sg. features of a C-RAN, and to optimize the overall system power
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following subsytems: The joint RRH selection and beamforming problem is NP-

« BBU pool. Having a cloud data center as the BBUWrd [22], therefore to solve it exactly is computationally
pool not only allows centralized signal processing, biftractable when the number of RRHs is large. We summarize
also elastic service scaling of the resources of the BBE¢Me commonly used approaches here. In the first approach,
pool. Specifically, the BBU pool can dynamically adjusthe problem is formulated as a mixed-integer nonlinear pro-
each VM capacity to optimize power consumption fogramming (MINLP), and then solved by Branch and Bound
changing traffic and channel states. An important resear@nB) or Branch and Cut (BnC) methods [17]. Both the
Cha”enge is to design |0W_C0mp|exity a|gorithms fanB and BnC methods yleld the Optlmal SOIUtion, but have
dynamic service scaling in the BBU pool. high time complexity. Another approach is thsoftting-and-

« Fiber links. Each RRH is connected to the BBU poofemoving method [13], [22], in which the RRHs are ranked
via a high-bandwidth, low-latency fiber link. The powegccording to some priority criteria in each iteration, ahd t
consumption in the fronthaul links has traditionally beeRRH with the lowest priority is removed. The process con-
ignored in the CCN literature since it is relatively muctinues until the problem becomes infeasible. This methad ca
lower than the power consumption in the BSs of thBroduce a near-optimal solution, but still has high computa
CCN. However, in C-RAN, the power consumption irfional complexity. The Sparsity-inducing method is inspired
fronthaul links is comparable to the power consumptiopy compressive sensing. Reweightgenorm relaxation and
at the RRHSs since the RRHs are architecturally mudparsity-inducing norms are used to obtain a sparse subset o
simpler compared to conventional BSs. By turning ofRRHs [19], [20], [22]. This method is efficient in compu-
some redundant fiber links, as well as the RRH connecti@dional complexity but cannot guarantee optimality. Hina
to these fiber links, energy savings can be achieved. TK@nstructing a Markov Chain Monte Carlo (MCMC) is a
motivates the link or RRH selection problem. potential way to solve the RRH selection problem as well [16]

« RRHs. In C-RAN, the functionality of RRHs can be asln this work, we propose aShaping-and-Prunirigmethod,
simple as just a signal transmission and reception poiMthich is a trade-off between the sorting-and-removing and
The RRHs can cooperate with each other to perforfiparsity-inducing methods, in order to obtain a near-ogitim
centralized joint beamforming to mitigate interference?€rformance with lower computational complexity.

Thus, the throughput of the wireless channels to the userslhe BBU pool of C-RAN comprises many general purpose
can be significantly enhanced. An important researgiocessors (GPP), which forms a cloud computing infrastruc
issue here is the design of the joint beamforming at tire using virtualization technology [24]. A computatidiya

RRHs in order to achieve an optimal trade-off in chann@ware strategy is proposed to reduce the computationajeuta
throughput and energy efficiency. in C-RAN recently [25]. However, most of the previous works

In this paper, we consider the problem of optimizing thfeelated, to the C'R,AN BBU pool just makes use of the
allocated VM computation capacities in the BBU pool, thgentrahzed processing property offered by cloud computin

set of selected RRHs, and the beamforming strategies atggeeom'm'ze the system. For example, a central encoder is
t

active RRHs in order to minimize the overall system pow veloped in [26] to jointly encode the messages intended fo
consumption for C-RAN e mobile stations, and a cloud decoder in [19] utilizes the

joint statistics of the received correlated signals to deo@ss
the received signal. Theses works do not consider the issue o
A. Related work elastic service scaling and resource allocation the BBU,poo

C-RAN aims to be a competitive and potential 5G framewhich is one of the focus of this paper. In addition, unlike
work, which has been attracting comprehensive research mpst of the works in the literature, which investigate meiho
tention from both industry and academia since 2011 [2]-[5pb provide QoS guarantees for specific layers in the OSI stack
Many prototypes, test-beds and architecture designs hese b(e.g., ensuring bandwidth or latency requirements are migt o
done to show the feasibility and performance gain by adgptiin the wireless transmission part), we consider methods to
C-RAN [6]-[9]. The concept of RAN as a service (RANaaSgnsure cross-layer QoS guarantees in this paper.
has also been developed based on the structure of C-RAN [10]. o

In the fronthaul of C-RAN, i.e., the RRHs and the wireles8- Main contributions
channel, Coordinated Multipoint (CoMP) techniques are de-In this paper, we formulate the cross-layer resource al-
ployed to enhance the system throughput. In order to enhatmeation problem as a MINLP by minimizing the system
energy efficiency [11], cell, BS or RRH selection for thg@ower consumption, which consists of three parts: the power
fronthaul has been comprehensively studied over the pashsumption in the BBU pool with respect to (w.r.t.) the
several years [12]-[17]. For example, the authors in [12] atvM computation capacity, the power consumption in the fiber
[14] jointly consider the base station selection problend arironthaul links w.r.t. the number of links (or, active RRHS)
linear precoding. Fronthaul link or RRH selection for C-RANand the transmission power on the RRHs w.r.t. the transmit
have been studied by [18]-[23]. For instance, [19] considdsbeamformer. We relax the MINLP into an extended sum-utility
joint BS selection and distributed compression in C-RAN tmaximization (ESUM) problem, and propose two different
improve energy efficiency, while [22] considers RRH sefatti approximate solution approaches. In the first approach, we
jointly with fronthaul beamforming to minimize the systemapproximate the ESUM problem as a quasi weighted sum-
power consumption. rate maximization (QWSRM) problem, and propose a BnB



algorithm to solve it. The QWSRM problem is an extension of Processing Transmitting

the weighted sum-rate maximization (WSRM) problem, which Queue Queue

has been studied in [27], [28]. In the second approach, we Ailt) III@ Illa
utilize the weighted minimum mean square error (WMMSE)

method to obtain a locally optimal solution to the ESUM . Delaya;, | . Delayb; |

problem. Based on the achievable rates found by eithemrsplvi

the QWSRM problem or using the WMMSE approach, Weig. 2. Queueing model representation of a C-RAN procesaitjtransmis-
propose an efficient Shaping-and-Pruning algorithm toquerf sion path for a UE.

RRH selection. Our proposed algorithm achieves a trade-off

between computational complexity and solution optimalit

We provide simulation results that suggest that our proqboérocessed (€.., encoded) by a VM, which is abstracted as

rocessing queue, with mean service rate Then, the
approach outperforms the recently proposed greedy setectf P . . , .
algorithm of [22] and successive selection algorithm of| |29 processed data is transmitted to Wia the RRHs, which are

: : deled using a transmitting queue with mean servicegate

terms of overall system power consumption, since these-me ° i ’

ods only optimize the RRH selection and RRH beamformi othe ;hatdth_(ejtlrl]nlrs b?at;Neen th(ta_ B?;proﬁl snd .'f[?]e RRH:TS are

strategies. This shows that cross-layer optimization ezult gnh-banawidth, low-iatency oplical fiver inks with negiie
transmission delay. However, the power consumptignof

in higher energy efficiencies for a C-RAN. . . .
The remainder of this paper is organized as follows V\%ach fiber link cannot be neglected, compared with the power
’ nsumption in the associated RRH.

present the C-RAN system model in Section Il, and introdu&® ‘ _ :
the QWSRM problem and its solution in Section Ill. In For each UE €V, let o; represent the expected delay in

Section IV, we formulate the minimization of system powetthned%roggs,[sr:gge?(uiucfeg'%"erge ?nxeﬁgt?rggsegi)t/til: theuzﬁg goeo
consumption as a MINLP, approximate this MINLP proble ! P y 94 Y

as a QWSRM problem, and propose an efficient algorithbedexipimedrde"la?/ durrlnlg V\:'i;ﬁlniss trﬁr;znllislon). ﬁ,ﬂﬁgnal
to solve it. We present simulation results in Section V, ang G€s!9n a cross-iayer algo such that for eactvifne

conclude the paper in Section VI. system expected delay, = a; + b, satisfies the cross-layer

Notations We use boldface lower case letters to denof 0S constraint:
vectors. The notatiofjx||, is the Euclidean norm of, while d; <, (1)

()T and (-)¥ represent transpose and conjugate transposeh, ) G ) ¢
respectively. We USE to denote the set of complex numbersVNerer; is a predefined QoS requirement for UE
We assume that UE's packet arrival process to the pro-

and CN(0,0%) to denote the distribution of a circularly - ) X X
symmetric complex normal zero mean random variable wifffSSIng queue Is a Poisson process with mean ¥ate 0,
= \;t, and the service time of each data packet

variances?. The log function is the logarithm function with yvhereAi(t) , . L
base 2. in the processing queue follows an exponential distrilvutio

with mean1/u;. Then, the arrival process to the transmitting
queue is the same as the one to the processing queue [31],
Il. SYSTEM MODEL [32]. We assume that the service time of each data packet in

In this section, we present our C-RAN system model aff€ transmitting queue follows an exponential distribatiath
problem formulation. Suppose that there afesingle-antenna meanl/ci._Therefore, the data processing and transmitting for
user equipments (UEs) anfd available RRHs, each wittk each UE; in our C-RAN model can be treated as two M/M/1
antennas, in a C-RAN cluster. We denote the sets of all UEi§eues [33] in tandem. We have far, ¢; > Ai,
and all RRHs as\V = {1,--- N} and £ = {1,---,L}, 1 1
respectively. We denote the set of active RRHs (i.e., thefset di = i — N\ + i — N
RRHs that are servicing the UEs iN[, and their associated
fiber links) as.A. We have A C L. The amount of voice
and data traffic associated with each WE N up to timet is
given by A, (¢) (bits), and each UEis served by one VM with
computation capacity; in the BBU pool. After processing by
the VM, the data is forwarded to the UE viid| active RRHs
(we assume data sharing among the RRHs), whdfe< L

In the wireless transmission, C-RAN leverages CoMP trans-
mission to enhance the throughput [34]. There are two types
of CoMP techniques in the downlink: coordinated schedul-
ing/coordinated beamforming (CS/CB) and joint transnoissi
(JT). In this work, we consider JT as the CoMP technique
in C-RAN, i.e., each UE’s data can be shared among all the
) oo . : coordinated RRHSs. Let; denote the data symbol for thith
is the cardinality of the se#d. Let the achievable wwelessUE with E[jz:|2] = 1, and Wy € CK denote the transmit

transm|s§|on rats tlo U_I:':hu;:ng thhe acrlve RR_:'S bﬁéh beamformer for the UE from RRH j. The channel from
Queueing model, with the channel capacity as the qUeUgy, ; 1o UE ; is denoted ab!!, whereh;; € CX, for i € A
service rate, is widely used to characterize wireless cm%dj c A. Thus. the receive

d signal at UHs given b
nication systems [30]. Therefore, we introduce a doubjefa g g y
gueueing network to represent each UE’s data processing and . " N o
transmitting behavior in the C-RAN downlink (cf. Figure 2). Ti = Z hijWijai + Z Z hijWiej o + s,
Our model can be easily extended to the C-RAN uplink as jeA ki jEA
well. Specifically, in the BBU pool, the data of UE is where the first term on the right hand side is the useful signal



for UE 4, the second term is the interference to WEand where SINR(A) is given by (2), and “s.t.” stands for “subject
§; ~ CN(0,0?) is the additive white Gaussian noise (AWGNJYo”.

at UEi. Problem (PO) is difficult to solve for the following reasons:
As such, the signal-to-interference-plus-noise ratidN@@) (i) it is a combinatorial optimization problem and NP-hard
at UE 4, with the active RRH se#d, becomes [20]; and (ii) the problem is nonconvex even if the active RRH
> W, 2 setA is known a priori. However, by first relaxing (P0O) into a

SINR;(A) = JEA ” *J (2) ESUM problem, and then into a QWSRM problem, we obtain

o? + Zk# 1> jeahi; By, 2 a BnB solution. In the following section, we first discuss the

The achievable rate of UE ¢;, should satisfy QWSRM problem and its BnB solution.

¢i < Bilog(1 + SINR;(A)), 3) I1l. THE QWSRMPROBLEM
where B; is the bandwidth for UEi. Each RRHj has  |n this section, we extend the classical WSRM problem to
maximum transmitting power constraint given by the QWSRM problem, and then propose a BnB solution for
N N the latter. The QWSRM problem will be used in Section IV
> owliwi; =Y w5 < By, forj e L. (4) to tackle problem (PO). Throughout this section, we assume

that the active RRH setl is known.
Mathematically, the WSRM problem is typically formulated

A. Problem formulation as
N
The BBU pool of C-RAN utilizes a cloud computing min Z —eic; 9)
infrastructure with elastic service scaling. In particulthe ciWig
BBU pool can dynamically adjust the VMs’ computation ca- st. ¢ < Bilog(1+SINR(A)), Vie N (10)
pacities to handle dynamic user traffic and channel states. W 1N_ ’ ’ ’
model VM i's power consumptiorp; (11;) as a function of its ZWHWZ']' L VjeA, (11)

computation capacity,;. We make the following assumptions
regarding the VM’s power consumption functign.

Assumption 1For each VM, i € N, the power consump-
tion functiony;(u;) has the following properties:

wherec; is the throughput of UE, ¢; is an arbitrary nonneg-
ative weight, and SINR.A) is given by (2).
Since the phase rotation of the complex veatgy has no
1) ¢i(ui) = 0 for all i > 0, . _ impact on the WSRM problem, we can recast the constraint
2) ¢;(u;) is a convex and increasing function of. (10) as
The power consumption of a VM is often modeled as ‘
@i(pi) = kipl, wherek; > 0 anda; > 1 are positive con-  [[Fi(A)l, < \/1 +1/(2¢4/Bi — 1)Re[Rii(A)], Vi e N,
stants. This power consumption function satisfies Assumnpti (12)
1, and has been widely adopted in the literature [35]-[38]. where vector;(A) = [Ri1(A), -, Rin (A), 05]7, Ri(A) =

Our aim is to minimize the system power consumption i hH
e NijWi;, andRe(-) stands for the real part of a complex
c- RAL\I Wh';? CSEZ'SIS olf :rt:ree components: :he pottl;/]erfcbo umber [29], [39]. Note that the constralnt (12) is a second-
T o o s oy rder cone (S0C)consaint oy '  consan
' : . : '~ Applying th hy-Sch i li 7 h
the power consumption for each VM in the BBU pool with pplying the Cauchy-Schwarz inequality to ( )’ we have

computation capacity:; is ¢;(u;), Vi € N (i) the power

consumption for each active fiber link #%; and (jii) the power ¢ < Bilog | 1+ — Z [hi; 2 Z w15
consumption at RRHj € A is (1/7) Y1, w!iw;;, where %ijea jeA
€ (0,1) is the inefficiency coefficient of the amplifier in
each RRH. Our optimization problem can then be formulated < Bjlog [ 1+ = Z Ihi; 2 E; | 2 é. (13)
as follows: i jeA
) Letc=[c1,---,en?.
PO i (e P ww, ; . ’ L ,
(PO) ucm\}vnj ZSD i) + APy + Zz:l ;4 CA We define a generalization of the WSRM problem, which
1 1 ! has the same constraints as the WSRM problem but with an
s.t. PRy + Y <7, VieN, (5) extended objective function as follows:
i < iy Ni < ey VieEN, (6) min  f(c) (14)
. Cq,Wij
¢i < Bilog (1 +SINR;(A)), Vie N ,(7) st (11) and (12)
wherec = [c1,- -+, cn]?, and the objective functioyfi(c), for
ZWZWH < Ej, Vj €L, (8) 0<c <¢, has the following properties:

1) f(c) is a function only ofc and



2) f(c) < > is continuously differentiable, and and lower bound

3) f(c) is convex in the feasible region defined by (11) and @) {f(cmax), Crin € F
b -

(12). :
+ o0, otherwise

(16)

To avoid trivial solutions for (14), in what follows, we for every N-dimensional rectangl® £ {c | cimin < ¢; <
assume?L2| < 0, fori = 1---N. We call (14) the ¢imax¥i € N} C Qinit, Wherec; min and c;max denotes the
QWSRM problem, which models a variety of problems i®nd points of theth edge ofQ, cmin = [c1,min, -+, ¢n,min] "
wireless communications. For example, we can interptel  and Cmax = [¢1,max - » ¢n.mad” - Note thatcmax need not be
as thereverse utilityfunction, corresponding to the concaven the feasible regio. At each iteration, for a give@, the

utility function in network congestion control problemsJ4 following feasibility problem is solved:

[41] find  wi,¥ie N, VjeA 17)
LetC = [¢1,...,¢n]T be the root to the system of equations 1 '

df(c)/dc; = 0, for all i € N, where eacli; is set to; if the St IFi(A)lly < (/1 + o—rp——Re[Rii(A)], Vi€ N,

solution does not exist. LeF represent the feasible region

N
of the variablec in (14), andc* = [c],...,c}]" and wj;, ZWfWij < Ej, Vj € A.
Vi € N,Vj € A, be the optimal solution of the QWSRM — Y
problem.

Note that (17) is a second-order cone programming (SOCP)
Theorem 1The optimal achievable rat of the QWSRM feasibility problem w.r.tw;;, which can be solved by using
problem falls inside or on the surface of thé-dimensional interior-point methods on an equivalent SOCP with a trivial

rectangleQini = {C | ¢; € [0, min{é;, &}],i € N'}. objective function [42].

Proof: See Appendix A. B Algorithm 1 BnB algorithm for QWSRM problem

A WMMSE approach to solve the WSRM problem based on’* "PUt Qi A, and f(c). 85(0 .
the relationship between SINR and MMSE is proposed in [28]% Initialize: Obtain¢; by solving %= = 0, for i € NV. Set
However, the WMMSE approach cannot always find the global k=1, B1 = Qinit, u1 = yu(Qinit) aNdly = yip(Qinit).
optimal solution. Subsequently, a BnB method is proposed i _Check_the feasibility of problem (17) with given

[27], which shows that this method can produce the globaf* it feasiblethen

optimal solution. The proposed BnB method uses the fact that Co=C

the objective function in WSRM problem is monotonically 6: else
non-increasing in the achievable rates> 0 , for all i € . t while ug, — I > € do
In what follows, we first give a brief overview of the BnB 8 Branching:
algorithm from [27], and then show how to extend it to solve +SetQ;, = Q, whereQ satisfiesyp(Q) = l.
the QWSRM problem in (14). « Split Qdinto Qr andQj;, along one of its longest
edges.
_ The BnB approach is \{videly used in nonconvex optimiza- .Updateng+1 = (Bx\{Qx}) U (Q1, Q11).
tion p_roble_ms, e.g., the integer programming problems. Fog. Bounding:
each iteration step of the BnB algorithm, one needs to génera «Updateus . = minges, . {1u(Q)}
a sequence of asymptotically tight upper and lower bounds Updatel “: min Qe k+1{ U(Q)} '
for the objective function, with both bounds converging to *pdates+ QEBk VT )
the global optimal value eventually. The basic idea in [2f7] 0'°" Setk =k +1;
using the BnB algorithm to solve the WSRM problem is to first: gr;(tjcwmlim _
o ns

expand the unknown feasible region of the WSRM problem t .

a known initial N-dimensional rectangle, and then sequentially® €nd if

shrink the rectangle until it is small enough, where at each QUIPUL: Co.

iteration, the variables are fixed, and a feasibility problem

w.r.t. to the variable§w;; : i € N,j € A} is solved. This ~ The rationale of using the BnB algorithm to solve the

avoids having to solve the nonconvex WSRM problem w.rQWSRM problem is the same as that for the WSRM problem,

{ci,w;;} directly. i.e., we sequentially shrink the give¥-dimensional rectangle
Qinit, Where the optimal solution falls in, until the the lower

Inspired by the BnB algorithm in [27], we develop a similag,g upper bounds satisfy, — I, < ¢, wheree > 0 is a

BnB procedure in Algorithm 1 for the QWSRM problem (14)predefined accuracy level. The following result shows that

We useQinir given in Theorem 1 as the initid¥-dimensional - Agorithm 1 converges to the optimal solution of the QWSRM.

rectangle. We shrink thé/-dimensional rectangle by makingThe proof is similar to Theorem 1 in [27] and the convergence

use of the following upper bound analysis in [43], which we omit for brevity.

Yub(Q) = { f(Cmin).  Cmin € F (15) 1Although [27] provides an improved lower bound with additb compu-

—+ 00, otherwise tational overhead, we use the basic lower bound in this pepesimplicity.




Theorem 2:The outputc, generated by Algorithm 1, Based on Proposition 1, we let
converges arbitrarily close to the optimal solutich of the 1 1
QWSRM problem, within a finite number of iterations, i.e., gi(ci) = @i(i:) = i <>\i +t =t
for any e > 0, there exists\ > 0 such thatu,; — f(c*) < e. i Ti(ei = M) =T
Remark 1:The reason that the upper and lower bounds Mihere
(15) and (16) are suitable for the QWSRM probleny{g) is 1.
monotonic in each interval; € [0,¢], for all i € . Thus, Ci > i+ E’vz EN. (21)
by fixing the variablec in the QWSRM problem, instead of gjnce problem (P1) is a MINLP, we now propose a two-
solving the nonconvex problem (14) directly, we just need Qep approach to find an approximate solution to it (cf. Fégur
solve a SOCP (17) in each iteration of the BnB algorithm. F@). Specifically, we first relax problem (P1) to the ESUM
Algorithm 1, the inputV-dimensional rectangl@ini provided proplem (P2) below. Then, for problem (P2), we propose
by Theorem 1 can be further shrunk if a priori upper and lowgf,o gifferent algorithms to solve it in Section IV-A and
bounds ofc are known. Section IV-B respectively. Using the optimal achievablesa
obtained by solving problem (P2), problem (P1) becomes a
RRH selection problem (cf. problem (Q2) in Section IV-C).
We finally propose an efficient Shaping-and-Pruning alarit

(P1), which we further decompose into a ESUM problem and InSpired by compressive sensinig;norm is utilized as a
a RRH selection problem. convex relaxation ofy-norm, since the;-norm is a convex

In fact, RRH j is inactive means that there is no signafnVelop of thép-norm [20]. We can apply,-norm relaxation

transmitted from RRH to all the UEs. Hence, RRHiis active (© the objective function of problem (P1) and using Proposi-
or not is equivalent t@lg\rzl ||Wij||§ > 0 or = 0, respectively. tion 1, we obtain the following ESUM problem, which is a

In addition, fori € A/, nonconvex optimization problem.

) . (20)

IV. CROSSLAYER POWER CONSUMPTION MINIMIZATION

L N 1 N L
: H
D wiiwi; = o wiiwy, ag P2 min D ail) + (P ) D > wiws
jeA J=1 i=1 i=1 j=1
. . 1
since)” ;. 4. Wiiw;; = 0, where A° is the complementary set st |ri(LD)]ly <4 /1+ W%e[}zii(ﬁ)],
of A C
Vie N,

Let the vector .
N ) N ) N 0T Ci>>\i+f,Vi€N.
m = [Z||wi1||27ZHwi2H2a"' aZszLHQ} ' N i
i=1 i=1 i=1 I .
Wi W, < E; Vje L.
Hence,|A| = |m||,. Combining (18), (12) andA| = ||m||,, ; Wi = S

we can reformulate problem (P0O) as
A. Approximating the ESUM problem with a QWSRM problem

N N L
1 o . .
(P1)  min 0i(p) + |Imll, Py + = wHw,; Similar to (13), we apply the Cauchy-Schwarz inequality to
oo Wi ; (he) + limll Py n;; 77 (7), and combining with (18), we have

1 1
s.t. + <7, VieN 1 &
i —Xi o ci—N ~ ’ ¢ < Bilog [ 1+ = [hyl;
024
j=1 J

)\i<ﬂi;>\i<0i7 V?:GN,

1 (22)
; < S
Irs()lle < 1+ gz el i O \yhieh further yields

L

Iwi; |5 | Vi €N,
1

i 19
VieN, (29) L . (264/B: _ 1)o2
N wihwy; > <=0k (23)
S wihw, < B i< £ Xl Il
=1 Hence, problem (P2) can be approximated as
where (19) is derived from (12) due to the fact thgt = 0, N
for j € A°. .
1-1 i(ci
Proposition 1:In problem (P1), constraint (5) is an active (Q1-1) cmvlvn; ;f ()

inequality constraint, i.e., the optim§li;, ¢;} for problem (P1)

satisfies the following equation:

1 1 where

pi =i+ =+ ——v——, VieN. 1 (2¢:/Bi _ 1)g2

T TA(e = N) — T files) = gi(es) + (Pp + = (7%‘1_
i "3 hi

Proof: See Appendix B. [ ] j=1 11712

s.t. constraints in problem (P2),
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Fig. 3. The two-step approach to solve problem (P1).

Proposition 2: Suppose that Assumption 1 holds. Therfpllowing problem:
problem (Q1-1) is a QWSRM problem, whose optimal

N
solution c* falls inside or on the surface of theV- (1.2 min ziei + Y 0i( 2:0;(;
dimensional rectangleQpnt = {c = [c1,...,en]T | ( ) TiyYi Wi Z Z ; (=)
¢ € ()\Z + 1/Ti,min{&i,éi}], for: € N}, where ¢; is
the root of the equatiorﬁfi(cz)/aci = 0, and ¢ = Pf+ ZZWUWW
Bilog (1+ & X0, i3 B, ). ==
Proof: See Appendix C. u st [Irlly < \/1+1/(2% — 1)Re[Ryi], Vi € N,

To obtain the optimal achievable rates = [c},...,cy]T N
for (Q1-1), we utilize Algorithm 1 with the following inputs ZWHW" B, Vel

1) f(c) = 32N, files), wherec = ¢4, ..., en]” Yo ’

2) Qinit = Qinit

wherex; > 0 is the MSE weight for UE, y; is the receive

3 A=L beamformer weight at UE (note that each UE has a single
The optimal VM computation capacny for UEas implied by antenna), and

(Q1-1) is then given by = \; + - + W Note
that the solution{ (¥, c) | i € N} s in general sub-optimal € = E [[|yi" @i — uill,]
for (P1) because of the relaxations we have done to obtain 2 2

(Q1-1), but is guaranteed to be feasible for (P1). Z h Tw,; — Z Z h Tw,| + o? |y¢|2,

jeL [ jec

B. A WMMSE approach to solve the ESUM problem 2

Although problem (P2) can be approximated as a QWSRM = Z Yi Z hijwi| —2%Re |y Z hifwi; | + o7 ysl* + 1.
problem (Q1-1) and then solved by the BnB algorithm, which =1 JEL JEL
obtains the global optimal solution for problem (Q1-1), the
complexity of the BnB algorithm is still high. In this SUbseCMoreoverH (9 ()
tion, we develop a lower complexity algorithm to obtain adbc
optimal solution for problem (P2) directly. This is done éds . . .
og an extension ofpthe algorithm proposed by [28], whi %nd 's omitted for brevity. -

aims to solve the sum-utility maximization probiem using th oM Proposition 3, instead of solving problem (P2) di-
WMMSE algorithm. rectly, we can solve problem (Q1-2) to obtain the optimal

s 5 : transmit beamformer vectonw,;. Since problem (Q1-2) is
Let 0;(-) = g;(—B;log(:)) and denotd),(-) as the inverse . A . : .
mapping z)f the(gradient r)rza‘ﬁé,-(ei). It can)be verified that CONVEX W.r.t. each variable while keeping other variabbesdj

0;(e;) is a strictly concave function in the intervél—c: ’ problem (Q1-2) is much easier to solve than problem (P2).
wr(sar)eé- — (A +y1/7.)/B. Ve, o0) Specifically, problem (Q1-2) can be solved via the following

Proposition 3:The optimal transmit beamformer vectovs; alternating optimization procedure:
for the ESUM problem are the beamforming solutions of the « For givenw;;, V i € A" andj € £, the optimal receive

(24)

— x40;(x;) is strictly convex w.r.tz;.
Proof: The proof is similar to that in Appendix B of [28],



beamformer of problem (Q1-2) can be calculated by tHecus of this subsection is to recover the active RRH.4¢t

well-known MMSE receiver: based on the given optimal UE achievable rate vectdrom
S h Wi, Algorithm 1 or Algorithm 2.
yi = €LY Replacingy; and¢; in problem (P1) by the solutiong?

D ke (ZJ@ hUWk]) (Zjeﬁ WkHjhij) +o? and ¢} obtained from Algorithm 1 respectively, we have the
(25) following RRH selection problem:

« For fixedy, andw;;, Vi € N andj € L, the optimal

MSE weightz; of problem (Q1-2) can be obtained by ~ min Py [mll, + Z ZWZJWU (28)
i=1 j=1
H .
o For fixed z; andy;, V i € N, the optimal transmit St. ZWMWU < Ej, VjEL.
beamformer vectow;; can be obtained by solving the =
following quadratically constrained quadratic program ri(L)], < \/1 +1/(2¢/B: — 1)Re[Rii(L)],
(QCQP), which can be easily reformulated as a SOCP: Vie N (29)
min ziei + (Py + ~ Wz W, 27y Which is a MINLP.
Wi Lz; ! ;; 7 @7 We introduce an auxiliary binary variabty € {0,1},Vj €

- . L, whereg; =1 if and only if RRH j is active (the fiber link
st Irill, <4/141/(2% = D)Re[Rii], Vi€ N, ;s turned on). Then, problem (28) becomes

N
ZW{_JIWU < Ej, VJ eL.

Jmin Py [mfl, + ZZWLJWZJ (30)
wheree; is given by (24). s i=1 j=1
Therefore, we can solve problem (P2) with the iterative i _
WMMSE method as elaborated in Algorithm 2, in which st Y whw; < BB, VieL
N =1
D=3 gilel”) + (P + w IF(O)5 < 1+ 1/250/P — DRe[Ri (L),
=t Vie N,
and " 8; €{0,1}, Vj € L,
H P 2 L
(p) | Zjeﬁ hu | )
¢;”” = Bjlog <1 + . B:>1 (31)
1 D) - L
U +Zk7€z|2]€£ LJij |2 ; !

where (31) ) indicates that at least one RRH is turned on.

Algorithm 2 Iteratively WMMSE approach for the ESUM Applying I;-norm relaxation to|lm||, and the binary-to-
problem continuous relaxation to the variablg;, the relaxed RRH

1 Initialize: W(JO) andp — 1. selection problem becomes

2: while |O® — OP=D| > ¢ do

3: Givenwﬁf 1) obtaln receive beamform@f”) by (25); ) _ L 5
4:  Fix wz(.f 2 andyi ), obtain the MSE we|gm§P from (Q2) Brf\}v?j ;BJ J
(26) and (24); ~
5. Given 2\ ), y!") and zfj’) obtain the transmit beam- st ri (D), < \/1 +1/(2¢/8: — 1)Re[Rii (L)],
formerw] by solving the convex optimization prob- Vie N,
lem (27) N
6: Updatec P, ngww < B;E;,
7. Letp=p + 1. =1
8: end while L
9: Output:c, = [\, -, W7, Zﬂj >1,
0<pB;<1,VjeL,
C. The RRH selection problem where the constrainf. , 3; > 1 can improve the accura-
After obtaining the achievable rates = [c7,...,c4y]? via cy of relaxation from problem (30) to (Q2), although it is

solving problem (P2) by Algorithm 1 or Algorithm 2, we nowredundant for problem (30). Problem (Q2) is a SOCP and
turn to the RRH selection problem since the active RRH se&n be solved easily by standard convex programming tool
A is relaxed to the full sef in the ESUM problem. The main boxes [42]. Let the optimal solution of problem (Q2) be



{Bﬁugij lieN, jeLll). Algorithm 3 Shaping-and-Pruning Algorithm

We can interpret3; to be the priority of RRHj being  1: Initialization. Solve problem (Q2) to obtaiiB; | j € L}.
chosen to be active, where a RRH with relatively lower ptyori Let Jmin = 0 and Jmax = L.
value should be turned off. However, [17] suggests that som& Shaping: Solve problem (32), whepe, j = 1,..., L, are
incentive algorithms can help improve the RRH selection. defined by{3; | j € £}, to obtain the shaped priorities
We utilize the reweighted;-norm relaxation as the incentive {5, | j € L}.
strategy and propose the followifghaping-and-Pruning (SP) 3: Pruning: Sort the shaped prioritie{séj | 4 € L} in
algorithm, which has two main steps: ascending order, to obtaifl,, < 3, -+ < B, .
4: while Jmax — Jmin > 2 do
J = L(Jmax*F Jmin)/2J;

1) Shaping We use the reweighted-norm relaxation [44]
in (Q2) to “shape” the solutions into a sparse form.”’

Specifically, we solve the reweighted problem 6: .Check.the feasibility of problem (Q2) it = A;
7. if feasiblethen
N oL 8: Imin = J;
ﬂm}l)n ZijﬂjEj (32) o else
T =1 g=1 10: Jmax = J;
s.t. constraints in problem (Q2), 11:  end if
- ) . 12: end while
where p; = 1/ (ﬂj+§), § is adaptively chosen by 5. output J* = |(Jmax + Jmin)/2], A* = Ay =
¢ = maxﬂmin (51,... 3.), 6, and ¢ is a small {mss1,--- 7} and its corresponding beamforming
positive value to ensure numerical stability [21]. We Weightswj; by solving (33).

denote the optimal solution obtained from problem (32)
as theshaped priorities{3; | j € £}.

2) Pruning. Sort the shaped prioritiefg.Bj | jeL}in is O(NLK)3®)? where K is the number of antennas in
ascending order, so that, < 8., --- < f3.,, for some each RRH [45]. The complexity of solving (32) and (33) are
permutation(ry, ..., 71 ) of the set. We define the/th  also bothO((NLK)*?%). Therefore, the complexity of our SP
active RRH set to bed; £ {n;,,---,7}. Then, we algorithm isO((NLK)?*®log L).
apply the bisection search to fintt, which is the largest  In summary, the proposed solution for problem (P1) is

index J such that3,, =--- = 3,, =0 and3,, = Bwj, obtained as follows: the optimal VM computation capacities
for all j > J+1, form a feasible solution to (Q2). Finally, and achievable ratggu}, ¢f) | i € N} are obtained from Al-
take the active set to hd* = A-. gorithm 1 or Algorithm 2, which are then used to determine the

Af btaining th . ‘ th dina b optimal active RRH setl* and its corresponding beamforming
ter obtaining the active sell”, the corresponding eam'weightSwjj from Algorithm 3. For ease of reference, we call

forming weightswy; can be found by solving the following 6 "\yhole' procedure that solve problem (P1) by Algorithm
SOCP: 1 and Algorithm 3 in tandem as Cross-Layer Shaping-and-

) N " Pruning algorithm 1 (CLSP1) and the whole procedure that
W Z Z Wi Wij (33)  solve problem (P1) by Algorithm 2 and Algorithm 3 in tandem
i=1jeAr as Cross-Layer Shaping-and-Pruning algorithm 2 (CLSP2).

N
s.t. wiw,: < E., Vje A*
; EA ’ V. SIMULATION RESULTS

% /B, . In this section, we present simulation results to verify the
ri(A <A\/141/(2¢/Bi — 1)Re[Ryi (A*)], ' )
Irs(A%) 2 < \/ /( ) s (A7) performance of the proposed CLSP1 and CLSP2 algorithms,
VieN, and compare them to several existing algorithms in theahter
wherew;; = 0, Vi € V/, andVj ¢ A*. ture.

The proposed SP algorithm makes a trade-off between
the conventional sorting-and-removing and sparsity-giniyi  A. Simulation setup

algorithms [20], [22]. Specifically, the computational com We consider a heterogeneous C-RAN system of 7 RRHS,

p:ceﬁity is redupeld by utilizing the br:s.ection. search, iaste \ o RRH 1 to 6 are located on a circle centered at a macro
of the sequential and iterative search in sorting-and-i@ngo ppyy with radius 0.5 km. The RRHs 1 to 6 are placed at

algorithms. We summarize the Shaping-and-Pruning algorit equal distances apart, as shown in Figure 4. The maximum
in Algorithm 3. transmitting power from RRH 1 to RRH 6 i8} = Fy =
Remark 2:Note that, in the Shaping step in line 2 of.. — g, — E, and the maximum transmitting power for the
Algorithm 3, we only need to solve problem (32) once, insteafiacro RRH isE,,. The wireless transmission bandwidth is
of iteratively updating the weight$p; | j € L}, asis 10 MHz. We adopt the path loss model used by the 3GPP

done in [20]. Suppose that the interior-point method is ol specification for Evolved Universal Terrestrial Radio Asse
to solve the feasibility problem of (Q2), which is a SOCP,

in each iteration. The time complexity to solve each SOCP?Wwe say thatg(n) = O(g(n)) if limsup,,_, . |g(n)/g(n)| < co.
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TABLE |

SIMULATION PARAMETERS 8
Parameter | Value Parameter | Value .
L 7 K 2 o =
7 -83.98 dBm| 7 02 L +§§
E 1w E,, 10W g 6 osp| |
l 5dB s 10 dB = A FC
P 5W g
f st ---1"7-SS Y
o JEPPE Ah i A -%-GS
gy
RRH 6 T Ai/ RRH 1 €4
& ___ =
\ié 0.5 km =
0 3

(a) Different required achievable rates.

: 75 15 20 25 30
RRH 5 % ,,,,,,,,,,, Y RRH 2 ¢ (Mb/s)
| 0.5 km ]

Er
=
o
o
e}
Py
Py
T

Er

®

Y
Py
T
A s
O
T
o
w

~

[%2]
rrrrrrrrrrrrr I -8-ES
xe
Fig. 4. Simulation setup in a heterogeneous C-RAN. Q
u(g 5
kS
in [46], where the received power at a WEkm from a RRH B 4
is given by E
33
p (dB) = 128.1 + 37.6log; d. )
2‘ R4
The transmit antenna gain at each RRHJisThe lognormal
shadowing parameter is. In our simulations, we consider -
homogeneous UEs with; = 09 = --- = oy = o, and

n=T2="""=TN =T. (b) Different number of UEs.
For the power consumption functiop;(y;), we adopt the

formula %(M) _ ki/ﬁfy wherek; > 0 is a constant. This Fig. 5. Number of active RRHs using different RRH selectitgoethms.
power consumption formula was proposed by [35] and adopted

by [36], [37]. We summarize our simulation parameters in
Table | [20], [29]. o Full Cooperation (FC) Algorithm.This algorithm as-

sumes all the RRHs are chosen to be active, dé.= L.
. The complexity of the FC algorithm i©((NLK)??).
B. The effect of shaping « Successive Selection (SS) Algorithirhis algorithm was

In this subsection, we show the performance of the proposed Proposed in [29], and lets all RRHs to be active in

SP algorithm for the RRH selection problem, compared with ~ the initial iteration, with a RRH having the least pow-
the following benchmark algorithms: er consumption removed at each subsequent iteration.

The iterations are performed until the problem (28)
becomes infeasible. The complexity of the SS algorithm
is O(NLK)35L).

o Greedy Selection (GS) AlgorithnThis algorithm was
proposed in [22]. It considers all RRHs to be active
in the initial iteration, and then removes the RRH that
reduces the system power consumption by the largest
amount at each iteration until the problem (28) becomes
infeasible. Simulation results in [22] suggest that this
algorithm produces a near-optimal solution, compared
with the global solution obtained by solving a MINLP.
The complexity of the GS algorithm §((NLK )3 L?).

« Exhaustive Search (ES) Algorithifhis algorithm solves
the RRH selection problem (28) using an exhaustive
search over all possible RRH selections to obtain the opti-
mal solution for problem (28). It has a high complexity of
O((NLK)*°2%), which makes the algorithm intractable
when L becomes large. This is used as a benchmark to
compare other algorithms against.

« Bisection Search (BS) Algorithrthis algorithm, which
was proposed in [47], skips the shaping step in the SP
algorithm, and useéj in place ofﬁj forall j € £ in the
pruning step of the SP algorithm. We use this algorithm
as a benchmark to show the effect of the shaping step in
the SP algorithm. The complexity of the BS algorithm is To compare the performance of all the RRH selection
O((NLK)3%logL). algorithms, we suppose the optimal achievable cater each
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UE i is identical in problem (28), i.esi = --- = ¢y = c.

In Figure 5(a), we show the mean number of active RRH . ,,qf
versus each UE’s optimal achievable ratainder different gzoo— igtgi;
RRH selection algorithms when the number of UEs= 6. < o CLFC
We see that the SP algorithm outperforms the FC, SS ar %180’ -a-CLBS
BS algorithms over all mean arrival rates. When< 17 £ 1607 |<-CLES
Mb/s, the SP algorithm has comparable or even better spars & 140- ;::Btg‘g
performance than the GS algorithm. When> 17 Mb/s, O 150+
compared to the SP algorithm, the GS algorithm produces %1007
solution with about 5% less active RRHSs, but at the expense <
L?/log L = 17.5 times computational complexity overhead. 5 80
Next, we letc = 20 Mb/s, and show the mean number g 60
of active RRHs versus the number of UBsunder different 407
RRH selection algorithms in Figure 5(b). We see from Figurt 15 20 5 30
5(b) that the SP algorithm has similar sparsity performanc A (Mb/s)

as the GS algorithm, and outperforms the FC, SS and BS
algorithms. From both Figures 5(a) and 5(b), we can see that
although we incur an overhead to perform the shaping step
the SP algorithm, its solution sparsity is improved by 5% -
10%.

(a) Different arrival rates.

—-+-CLSP1
-o-CLSP2
120- |-+ CLFC
-8-CLBS
~<~CLES
->-DLGS
-4-DLSS

C. The importance of cross-layer design

In this subsection, we present simulation results to verif
the performance gain using a cross-layer design in which tt
both the BBU pool power consumption and the RRH powe
consumption are jointly optimized. Most of the previous kor
in C-RAN optimizes the power consumption for the wireless
transmission layer and BBU pool independently, for instganc
[29] and [22]. We call this class of algorithms the decoupled

80

System Power Consumption (Watts)

layer (DL) algorithms. We assume that, for the DL algorithms 4 6 8 10
the delay in the BBU processing queweand the delay in the N
RRH transmitting queué; satisfya; < 7;/2 andb; < 7;/2 (b) Different number of UEs.

respectively. We formulate optimization programs, simila

problem (PO0), for finding optimal UE achievable rates, VM
computation capacities, beamformer vectors, and activel RR
set separately. The RRH selection problem can then be sol @ﬂ

using either the SS or GS a}lgorithms. We call these the DL e demand. The performance of system power consumption

and DLGS method respectively. versus the number of UEs is depicted in Figure 6(b) when
In this paper, we have provided a general framework tht_ o\ mp/s. We see again that CL algorithms are better than

allows us to perform cross-layer (CL) optimization of they aigorithms. CLSP1 and CLSP2 also outperforms CLBS,

overall system power consumption. Our two-step approagiich again shows the importance of the shaping step in the
(cf. Figure 3) allows us to first solve a QWSRM usingsp algorithm.

Algorithm 1 and then a RRH selection problem. For the
RRH selection problem, we can again adopt the ES, BS, and

ig. 6. System power consumption under different algorithm

SP2) needs more active RRHs to support the higher

FC algorithms. We call these the CLES, CLBS, and CLFC VI. CONCLUSION
methods respectively We let UES” mean arrival rates to be | this paper, we have investigated the problem of mini-
identical, i.e Ay =--- = Ay = A mizing the overall system power consumption (including the

In Figure 6, we show the relationship between the UE§ower consumption in the BBU pool, the fiber links and the
mean arrival rate and the system power consumption fRRHs) in a C-RAN, such that the cross-layer QoS and per-
N = 6 in Figure 6(a). We observe that, firstly, CL algorithm&RH power constraints are satisfied. We formulated a MINLP
outperform the DL algorithms, especially in high traffic@atangd then relax it to an ESUM problem, which gives the
regime. Secondly, CLSP1 outperforms CLSP2. Finally, as th@timal achievable rate for each UE. Based on the optimal
incoming traffic rate increases, the performance gap betweghievable rate, we proposed an efficient SP algorithm, with
CLFC and CLSP1 (CLSP2) becomes smaller since CLSRjlver computational complexity than several state-ofatte

e , _ RRH selection methods, to recover a sparse solution for the

Since SS and GS have high complexity and have performancer Iov\hRH lecti bl Simulati It t that
bounded by ES, we do not include these methods in tandem wgbrigam selection pro ’ em. simulaton resu_ S sugges at our
1 as our benchmarks for comparison. proposed SP algorithm outperforms various other methods,
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and the proposed cross-layer algorithm is more energyaesftici
than existing decoupled-layer methods.

C-RAN provides a centralized BBU pool, instead of the On the one hand, from Assumption ¢;
distributed BSs, to improve resource utilization, and dmatﬁncreasing' on the oiher ha ’

the use of centralized processing like joint beamformm%
large channel state information (CSI) overhead, and thenskc !
is the high amount of data transfer in the fronthaul, whose
capacity is limited in practice. As the number of RRHs amil
UEs in C-RANs becomes large, our proposed algorith
may be restricted by the large CSI overhead and limit
fronthaul capacity, and may become unsuitable for read-tinh
implementation. Therefore, in future work, it would be otP
interest to incorporate CSI overhead reduction techniqués
based on historical traffic arrival rates, and statisticapprties
of the channel states, in order to perform approximate real-
time cross-layer optimization in limited fronthaul capgci
systems.

[2]

APPENDIXA

PROOF OFTHEOREM 1 (3]

Suppose that there exists some& A such thaté; < ¢,
andc} € (¢, ¢;]. Sincef(c) is convex and finite, there exists
¢ € (&,cf) such thatf(€) < f(c*), where€ is ¢* with the

i-th elementc} replaced by¢;. In addition, we have

(4

(5]

[ri (Al < \/1 +1/(26/P0 — 1)Re[ R} (A)]
< 14 1/(20/B — 1)3Re[R3,(A)],

which implies thatt is a feasible rate vector for the QWSRM
(14). But f(€) < f(c*), which contradicts the assumption that
c* is optimal for the QWSRM. The theorem is now proved.

6]

(7]

8l
APPENDIXB

PROOF OFPROPOSITION1 [9]

If we fix the variables{u;,c;} in problem (P1), then
problem (P1) is reduced to

N L
H
>3 whw,

[10]

min (34)
Wi ——
i=1 j=1
1 11
VieN,

[12]

N
ZW{_JIWU < Ej, Vi e L,
i=1 [13]
which is a SOCP. Then, we can observe that, if we slightly
increase the value of constant the feasible region of problemy; 4
(34) is shrunk accordingly. That means the optimal value of
problem (34) is nondecreasing w.t. 1]
On the other hand, from Assumptiong,(;) is increasing
w.r.t. ;. Therefore, the optima{u;, ¢;} of problem (P1) must
achieve equality in the system delay constraint (5) sinee tA®l
left hand side of (5) is monotonically decreasing wt.and
¢; respectively. The proposition is now proved.

APPENDIXC
PROOF OFPROPOSITION2

(+) is convex and
1 1 i
i, + i e IS convex

However, there are two main side effects. The first is th]e'r't' ¢i > Ai+1/7;. Then it can be shown that for eatk A,
ci > N\ +1/7;, fi(e;) is convex, based on the composition

rules, which preserve convexity [48].

Therefore,zf\i1 fi(c;) is a convex function ove@init, and

It also satisfies the three properties of the objective fonct

c) in a QWSRM problem (14) in Section lll. Therefore,

roblem (Q1-1) is a QWSRM problem. In additiof, is an

per bound of; derived from (22), since for anye N, j €

we haveHwin; <

E;. The proposition is now proved.
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