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Abstract

In this paper we describe the top-scoring IDLab submission for

the text-independent task of the Short-duration Speaker Veri-

fication (SdSV) Challenge 2020. The main difficulty of the

challenge exists in the large degree of varying phonetic over-

lap between the potentially cross-lingual trials, along with the

limited availability of in-domain DeepMine Farsi training data.

We introduce domain-balanced hard prototype mining to fine-

tune the state-of-the-art ECAPA-TDNN x-vector based speaker

embedding extractor. The sample mining technique efficiently

exploits speaker distances between the speaker prototypes of the

popular AAM-softmax loss function to construct challenging

training batches that are balanced on the domain-level. To en-

hance the scoring of cross-lingual trials, we propose a language-

dependent s-norm score normalization. The imposter cohort

only contains data from the Farsi target-domain which simulates

the enrollment data always being Farsi. In case a Gaussian-

Backend language model detects the test speaker embedding

to contain English, a cross-language compensation offset de-

termined on the AAM-softmax speaker prototypes is subtracted

from the maximum expected imposter mean score. A fusion

of five systems with minor topological tweaks resulted in a fi-

nal MinDCF and EER of 0.065 and 1.45% respectively on the

SdSVC evaluation set.

Index Terms: speaker recognition, cross-lingual speaker veri-

fication, x-vectors, SdSV Challenge 2020

1. Introduction

Speaker verification systems have improved significantly by

the strength of deep learning [1, 2] and the increase in pub-

licly available labeled training data [3, 4]. However, most of

these datasets tend to focus on the Anglosphere, making it hard

to produce speaker embeddings that perform well on out-of-

domain data.

The SdSV Challenge uses this notion to create a challeng-

ing set of speaker verification trials, divided in two separate

tasks. Task 1 consists of text-dependent speaker verification,

for which both the lexical content and speaker identity should

be equal across the enrollment and test utterances to indicate a

valid trial. Task 2 is concerned with text-independent speaker

verification, which only takes the speaker identities into ac-

count. This paper focuses solely on our submission to the sec-

ond text-independent task.

Task 2 systems can only use a fixed training dataset consist-

ing of VoxCeleb1 [3], VoxCeleb2 [4], LibriSpeech [5] and a part

of the DeepMine corpus [6] containing in-domain Farsi training

utterances across 588 speakers. Trials consists of producing a

speaker similarity score between multiple Farsi enrollment ut-

terances and a test utterance. The test utterance can either con-

tain Farsi or English speech. Consequently, speaker verification

systems should be able to reduce the language bias in cross-

lingual trials. More details about the SdSV Challenge condi-

tions can be found in the evaluation plan [7].

The rest of the paper is organized as follows: Section 2 will

describe the IDLab SdSVC final submission. The state-of-the-

art ECAPA-TDNN [8] architecture is combined with adapted

training procedures and backend scoring to tackle the challenge-

specific difficulties. It is followed by a more in-depth analysis

of the proposed approach in Section 3. Section 4 will give the

concluding remarks.

2. SdSVC IDLab submission

This section is a system description of the IDLab SdSVC fi-

nal submission. We start with a single system ECAPA-TDNN

baseline [8]. The subsequent sections will tackle the problems

of domain adaptation and cross-lingual language effects present

in the SdSV Challenge data. The final subsection discusses sys-

tem fusion.

2.1. The ECAPA-TDNN baseline system

All submitted speaker verification systems make use of the

ECAPA-TDNN architecture proposed in [8]. This architecture

is based on the well-known x-vector topology [1] and intro-

duces several enhancements to extract more robust speaker em-

beddings. It incorporates Squeeze-Excitation (SE) blocks [9],

multi-scale Res2Net [10] features, multi-layer feature aggrega-

tion [11] and channel-dependent attentive statistics poolings [8].

The network topology is shown in Figure 1. Implementation de-

tails and performance analysis of this architecture can be found

in [8]. We deviate slightly from the original architecture by also

incorporating SE-Blocks in the residual connections.

We use all allowed training data, except the VoxCeleb1 test

partition and LibriSpeech, for which only the train-other-500

subset [5] is considered. This amounts to 9077 training speak-

ers. We create 9 additional augmented copies of the training

data following the Kaldi recipe [2] in combination with the MU-

SAN corpus (babble, noise, music) [12] and the RIR[13] dataset

(reverb). The remaining augmentations are generated with the

open-source SoX (tempo up, tempo down, phaser and flanger)

and FFmpeg (alternating opus and aac compression) libraries.

To avoid overfitting during the ECAPA-TDNN training pro-

cess, we take a random crop of 2 to 3 seconds of the utterances

during each iteration. Similarly, we incorporate SpecAugment

[14] as an online augmentation method which randomly masks

0 to 5 time frames and 0 to 8 frequency bands of the training

log mel-spectrograms. The input features are 64-dimensional

MFCCs from a 25 ms window with a 10 ms frame shift. The

MFCCs are normalized through cepstral mean subtraction and

no voice activity detection is applied.

We use the Angular Additive Margin (AAM) softmax [15]

as training criterion for the model. The system is trained with

the Adam optimizer [16] until convergence on a small SdSVC
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Figure 1: Network topology of the ECAPA-TDNN. We denote k

for kernel size and d for dilation spacing of the Conv1D layers

or SE-Res2Blocks. C and T correspond to the channel and tem-

poral dimension of the intermediate feature-maps respectively.

validation subset that contains about 2.5% of the Farsi training

utterances. The training protocol uses a cyclical learning rate

schedule with the triangular2 policy [17]. The learning rate is

varied between a minimum of 1e-8 and decaying maximum of

1e-3 during cycles of 130k iterations. A weight decay of 2e-5

is applied on all weights of the model except for the AAM-

softmax layer which uses a weight decay value of 2e-4. We use

a mini-batch size of 128.

The speaker enrollment models are constructed by averag-

ing the corresponding L2-normalized enrollment embeddings

produced by the final fully-connected layer of the ECAPA-

TDNN. The verification trials are scored by calculating the co-

sine distance between the enrollment model and the test utter-

ance embedding. Scores are normalized using top-40 adaptive

s-normalization [18, 19]. The imposter cohort consists of speak-

ers represented by the average of all their length-normalized

training embeddings. The final scores are calibrated with lo-

gistic regression [20] on our small SdSVC validation subset.

We consider five implementations with minor topological

differences as shown in Table 1. We alternate the embedding

size between 192 and 256. The Res2Net multi scale features in-

side the SE-Res2Blocks are optionally replaced by the standard

TDNN 1-dimensional dilated convolutions. Summed indicates

if the input of each SE-Res(2)Block is the sum of the output of

all preceding SE-Res(2)Blocks instead of only considering the

output of the preceding block. The number of filters in the con-

volutional frame layers C is set to 1024, which is reduced to 512

in the bottleneck of the SE-Res(2)Blocks to limit the amount of

model parameters. However, system 5 is developed without this

constraint and the channel dimension is kept to 2048 for all fea-

ture maps in the frame layers.

2.2. Hard prototype mining

To further improve performance on the baseline, we investi-

gate how to exploit the information of the in-domain training

data more efficiently. We combine targeting harder samples and

putting more importance to target-domain samples with our pro-

posed Hard Prototype Mining (HPM) fine-tuning strategy.

Hard negative mining in speaker recognition systems has

mostly been explored in conjunction with metric learning ob-

jective functions [21, 22, 23]. A current overview of these loss

functions applied within speaker recognition is provided in [24].

Metric learning objectives shift a lot of implementation chal-

lenges to the sample mining process. In contrast, HPM is a sim-

ple and computationally efficient hard negative mining method

that interoperates with the AAM-softmax loss.

2.2.1. Broad hard prototype mining

The general principle behind HPM is to detect hard speakers

that confuse the speaker verification system the most and to sub-

sequently construct batches with utterances from these speak-

ers. A direct and continuous measurement of speaker confusion

between all training samples would be computationally infeasi-

ble. Hence, we need an approximate and efficient way to com-

pute training speaker similarities that can be easily updated as

the training progresses.

We interpret the weights of the AAM-softmax layer as ap-

proximations of the class-centers of the training speakers and

refer to them as speaker prototypes. As these trainable weights

are already a part of the model, there are no additional compu-

tations needed. Given batch size n and N training speakers, the

AAM-softmax loss L with margin m is defined as:

L = −
1

n

n∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑N

j=1,j 6=yi
es(cos(θj))

(1)

where θyi is the angle between the sample embedding xxxi with

corresponding speaker identity yi and the speaker prototype

WWW yi . θj is the angle with all other L2-normalized speaker

prototypes stored in a trainable matrix WWW ∈ R
D×N with D

indicating the embedding size. A speaker similarity matrix

SSS ∈ R
N×N can be constructed from WWWTWWW , containing the

cosine distances between all pairs of speaker prototypes.

A straightforward way of constructing batches would be

to only mine samples from the most difficult speaker pairs ac-

cording to SSS. However, this could lead to oversampling a nar-

row group of speakers which potentially degrades generaliza-

tion performance. Consequently, we construct mini-batches by

iterating randomly over all N training speakers. Each itera-

tion determines S speakers, irrespective of their similarity, for

which U random utterances are sampled from each of their I

most similar speakers, including the selected speaker. This im-

plies that S ×U × I should be equal to the batch size n. When

we have iterated over all training speakers, the similarity ma-

trix SSS is updated and the batch generating process is repeated.

Experiments indicate that given a batch size of 128, S = 16,

I = 8 and U = 1 result in good performance.

To fine-tune all models in this paper, we reduce the maxi-

mum of the cyclical learning rate to 1e-4 and reduce the cycle

length to 60k iterations.

2.2.2. Domain-balanced hard prototype mining

In the general HPM strategy discussed above, the S selected

speakers are randomly sampled from all N training speakers.
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Table 1: EER and MinDCF performance of all individual systems and final fusion on the VoxCeleb1 and SdSVC 2020 test sets. All

HPM models use our domain-balanced hard prototype mining technique as explained in Section 2.2.2. LID denotes usage of our

language-dependent s-normalization variant introduced in Section 2.3.

# System (# params) Emb. dim Res2 Summed Fine-tune VoxCeleb1 SdSVC 2020

EER(%) MinDCF EER(%) MinDCF

baseline 0.94 0.1181 2.38 0.1042

1 ECAPA-TDNN (24M) 192 no no HPM 0.85 0.0945 1.81 0.0798

HPM + LID - - 1.75 0.0781

baseline 1.03 0.1260 2.34 0.0996

2 ECAPA-TDNN (24M) 192 no yes HPM 0.96 0.1248 1.77 0.0791

HPM + LID - - 1.72 0.0775

baseline 0.86 0.0969 2.32 0.1008

3 ECAPA-TDNN (16M) 256 yes no HPM 0.81 0.1033 1.75 0.0784

HPM + LID - - 1.69 0.0764

baseline 0.88 0.1101 2.32 0.0994

4 ECAPA-TDNN (16M) 256 yes yes HPM 0.88 0.1161 1.69 0.0759

HPM + LID - - 1.63 0.0742

baseline 0.87 0.0824 2.13 0.0938

5 ECAPA-TDNN (44M) 256 yes yes HPM 0.79 0.1010 1.69 0.0759

HPM + LID - - 1.63 0.0739

Weighted fusion of 1-5 HPM + LID - - 1.45 0.0651

However, there are only 588 in-domain Farsi speakers out of

a total of 9077 training speakers. This bias possibly leads to

speaker embeddings that are sub-optimal towards the target-

domain. A common transfer learning technique is to fine-tune

a pre-trained model on the target-domain data with the goal to

correct the data distribution mismatch between the training and

target-domain. Due to the tendency of neural networks to eas-

ily overfit on small datasets, we opt to learn a robust embed-

ding that performs reasonably well on both the available out-of-

domain VoxCeleb data and target-domain DeepMine training

data.

We correct the bias towards the VoxCeleb and LibriSpeech

corpus by equalizing the sample probability for each domain.

During the construction of the batches, subsequent selections

of the S speakers cover a set of all 588 Farsi speakers and 588

random speakers from both the VoxCeleb and LibriSpeech do-

main. When the set runs empty, the similarity matrix SSS is up-

dated and 588 new speakers are randomly selected from the out-

of-domain data to allow reiteration of the batch generation pro-

cess. This process assigns more importance towards samples

from hard speakers in the target-domain, while still allowing

the network to learn from samples of challenging out-of-domain

speakers.

2.3. Adaptive s-normalization with language offset

Based on [25], we set the imposter cohort of the adaptive s-

normalization to contain in-domain Farsi data only. However,

an unknown portion of the test utterances in the SdSVC trials

is English. In case of a speaker verification trial with language

mismatch, this will result in an overestimated mean imposter

score for the Farsi enrollment model, as it will only be compared

against Farsi imposters. We introduce a language-dependent

offset in the adaptive s-normalization procedure to compensate

for this effect.

Given a trial score s(e, t) between the enrollment model e

and test utterance t, the language-dependent s-normalized score

is defined as:

s(e, t)n =
s(e, t)− µ(St)

σ(St)
+

s(e, t)− (µ(Se)− α)

σ(Se)
. (2)

with Si the set of scores of the speaker embedding i against

its top-N imposter cohort, with µ(Si) the mean of those scores

and σ(Si) the standard deviation. α is the language-dependent

compensation offset. It is defined as zero if there is no language

mismatch detected and in that case regular adaptive s-norm is

applied. When during test time the test utterance is detected

to be English, we enable the language offset. Given µSFA
as

the expected mean imposter score of Farsi imposters against a

Farsi speaker and µSUSA
as the expected mean imposter score

of USA-English imposters against a Farsi speaker, we define

this compensation offset α as µSFA
− µSUSA

. The mean im-

poster values can be easily estimated on the speaker prototypes

stored in the AAM-softmax module by applying s-norm on the

relevant prototypes.

To detect the language of the test utterance given its embed-

ding, we train a Language Identification (LID) module based on

a Gaussian Backend (GB) [26] modeled on the L2-normalized

AAM speaker prototypes of the Farsi and the USA speakers.

However, there will be a mismatch between the English spoken

by a native Farsi speaker and a USA citizen. To compensate for

this effect we interpolate between the GB mean vector for the

USA language class µµµUSA and the mean vector corresponding

with FarsiµµµFA and set the expected mean embedding of the En-

glish model to 0.75µµµUSA + 0.25µµµFA. This adapted language

model should be able to robustly detect English spoken by a

native Farsi speaker.

2.4. Final submission

The IDLab final submission for the SdSVC consists of a fusion

of the five proposed ECAPA-TDNN systems fine-tuned with
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domain-balanced HPM combined with language-dependent s-

normalization with the LID labels extracted from System 1. The

fusion is realized on the score level by taking a weighted aver-

age over the calibrated scores of each individual system. The

systems that incorporate Res2 modules are given double the

weight in the averaging compared to the other systems.

3. Results and additional experiments

3.1. ECAPA-TDNN baseline performance

The baseline performance of the ECAPA-TDNN architectures

on the SdSVC evaluation data is shown in Table 1. We also

keep track of results on the original VoxCeleb1 test set to ver-

ify the system is not overfitting on the training data. No s-

normalization is used for the VoxCeleb1 evaluation results.

These baseline single system implementations show strong

and similar performance on both the SdSVC and VoxCeleb

data, reaching up to an EER and MinDCF of 2.13% and

0.0938 respectively on the SdSVC test set. System 4 with SE-

Res2Blocks and summed inputs slightly outperforms the other

equally sized systems, while its much larger counterpart Sys-

tem 5 only delivers a small performance gain.

3.2. Domain-balanced HPM fine-tuning

The impact of domain-balanced HPM fine-tuning on the base-

line systems can be found in Table 1. After fine-tuning, all sys-

tems perform significantly better on the SdSVC test set with an

average improvement of 24.1% in EER and 21.8% in MinDCF.

The performance difference between System 4 and System 5

has vanished on the SdSVC test set. Notably, results on the

VoxCeleb1 test set remain strong and often improve after ap-

plying domain-balanced HPM, despite the reduced VoxCeleb

sampling frequency.

We conduct additional experiments to separately study the

impact of the increased sampling frequency of Farsi and the fo-

cus on harder samples during training. Results of these exper-

iments can be found in Table 2. We fine-tune the System 5

baseline with the protocol described in Section 2.2, but do not

take the speaker similarity into account and just randomly sam-

ple imposter speakers from the same domain. One experiment

balances the domain of speakers (balanced) while another ex-

periment exclusively samples from the in-domain (Farsi) train-

ing set. In addition, we compare our domain-balanced HPM

approach against the broad HPM of Section 2.2.1 and against

an HPM variant that only samples from Farsi speakers.

Table 2: Effects of fine-tuning (FT) and our proposed HPM

strategies.

Method Domain Vox1 SdSVC 2020

EER(%) EER(%) MinDCF

baseline - 0.87 2.13 0.0938

HPM Farsi 2.00 2.01 0.0910

HPM broad 0.83 1.98 0.0875

HPM balanced 0.79 1.69 0.0759

FT Farsi 6.05 1.83 0.0854

FT balanced 0.87 1.82 0.0802

Basic fine-tuning of the systems on SdSVC training data

only, increases the in-domain performance significantly with a

relative improvement of 14.1% and 9.0% in EER and MinDCF

respectively. Balancing the sampling frequency however, pre-

vents the degradation on the VoxCeleb1 test set and further im-

proves the MinDCF by 6.1% relative. The EER remains stable.

This indicates that it is worthwhile to keep out-of-domain per-

formance stable while fine-tuning the systems.

The importance of domain-balancing increases when ap-

plying our proposed HPM strategy. As the balance between the

domain sampling increases, so does the performance on both

evaluation sets. Incorporating HPM on top of domain-balanced

sampling shows to be beneficial and increases relative perfor-

mance with 7.1% and 5.4% in EER and MinDCF respectively.

3.3. Language-dependent score normalization

As shown in Table 1, the language-dependent variant of our

adaptive s-normalization system further improves EER and

MinDCF values on average with 3.3% and 2.3% respectively

on the SdSVC test set. While modest, the improvement is con-

sistent and easy applicable in the scoring backend.

To analyze the impact of different imposter speaker cohorts,

we analyze the HPM domain-balanced System 5 with different

s-norm configurations. The results on the SdSVC test set are

provided in Table 3. The imposter cohort is restricted to the

top-40 most similar imposters for all experiments.

Table 3: Effects of cohort selection in s-normalization.

Imposter Cohort EER(%) MinDCF

no s-normalization 2.14 0.0947

VoxCeleb 2.46 0.1303

Farsi 1.69 0.0759

VoxCeleb + Farsi 1.72 0.0762

The results clearly illustrate that a cohort restricted to the

available in-domain training data proves to be the most optimal

configuration. We notice a relative improvement of 21% and

19.9% in EER and MinDCF respectively over a system without

s-norm.

3.4. Final submission

The final score-based fusion of the single systems fine-tuned

with domain-balanced HPM and language-dependent score nor-

malization results in an EER of 1.45% and a MinDCF of 0.0651

as shown in Table 1. Fusion of all systems leads to a relative

improvement over System 5 of 11% and 11.9% in EER and

MinDCF respectively on the SdSVC test set. This shows that

minor architectural variations can prove sufficient to learn com-

plementary speaker embeddings.

4. Conclusion

In this paper we presented HPM as a computationally efficient

hard negative mining strategy to fine-tune a speaker embedding

extractor towards out-of-domain Farsi data. Furthermore, a cor-

rect configuration of s-normalization has proved to be crucial to

handle the cross-lingual trials presented in the SdSV Challenge

2020. A fusion of five systems based on our ECAPA-TDNN ar-

chitecture in conjunction with the proposed techniques resulted

in a final top-scoring submission on Task 2 of the SdSVC with

an EER of 1.45% and a MinDCF of 0.065.
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