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Cross-Layer 
Wireless Resource

Allocation

Fundamental performance limits
for wireless fading channels

Randall A. Berry
and Edmund M. Yeh

fundamental problem in networking is the alloca-
tion of limited resources among the users of the
network. In a traditional layered network architec-
ture, the resource to be allocated at the medium

access control (MAC) and network layers is the use of com-
munication links, viewed as “bit pipes’’ that deliver data at
a fixed rate with occasional random errors. This bit pipe
is a simple abstraction of the underlying physical and
data link layers. This abstraction has, in some ways,
caused the research community to split into two dis-
tinct groups, which we shall refer to as the networking
and communication communities. Research in the net-
working community has focused on allocating these
bit pipes among different streams of randomly arriving
traffic using approaches such as packet scheduling and
collision resolution. The goal here is to efficiently uti-
lize the bit pipes while providing acceptable quality of

service (QoS) in terms of delay and throughput to each
user. In contrast, the communication community has

focused on building better bit pipes, i.e., improving the
transmission rate or spectral efficiency for a given channel

through improved detection, modulation, and coding. The
random arrivals and departures of traffic are typically ignored and

delay is not addressed. Though this separation has many advantages,
both practically and conceptually, there is growing awareness that this

simple bit-pipe view is inadequate, particularly in the context of modern wire-
less data networks. Indeed, as highlighted throughout this issue, significant performance
gains can be achieved by various cross-layer approaches, i.e., approaches that jointly con-
sider physical layer and higher networking layer issues in an integrated framework.

In this article, we consider several basic cross-layer resource allocation problems for
wireless fading channels. Here, the resources to be allocated include the transmission
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power and rate assigned to each user. In modern wire-
less systems, a variety of link adaptation techniques
such as adaptive modulation and coding or variable-
rate spreading are employed that enable a user’s data
rate to be adapted over time based in part on time-
varying channel fading. This results in a physical layer
that is no longer well modeled as a fixed-rate bit pipe;
instead, a much richer abstraction is required. In this
setting, our focus is on characterizing fundamental per-
formance limits, taking into account both network
layer QoS and physical layer performance. We note that
at the physical layer, fundamental communication limits
established by information theory are, in many cases,
well understood. However, when higher-layer objec-
tives such as delay are taken into account, much less is
known about fundamental performance tradeoffs. The
problems surveyed in this article are attempts to
address such basic questions. Their solutions serve to
establish some benchmarks regarding the achievable
performance of cross-layer schemes. 

Cross-Layer Approaches
There are several reasons why cross-layer approaches
are particularly well suited for wireless data networks.
First, a wireless channel is inherently a shared medium.
Efficient resource sharing mechanisms in this setting
depend strongly on both the stochastic nature of user
activity as well as the selection of physical-layer coding
and modulation schemes [1], [2]. For instance, consid-
er a multiaccess problem where a group of distributed
users are accessing a common channel. Assuming a sim-
ple collision model (i.e., only one user can successfully
transmit at any time) leads naturally to the classic
ALOHA and carrier sense multiple access (CSMA)
algorithms [3], whereas a more code-division multiple
access (CDMA)-like model (allowing multiple users to
be decoded simultaneously) has very different implica-
tions (e.g., [4]). An information-theoretic multiaccess
model implies still another set of conclusions [2],
[5]–[8]. Second, in wireless networks, where channel
quality can vary dramatically in both time and frequen-
cy, knowledge of the channel state can be exploited by
the system to significantly improve performance. For
example, at the physical layer, in a single-user fading
channel, the transmission scheme that maximizes the
long-term throughput results in transmitting more
information in good channel states and less in poor
conditions [9]. However, when packet delay is taken
into account, it may not be feasible to delay transmis-
sion until channel conditions improve. In a multiuser
setting, another important characteristic is that channel
quality varies across the user population. This results in
the phenomenon of multiuser diversity [10], whereby
as the number of users in a system increases, the proba-
bility that some user has a very good channel also
increases. Exploiting this diversity results in a total sys-
tem capacity that is increasing with the number of
users. Once again, however, this must be balanced with

network layer issues such as fairness and delay. Finally,
the efficient use of energy in mobile devices is of para-
mount concern in wireless networks. This turns out to
be an issue which cuts across almost every protocol
layer. In particular, reducing the transmission energy
used at the physical layer may result in higher error
rates or lower transmission rates, which again affects
network layer performance. All of the above coupling
effects demonstrate the need to consider network-layer
quality of service issues such as throughput and delay
jointly with physical-layer issues such as channel fading,
coding, and modulation.

We focus primarily on multiaccess (uplink) models,
i.e., communication from mobile users to a single base-
station or access point. We will also point out several
issues that apply to broadcast (downlink) models as
well. We consider a situation where randomly arriving
data is buffered until it is transmitted and resources are
allocated as a function of each flow’s buffer occupancy
and channel state. We are primarily interested in the
case where a centralized controller makes all resource
allocation decisions, though some comments about dis-
tributed approaches are also included. To characterize
fundamental performance limits, we address these
problems within an information theoretic framework.
Specifically, when allocating resources, such as rate and
power, these quantities are constrained by the appropri-
ate capacity region, which depends on the current
channel state. Since information theoretic capacity
regions characterize asymptotic limits, requiring arbi-
trary long coding lengths, a careful reader may argue
that such results are not applicable in a setting where
delays are important. We address this issue in two ways.
First, no matter what code lengths are used in practice,
information theory provides an upper bound to all
achievable rates. For example, for each channel consid-
ered here, a corresponding converse coding theorem
[11] establishes that reliable communication is impossi-
ble outside the capacity region, for all coding lengths.
Second, the gap between information-theoretic limits
and the performance of practical codes with reasonable
complexity has narrowed considerably in recent years,
due to rapid advances in coding technology. For fading
channels, as long as the coherence time is reasonably
long, as is the case in typical situations, it is not unrea-
sonable to assume that powerful codes with manage-
able block lengths can be employed to approximate
information-theoretic limits. (For instance, for a user
traveling at urban speeds, the coherence time is typical-
ly on the order of tens of milliseconds, while the band-
width is on the order of megahertz, implying that the
coherence time corresponds to a coding length of at
least several thousand symbols.) Moreover, channel
coherence times are typically much smaller than the rel-
evant time-scales at the network layer. Hence, there is
no need to consider using shorter codes to further
reduce delays. Finally, we note that the framework pre-
sented here is quite general and can accommodate
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other physical layer models, such as specific coding and
modulation schemes.

Multiaccess Fading Channels
We consider the multiaccess (uplink) wireless commu-
nication setting, where multiple transmitters send to a
single receiver, in the same time and frequency locality.
Consider an M -user slowly var ying, flat-fading
Gaussian multiaccess channel with bandwidth W , given
by the model

Y (t ) =
M∑

i=1

√
Hi (t )Xi (t ) + Z (t ). (1)

(For a slowly varying channel, the symbol duration Ts
is much smaller than the channel coherence time
Tc oh , the time interval over which the fading is
roughly constant. Flat fading channels are nonfre-
quency selective, in the sense that the signal band-
width W is much smaller than the channel coherence
bandwidth Bc oh , the band over which fading is
roughly constant.) Here, Hi (t ) is the fading process
of the i th user, Xi (t ) is the transmitted signal of the
i th user, Z (t ) is white Gaussian noise with noise den-
sity N0/2, and Y (t ) is the received signal. Assume
that transmitter i has a long-term average power con-
straint �Pi and a short-term peak power constraint P̂i .

(The average power constraint may correspond to a
battery energy constraint, while the peak power con-
straint may correspond to a regulatory constraint.)
Next, assume that the channel coherence times are
sufficiently long as to allow for long code lengths at a
fixed joint fading level hhh .

Given that the i th transmitter experiences a fixed
channel fading level h i and employs a fixed power level
pi , the information-theoretic multiaccess capacity
region CMAC(hhh , ppp) specifies the set of all transmission
rates rrr (in bits per second) at which reliable communi-
cation is possible under any coding and modulation
scheme. This capacity region [11] is the set of all non-
negative vectors rrr such that

∑
i∈S

ri ≤ W log
(

1 +
∑

i∈S h i pi

N0W

)

for all S ⊆ {1, . . ., M }. (2)

In the two-user case, CMAC(hhh , ppp) is a pentagon, as
shown in Figure 1. For the M-user case, it is a bounded
convex polyhedron defined by 2M −1 linear inequalities
and M nonnegativity constraints.

An important observation is that to achieve all rates
in the capacity region, joint multi-user coding tech-
niques must be employed. Indeed, CDMA-like strate-
gies, whereby the receiver decodes each user regarding
the transmissions of all other users as noise, and simple
time-sharing or scheduling strategies, whereby only

one user transmits to the receiver at a time, can typical-
ly achieve only a proper subset of the rates in the infor-
mation-theoretic capacity region (see Figure 1) [1]. To
achieve all rates in CMAC(hhh , ppp), a procedure called suc-
cessive decoding can be used. For instance, the corner
point rrrA in Figure 1 is not achievable by pure time-
sharing or a CDMA-like strategy, but is achievable by
successively decoding user 1 (regarding user 2 as inter-
ference in addition to background noise), and then
(after subtracting the estimate for user 1 from the
received signal), decoding user 2 (facing, with high
probability, only background noise). To achieve rrrB , the
receiver implements successive decoding in the oppo-
site order, decoding user 2 first, and then user 1. The
successive decoding strategy is generalizable to M
users, and it turns out that CMAC(hhh , ppp) has precisely M !
extreme points, one corresponding to each possible
permutation of {1, . . . , M } [11].

Random Arrivals and Resource Allocation
Our focus in this article is on systems where packets for
each user arrive to be transmitted at random instants in
time. We follow the formulation of [5]–[8].
Specifically, we model the i th data source as generating
packets according to an ergodic counting process
Ai (t ), where Ai (t ) is the number of packet arrivals up
to time t . The packet lengths for source i are inde-
pendent identically distributed (i.i.d.) according to dis-
tribution function FZ i (·) with E[Z i ] < ∞ and
E[Z 2

i ] < ∞ . Next, assume that each source i ,
i = 1, . . . , M , has its own (infinite-capacity) buffer
into which its packets arrive. Packets for the i th source
are stored in the i th buffer until they are served by
transmitter i . The transmission power Pi (t ) and rate
Ri (t ) used by transmitter i at time t are to be dynami-
cally allocated so as to optimize throughput and delay.
At the physical layer, we assume that at any time t , any
set of powers and rates from the instantaneous multiac-
cess information-theoretic capacity region can be allo-
cated to the transmitters, as long as average and peak
power constraints are satisfied.

▲ 1. Illustration of CMAC(hhh, ppp) for the two-user case. The extreme
point rrrA can be achieved by decoding the users successively in the
order (1 2), while rrrB is achieved by successively decoding in the
order (2 1).
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We now explicitly pose the dynamic resource alloca-
tion problem. Let Ui (t ) be the number of untransmit-
ted bits, or the amount of unfinished work in queue i
at time t . Consider a stationary controller which at any
time t ≥ 0 takes as inputs HHH (t ) and UUU (t ) and outputs
a power allocation PPP (t ), and a rate allocation RRR(t ), to
transmitters 1 to M . The controller does this by first
choosing a power control policy ppp = P(hhh, uuu) satisfying
E[Pi (HHH ,UUU )] ≤ P̄i for all i , where the expectation is
taken with respect to the steady-state distribution
induced by the controller, and P i(hhh, uuu) ≤ P̂i for all
(hhh ,uuu), for all i . Here, pi = P i(hhh, uuu) is the power allo-
cated to transmitter i in response to fading state hhh and
queue state uuu. Next, the controller chooses a rate allo-
cation policy rrr = R(hhh, uuu) ∈ CMAC (hhh, ppp) where CMAC
(hhh, ppp) is given by (2). (Note that due to the nature of
the constraints, there is no loss of optimality in choos-
ing P and R in a two-stage manner.) That is, the con-
troller is allowed to adopt stationary power policies P
that satisfy the average power constraints P̄PP and peak
power constraints P̂PP , and given P , the controller is
allowed to allocate any rate in the multiaccess capacity
region induced by the power policy P . The setup is
illustrated in Figure 2. Our formulation assumes that all
transmitters as well as the receiver have access (possibly
through side communication channels) to global chan-
nel and queue state information HHH (t ) and UUU (t ). As
described in [12], this setting can often be approximat-
ed via feedback in practical wireless systems.

Stability Region and Throughput
Optimal Resource Allocation
The first significant question for the multiaccess
queuing system concerns the stability region, i.e., the
set all bit arrival rates for which no queue “blows
up.” First, some definitions. Let λi = limt→∞ Ai (t )/t
denote the packet arrival rate to queue i , and let
ρi = λiE[Z i ] be the bit arrival rate to queue i . We
define stability as in [13]. Consider the “overflow”

function f i (ξ) = lim supt→∞(1/t )
∫ t

0 1[Ui (τ)>ξ]dτ , where
1A is the indicator of the event A . We say that the mul-
tiaccess system is stable for a particular resource alloca-
tion policy if f i (ξ) → 0 as ξ → ∞ for all i . The
stability region of the multiaccess system is the set of all
bit arrival rate vectors ρρρ for which there exist some a
feasible power control policy and a rate allocation policy
under which the system is stable.

It is established in [6] that the stability region is equal
to the information-theoretic capacity region under
power control, defined in [14]. This region is given by
CMAC(P̄PP , P̂PP ) = ⋃

P∈F CMAC(P) [14]. Here, P is a power
control policy depending only on the fading state hhh
(P(hhh ,uuu) = P(hhh )), and F is the set of all feasible power
control policies depending only on the fading state
which satisfy all peak and average power constraints.
CMAC(P) is the set of all nonnegative rrr such that∑

i∈S ri ≤ E[W log(1 + (
∑

i∈S HiPi (HHH )/N0W ))] for
all S ⊆ {1, . . . , M }. That is, CMAC(P) is the average
capacity region (averaged over all fading states) corre-
sponding to a particular power policy P ∈ F . Suppose
joint arrival process {AAA(t )} and joint fading process
{HHH (t )} are modulated by a finite-state ergodic Markov
chain. Then, it is shown in [6] that the multiaccess
queuing system can be stabilized by some power control
and rate allocation policy if ρρρ ∈ int(CMAC(P̄PP , P̂PP )) .
Conversely, the multiaccess fading channel cannot be
stabilized if ρρρ /∈ CMAC(P̄PP , P̂PP ), as long as the average and
peak power constraints are satisfied.

The stability result states that if ρρρ ∈ int(CMAC
(P̄PP , P̂PP )), then the queues can be stabilized. In general,
however, this may require knowing the value of ρρρ. In
reality, the arrival rates ρρρ can be learned only over time.
One would prefer to find adaptive resource allocation
policies which can stabilize the system without knowing
ρρρ, as long as ρρρ ∈ int(CMAC(P̄PP , P̂PP )), i.e., the system is sta-
bilizable. Such a resource allocation policy is referred to
as throughput optimal. Throughput optimal schedul-
ing for fading channels has been examined in [13] and
[15]–[19]. These papers, while offering many valuable
insights, do not consider information-theoretic optimal
coding at the physical layer and do not account for the
effect of power control subject to long-term con-
straints. These important considerations are taken into
account in [7], where it is shown that an adaptive ver-
sion of the power and rate allocation algorithm derived
by Tse and Hanly [14] is throughput optimal for the
multiaccess queuing system.

In [14], Tse and Hanly consider the problem of to
maximizing a weighted combination of long-term
transmission rates in a multiaccess channel where all
transmitters have infinite backlogs of bits, and both the
transmitters and receivers have access to the channel
state. This problem can be stated as 

max
M∑

i=1

µi ri subject to r ∈ CMAC

(
P̄ , P̂

)
(3)

▲ 2. Power and rate allocation for multiaccess fading channels.
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where µµµ = (µ1, . . . , µM ) is a vector of nonnegative
weights. Using a Lagrangian formulation of (3) and the
underlying polymatroidal structure of CMAC(hhh , ppp), they
show that (3) is equivalent to solving a family of opti-
mization problems over parallel Gaussian multiple
access channels, one for each fading state hhh . Their
analysis yields a feasible power control policy (satisfying
peak and average power constraints) and a rate alloca-
tion policy (satisfying capacity constraints) which solve
(3). Notice that for a given direction µµµ, the Tse-Hanly
power control policy PTH(hhh ,µµµ) and rate allocation pol-
icy RTH(hhh ,µµµ) are functions of hhh only.

In [7], it is proved that a throughput optimal
resource allocation policy for the multiaccess system
with random packet arrivals is given by the Tse-Hanly
(TH) solution, with the direction µµµ chosen to corre-
spond to the queue state uuu. Specifically, the throughput
optimal policy is given by 

P∗
MAC(hhh ,uuu) = PTH(hhh , α ∗ uuu),

R∗
MAC(hhh ,uuu) = RTH(hhh , α ∗ uuu) (4)

where uuu is the queue state, ααα is any vector of positive
numbers, and ααα ∗ uuu is the vector whose i th component
is αi ui . The vector ααα can be seen as a set of weights
representing the relative priorities of the various users.
The proof of the throughput optimality results in [7]
makes use of the Foster-Lyapunov criterion for the sta-
bility of Markov chains [13].

To interpret the throughput optimal resource allo-
cation policies P∗

MAC and R∗
MAC, let vvv = ααα ∗ uuu, where

vi = αi ui , be the vector of weighted queue sizes. In
the case of one user (M = 1), it can be shown [14]
that (P∗

MAC,R∗
MAC) reduces to the well-known water-

filling scheme [9], whereby more power is allocated
to favorable channel states, and less or no power is
allocated to unfavorable channel states. In the case of
multiple users (M > 1) where all weighted queue
sizes are the same: v1 = v2 = · · · = vM , and the fading
conditions are symmetric, (P∗

MAC,R∗
MAC) reduces to

the “multi-user waterfilling” scheme of Knopp and
Humblet [10], whereby when all channel states are
sufficiently unfavorable, no one transmits. Otherwise,
only the user with the best channel condition trans-
mits. In the general case of many users and unequal
weighted queue lengths, more than one user typically
transmit. Little in general can be said about the opti-
mal power policy P∗

MAC. The optimal rate allocation
policy R∗

MAC, however, satisfies a general principle we
refer to as longest weighted queue highest possible
rate (LWQHPR). This principle holds for any given
feasible power control policy P , and is described as
follows. Given P, R∗

MAC(hhh ,P(hhh ,uuu),uuu) is given by
maximizing 

∑
i vi ri over CMAC(hhh ,P(hhh ,uuu)) . Due to

the polymatroidal nature of CMAC(hhh ,P(hhh ,uuu)) [14],
the solution is explicit ly given as follows. Let
v[1] ≥ v[2] ≥ · · · ≥ v[M ] denote the components of vvv

in decreasing order. Then, rrr∗ = R∗
MAC(hhh ,P(hhh ,uuu),uuu)

is given by 

r∗
[i] = W log

(
1 + h [i]P[i](hhh , uuu)∑

j<i h [ j](t )P[ j](hhh , uuu) +N0W

)
.

(5)

It can be verified that rrr∗ is the extreme point of
CMAC(hhh ,P(hhh ,uuu)) corresponding to successively decod-
ing the users in the order [M ], [M − 1], . . . , [1]. That
is, the smallest component of vvv being decoded first,
and the largest component of vvv being decoded last.
Alternatively, rrr∗ is given by a greedy rate allocation
procedure where longer weighted queues are given
preference over shorter weighted queues. (Note that
the order of decoding is the opposite of the order of
preference.) Hence, the name LWQHPR [7]. To illus-
trate the LWQHPR policy, we refer to the two-user
example of Figure 1, where LWQHPR assigns rrrA (cor-
responding to decoding order (1 2) if v1 < v2 and
assigns rrrB [corresponding to decoding order (2 1)] if
v1 ≥ v2.

We now compare the performance of the through-
put optimal policies (P∗

MAC,R∗
MAC) to those of widely

used alternative resource al location policies.
Consider an example in which there are two users
obser ving i.i.d. fading processes. For each user,
Pr(H = h0) = Pr(H = 1/h0) for some fixed h0 > 0.
The fading state remains constant for a period of T sec-
onds and then changes to a new independent fading
state. The arrival processes are independent Poisson
with λ1 = λ2 = λ and packets lengths are i.i.d. expo-
nential with parameter 1. We focus on the parameters
h0 = 10, P̄ = P̄1 = P̄2 = 1,6 T = 0.4, N0W = 1, and
equal weights (α1 = α2). (For simplicity, we assume the
peak power constraints are large enough to be ineffec-
tive.) Figure 3 shows the simulated performance of the

▲ 3. Total average queue size versus arrival rate for the multiac-
cess fading channel under five control strategies.
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throughput optimal strategy (P∗
MAC,R∗

MAC) relative to
those of four other strategies. The sum of the average
queue sizes is plotted versus the arrival rate λ for the
five strategies described below. The throughput opti-
mal strategy is given by (P∗

MAC,R∗
MAC). The strategy of

Knopp-Humblet [10] maximizes the sum rate assum-
ing an infinite backlog, which corresponds to the
throughput optimal strategy with u1 = u2. The sched-
uling algorithm allocates power 2P̄ to the user with the
better fade and zero power to the other user. The con-
stant power longest queue highest possible rate
(LQHPR) strategy uses constant power (Pi (hhh ,uuu) = P̄
for all i , hhh and uuu) and allocates rates according to (5).
The constant power best channel the highest possible
rate (BCHPR) strategy also uses constant power, and
(ignoring the queue size) gives the BCHPR. The
experimental results demonstrate the superior perform-
ance of the throughput optimal resource allocation pol-
icy, in that its total average queue size is considerably
smaller than those of the competitors.

Delay Optimal Resource Allocation
We have thus far concentrated on stability and
throughput optimality. Stability in a queuing system
implies that the queue sizes do not “blow up,” but it
does not indicate how large the queue sizes can be. To
minimize the average packet delay/latency and other
related QoS measures, it is necessary to keep the queue
sizes as short as possible. The general problem of finding
delay optimal joint power control and rate allocation
policies to minimize average delay for multiaccess chan-
nels is still open. In [16], the problem of finding the
delay optimal rate allocation policy for a given power
control policy is addressed. The main result is that in a
symmetric multiaccess queuing system, the symmetric
version of the LWQHPR rate allocation policy given by
(5) (with αi = 1 for all i ) minimizes the average packet
delay in a very strong sense.

Consider the case where all arrival processes are non-
homogeneous Poisson with rate function λ(t ), and all
arriving packets are i.i.d. exponential with common
parameter µ > 0. Due to the memoryless nature of the
system, the vector QQQ (t ) = (Q 1(t ), . . . , Q M (t )), where
Q i (t ) is the number of packets in queue i at time t ,
constitutes a state. Thus, we focus on resource alloca-
tion policies of the form P(hhh ,qqq) and R(hhh ,qqq), where
qqq = (q1, . . . , qM ) is the vector of queue lengths. We
assume that the fading process HHH (t ) is symmetric (or
exchangeable) in the following sense: for all t , and all aaa
in the fading state space H, Pr(H1(t ) = a1, . . . ,

HM (t ) = aM = Pr(H1(t ) = aπ(1), . . . ,HM (t ) = aπ(M ))

for any permutation π on the set {1, . . . , M }. Beyond
this symmetry, we do not make any other assumptions on
the fading process. We focus on power policies P which
are functions of the fading state only, i.e.,
P(hhh ,qqq) = P(hhh ). We say a power policy is symmetric if for
all aaa ∈ H, Pi (a1, . . . , aM ) = Pπ−1(i) (aπ(1), . . . , aπ(M ))

for any permutation π . That is, under a symmetric

power control policy, the power allocated to a given user
is determined by the fading level experienced by that
user (and not on the identity of that user) relative to the
fading levels experienced by all other queues. For
instance, suppose M = 2 and a1 > a2, then if P is sym-
metric, P1(a1, a2) = P2(a2, a1). An example of a sym-
metric power control policy is the “multiuser
water-filling” policy given by Knopp and Humblet [10].

Consider the version of the LWQHPR policy where
αi = 1 for all i . We refer to this as the LQHPR policy.
The main result on delay optimality from [6] is the fol-
lowing. For an M-user symmetric multiaccess queuing
system, let P : H �→ RM

+ be a given symmetric power
control policy. Let qqq0 be the vector of queue sizes at
time 0. Let QQQ (t ) be the queue evolution under the
LQHPR rate allocation policy, and QQQ ′(t ) be the queue
evolution under any feasible rate allocation policy.
Then, E[ϕ(QQQ (t ))] ≤ E[ϕ(QQQ ′(t ))] for all t ≥ 0, for all
increasing and Schur-convex functions ϕ : R

M �→ R.
(Schur convex functions are functions which preserve
an ordering called majorization [20].) As a main exam-
ple, the result holds for all symmetric increasing, con-
vex functions on RM . (A function ϕ is symmetric on
A ⊂ R

M if ϕ(xxx ) = ϕ(xxxP) for any xxx ∈ A and any M by
M permutation matrix P.) More specific examples
include ϕ(xxx ) = maxi1<i2<···<ik (|xi1 | + · · · + |xik |) for
1 ≤ k ≤ M , ϕ(xxx ) = ∑M

i=1 |xi |r for r ≥ 1 or r ≤ 0, and
ϕ(xxx ) = (

∑M
i=1 |xi |r )1/r for r ≥ 1. Thus, the LQHPR

policy minimizes the expected value of a large class of
functions of QQQ (t ), of which E[

∑
i Q i (t )] is one exam-

ple. By Little’s law, this implies that LQHPR minimizes
the average system delay of packets. The main tech-
nique used in proving the result of [6] earlier related
results in [5] is stochastic coupling, a method relying
directly on probabilistic intuition which is capable of
generating powerful and elegant results when given
certain symmetry conditions. Finally, the delay optimal-
ity of the LQHPR policy has been partially extended to
the case where arriving packets are i.i.d. according to a
general distribution function FZ (·) with finite first and
second moments [8]. This investigation requires a new
analytical technique combining finite-horizon dynamic
programming and renewal process theory.

Broadcast Fading Channels
The analytical framework established earlier for multi-
access networks can be extended to broadcast (down-
link) wireless networks, where a single transmitter
sends separate independent information to M receivers,
where the i th receiver has fading process Hi (t ) and
receiver noise power density N0i/2. For a fixed trans-
mit power p and fading states h1, . . . , hM , the broad-
cast capacity region CBC (hhh , p) [11] is very different
from the multiaccess region CM AC (hhh , ppp). As in the mul-
tiple-access case, however, simple time-sharing (where-
by the transmitter sends to one receiver at a time)
cannot achieve all points in CBC (hhh , p). To accomplish
the latter, a process called superposition coding com-
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bined with the successive decoding technique discussed
earlier can be used [11].

In [7], a broadcast communication system with ran-
dom packet arrivals is considered. It is shown that the
queuing system considered in Figure 2 can be directly
carried over to the broadcast case, with the following
caveats. First, unlike the multiple-access case, there is
only one actual transmitter in a broadcast network with
long-term average power constraint �P and short-term
peak power constraint P̂ . There are, however, still multi-
ple arrival processes and queues at the transmitter, corre-
sponding to the information streams of the respective
receivers. Since the transmitter uses superposition coding
and allocates separate powers and rates to sub-codes for
the various receivers, we can associate a “virtual trans-
mitter” with each of the M receivers (sub-codes).
Second, in the broadcast case, the power control policy
P determines the total power p used by the actual trans-
mitter as a function of hhh and uuu to satisfy
E[P(HHH ,UUU ] ≤ �P . The rate allocation policy then decides
what fraction of power γi p (with 

∑M
i=1 γi = 1) and rate

ri to assign to each virtual transmitter or subcode.
For the broadcast network, we consider the same

throughput and delay questions as in the multiaccess
case. The results for stability and throughput optimality
are the exact analogues of those for multiaccess channels.
In [7], it is shown that stability region for the broadcast
network is the same as the information-theoretic capacity
region CBC(�P , P̂ ) under power control defined in [21]
and [22]. Moreover, parallel to the multiaccess case, an
adaptive version of the power and rate allocation policies
designed to maximize transmission rates in a broadcast
channel with infinite backlogs of bits, is throughput
optimal for a system with random packet arrivals. In
[21] and [22], Tse, Li, and Goldsmith use a Lagrangian
formulation similar to the multiaccess case to obtain the
optimal power policy PTLG(hhh ,µµµ) and rate policy
RTLG(hhh ,µµµ) which maximizes 

∑
i µi ri subject to

rrr ∈ CBC(P̄ , P̂ ) , where µµµ is a vector of nonnegative
weights. (Even though the structure of CBC(hhh , p) and
CMAC(hhh , ppp) are very different, greedy algorithms can be
used to solve the family of optimization problems, one
for each fading state hhh , in both cases.) In [7], it is
shown that a throughput optimal policy for the broad-
cast channel with random packet arrivals is P∗

BC(hhh ,uuu) =
PTLG(hhh , ααα ∗ uuu),R∗

BC(hhh ,uuu) = RTLG(hhh , ααα ∗ uuu) , where ααα
is any vector of positive numbers, ααα ∗ uuu is the vector
whose i th component is αi ui , and ui is the number of
untransmitted bits in the queue for the i th receiver. An
interesting consequence of this policy is the following:
if there exists a user i such that αi ui ≥ αj uj for all
j �= i , and such that (αi ui h i/N0i ) ≥ (αj uj h j /N0 j ) for
all j �= i , then the throughput optimal policy transmits
only to user i . In particular, if αj = 1 and N0 j = N0
for all j , then the throughput optimal policy transmits
to the user with best fading when all queues are equal,
and transmits to the user with longest queue when all
fading levels are equal [7]. Numerical experiments

indicate that the per formance of the policy
(P∗

BC(hhh ,uuu),R∗
BC(hhh ,uuu)) is superior to those of compet-

ing resource allocation policies, in that the resulting
total average queue size is substantially lower [7].

Finally, we come to the problem of delay optimal
resource allocation for broadcast channels. Here, very
little progress has been made. Even the problem of
finding the delay optimal rate allocation policy for a
given power control policy has not been successfully
tackled. The delay problem for broadcast channels
appears to be more difficult than that for multiaccess
channels, mainly because the region CBC(hhh , p) lacks the
many desirable structural properties of CMAC(hhh , ppp).
Much more work is needed in this area.

Energy/Delay Tradeoffs
Energy efficiency is a key concern for mobile wireless
devices that must rely on limited battery resources. As
transmission power is one of the main energy con-
sumers in wireless devices, there has been much interest
in approaches for efficiently utilizing this resource. In
this context, a fundamental metric is the average energy
per bit used in communication. At the physical layer,
the minimum energy per bit needed to reliably com-
municate at a given rate R can be related to the chan-
nel’s capacity. Specifically, let C (P ) denote the capacity
of a single user channel as a function of the transmis-
sion power. Since for reliable communication
R < C (P ), it follows that the energy per bit, Eb must
satisfy Eb > (C −1(R)/R), where C −1 denotes the
inverse of C (·). For any channel (C −1(R)/R) is a
decreasing convex function of R; hence, energy can be
conserved by transmitting at a lower rate. For example,
if C (P ) = ln(1 + P ) as in a Gaussian noise channel,
then (C −1(R)/R) = (1/R)(e R − 1). Asymptotically, as
R → 0, the minimum energy per bit is the reciprocal
of a channel’s capacity per unit cost [23], with “cost’’
given by energy per channel use.

Transmitting at a lower rate conserves energy, but
increases delay at the network layer. This illustrates a
fundamental tradeoff between energy efficiency and
delay. In fading channels, reducing packet delay may
further increase the required energy by forcing users to
transmit when channel conditions are not favorable.
The energy-delay tradeoff necessitates resource alloca-
tion algorithms which optimally balance these two
important concerns. A number of approaches have
been applied to this problem including [24]–[27].
Interestingly, these approaches are useful even in a 
single user setting [24], [27], and even in a setting
with random arrivals but no channel fading [25]. 

Optimal Power/Delay Resource 
Allocation—Single User Case
We first discuss the case where a single user is transmit-
ting data over the fading channel in (1) (with M = 1).
Once again, we assume that data randomly arrives and
is buffered until it is transmitted. For simplicity, we
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consider a discrete-time block fading model where dur-
ing the nth time-slot the channel gain is constant with
value H [n], i.e., H (t ) = H [n] for (n − 1)� ≤ t < n�

where � is the length of a time-slot. Denote the unfin-
ished work in the buffer at the start of the nth time-slot
by U [n] and let I [n] be the number of bits (amount
of work) arriving during the nth time slot. The unfin-
ished work evolves according to

U [n + 1] = max(U [n] + I [n] − R[n]�, 0), (6)

where R[n] is the transmission rate during the nth
time slot. At each time n, the rate is again specified by a
stationary rate allocation policy r = R(h , u) that
depends on the current queue state and fading state. In
this section, we view the system as first specifying a rate
allocation policy and then incurring a “power cost’’
P (R[n],H [n]) that depends on this policy and the
current channel state. Specifically, let P (r, h ) represent
the minimum power required such that the rate r is less
than the corresponding channel capacity. For the chan-
nel in (1), this is given by 

P (r, h ) = N0W
h

(
2r/W − 1

)
, (7)

which is an increasing convex function of the transmis-
sion rate.

For a given policy R, let P̄ (R) = limn→∞ E[P
(R(H [n],U [n]),H [n])] denote the steady-state aver-
age transmission power consumed. Assuming the sys-
tem is stable, the average energy per bit is given by
P̄ (R)/Ī , where Ī indicates the average bit arrival rate
per time-slot. (Using our previous notation,
Ī = λ�E[Z ], where E[Z ] is the expected length of a
packet.) Also, for a given policy R, let
D̄(R) = limn→∞ E[U [n]/Ī ] indicate the steady-state
average queuing delay. We define the optimal
power/delay tradeoff curve, P ∗(D), as

P∗(D) = inf {P̄ (R)|R(·) such that D̄(R) ≤ D}, (8)

i.e., P ∗(D) characterizes the minimum average power
required for any policy with an average delay no greater
than D . Conversely, we also define the delay/power
tradeoff:

D∗(P ) = inf{D̄(R)|R(·) such that P̄ (R) ≤ P }. (9)

Assuming P∗(D) is strictly monotonic, D∗(P ) will simply
be its inverse. These quantities, like a rate-distortion
curve in source coding, provide a characterization of the
fundamental power delay tradeoff that can be achieved
by any scheduling policy.

In [27], it is shown that P∗(D) is a strictly decreasing,
convex function of D . From this it follows, that any
point on this curve can be found by solving an average
cost dynamic programming problem with a per stage
cost given by J [n] = P (R[n],H [n]) + β

(
U [n]/Ī

)
,

where β corresponds to a Lagrange multiplier for an
average delay constraint. By varying β, different points
on P∗(D) can be found. An example of P∗(D) is shown
in Figure 4.

For a given β , the optimal rate allocation can be
found numerically, and the optimal β for a given delay
constraint can be found via standard convex program-
ming techniques. General structural properties of the
optimal policy can also be characterized [26], [27]. For
example, assuming the fading is i.i.d., it can be shown
that the optimal transmission rate is nondecreasing in
the unfinished work. In [24], a version of this problem
was considered where P (r, h ) is linear in r for each h ,
as would be reasonable in the wide-band limit. This
simplifies the dynamic programming problem and
more precise structural results can be shown. In addi-
tion to considering average delay versus the long-term
average power, there have been a number of papers
which have examined related problems in a dynamic
programming context e.g., [28]. In these papers, the
object is again to minimize a cost related to energy,
subject to various delay constraints, such as a deadline
by which all packets must be sent.

Asymptotic Power Delay Tradeoffs
The behavior of the power/delay tradeoff can be explic-
itly characterized in various asymptotic regimes. In [27]
it is shown that as the average delay increases, P∗(D)

approaches an asymptotic value of Pa(Ī ) (see Figure 4).
The limiting value Pa(Ī ) is the minimum average power
needed to support the average arrival rate, which corre-
sponds to the average power level required for the chan-
nel to have a “long-term’’ capacity equal to Ī /�.
Additionally, the rate at which P∗(D) converges to this
asymptotic limit is given by 1/D2 under any reasonable
fading distribution. That P∗(D) can converge no faster
than this is shown using drift arguments and the convex-
ity of P (r, h ). This bound is shown to be tight by▲ 4. An example of a power/delay tradeoff.
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showing that a simple “threshold water-filling’’ policy
[27] is order optimal, i.e., it converges to the asymptotic
limit at the optimal rate of 1/D2. This policy has only a
weak dependence on the buffer occupancy via a thresh-
old rule. When the unfinished work exceeds this thresh-
old, the transmitter uses a water-filling policy with an
average rate that is greater than the arrival rate; when the
unfinished work is less than the threshold, a water-filling
policy with an average rate less than the arrival rate is
used. The thresholds and the average rates used in each
portion are adjusted depending on the average delay. It
can also be shown that some dependence on the buffer
occupancy is required for a policy to be order optimal
[27]. In other words, the power required by any family
of policies that do not depend on the buffer occupancy
can not converge to Pa(Ī ) at the rate of 1/D2 as the
average delay increases. This buffer dependence is need-
ed for a policy to maintain a backlog of packets in the
buffer. This backlog enables the transmitter to better
exploit good channel conditions and smooths out some
of the burstiness in the arrival process. 

The behavior of P∗(D) can also be characterized in
the regime of asymptotically small delays [29]. From
the buffer dynamics in (6), the minimum possible aver-
age delay is one time-unit. By the small delay regime we
mean the behavior of of P∗(D) as D → 1. The asymp-
totic value of P ∗(D) in this regime depends on the fad-
ing distribution. Two distinct cases can be identified.
The first case corresponds to channels such a Rayleigh
fading channel where P∗(1) is infinite. This corresponds
to a channel having a delay-limited capacity of zero
[14]; i.e., using finite power it is impossible to send at a
nonzero rate in every channel state. For these channels,
D∗(P ) will be greater than one for all finite P , but as
P → ∞, D∗(P ) will approach this value. The second
case corresponds to those channels with P∗(1) < ∞. In
this case, P∗(1) corresponds to the minimum average
power needed for the channel to have a delay-limited
capacity of Ī /�. Once again, the rate at which D∗(P )

approaches its asymptotic limit can be characterized
[29]. This also depends on the fading distribution, in
particular on its behavior near zero. For example, in the
case of Rayleigh fading, D∗(P ) − 1 decreases at a rate of
e−αP , where α is a constant depending on the fading
distribution near zero. This is much faster than the opti-
mal rate in the large delay regime, which implies that
the reduction in power by a slight increase in tolerable
delay is very significant in the small delay regime. An
order optimal policy in this regime is a “channel-thresh-
old policy’’ which transmits at a fixed rate, whenever the
channel gain is greater than a threshold. Interestingly,
this policy requires no dependence on the buffer state.

These results are robust to many variations in the
model. For example, the power cost in (7), may be
replaced by any convex increasing function; this can
be used to reflect the power required for specific
modulation and coding schemes. The results can be
extended to models that allow the possibility of pack-

et errors and retransmissions as well as models with
finite buffer sizes [30].

Multiaccess Model
The above approach can be generalized to a multiuser
setting, where a centralized control policy specifies the
transmission rate and power for each user [30]. For
example, consider the multiaccess channel with M users
as in (1). In this case, let R(hhh ,uuu) denote a rate allocation
policy that specifies the transmission rate of each user as a
function of the joint fading states and buffer occupancies.
Now, the corresponding power cost will be given by

P (rrr ,hhh ) = inf

{
M∑

i=1

wi Pi such that rrr ∈ CMAC(hhh , ppp)

}
,

(10)

where wi are given weights, and CMAC(hhh , ppp) denotes
the multiaccess capacity region in (2) corresponding to
power allocation ppp = (p1, . . . , pM ). A solution to the
optimization can always be found such that the rate
vector rrr lies at one of the M ! extreme points of the
capacity region.

In this case, a natural generalization of the optimal
power/delay tradeoff is to define P∗(Dsum) to be the
minimum average weighted sum power required for the
(possibly weighted) sum of the queuing delays to be no
greater than Dsum. Once again, the power delay tradeoff
can evaluated via a dynamic programming formulation.
The asymptotic analysis also carries through to this case.
For example, as the average weighted sum delay, Dsum
increases, P∗(Dsum) can be shown to decrease to its
asymptotic limit at a rate of 1/D2

sum. An order optimal
sequence of polices can again be specified that require
only a weak dependence on each user’s queue state.
Specifically, a centralized controller only requires one bit
of information about each user’s queue to implement
these policies. This information will again indicate
whether the queue size is above or below a threshold.
Given this information the controller can identify one of
2M quadrants within which the joint buffer state lies.
The controller then implements a policy for each quad-
rant that depends only on the channel state hhh . This pro-
vides insight into the amount of control information
that must be shared among users in a distributed setting
to implement an order optimal policy.

Offline and Look-Ahead Scheduling Algorithms
We briefly mention another approach for energy efficient
scheduling from [25]. A finite horizon problem is con-
sidered with a deadline of T seconds. During time
[0, T ) packets randomly arrive and all packets that arrive
in this interval must be transmitted over a channel with-
out fading by time T . The goal is to accomplish this
using the minimum energy. This is done by specifying
the transmission time per packet, τ . For a given trans-
mission time τ , the required energy is given by e (τ),
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where e (τ) is a decreasing convex function. Again, e (τ)

can be related to the channel capacity. In [25], an opti-
mal “offline’’ scheduling algorithm is first considered,
where all packet arrivals times are known 
a priori. This results in a convex optimization problem,
which admits a simple solution. Approximate “online’’
algorithms based on a look-ahead buffer are developed
which exploit the structure of the offline algorithm.
These online algorithms are shown to require an average
energy quite close to the optimal offline algorithm via
simulations. This approach has the advantage that it does
not require detailed knowledge of the arrival statistics. 
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