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Abstract—In computer-assisted pronunciation training 

(CAPT), the scarcity of large-scale non-native corpora and 

human expert annotations are two fundamental challenges 

to non-native acoustic modeling. Most existing approaches 

of acoustic modeling in CAPT are based on non-native 

corpora while there are so many living languages in the 

world. It is impractical to collect and annotate every 

non-native speech corpus considering different language 

pairs. In this work, we address non-native acoustic 

modeling (both on phonetic and articulatory level) based on 

transfer learning. In order to effectively train acoustic 

models of non-native speech without using such data, we 

propose to exploit two large native speech corpora of 

learner’s native language (L1) and target language (L2) to 

model cross-lingual phenomena. This kind of transfer 

learning can provide a better feature representation of 

non-native speech. Experimental evaluations are carried 

out for Japanese speakers learning English. We first 

demonstrate the proposed acoustic-phone model achieves a 

lower word error rate in non-native speech recognition. It 

also improves the pronunciation error detection based on 

goodness of pronunciation (GOP) score. For diagnosis of 

pronunciation errors, the proposed acoustic-articulatory 

modeling method is effective for providing detailed 

feedback at the articulation level. 

 
Index Terms—CALL, CAPT, non-native acoustic modeling, 

pronunciation error detection and diagnosis, cross-lingual 

transfer 

 

 

I. INTRODUCTION 

OMPUTER-ASSISTED language learning (CALL) system is 

becoming more and more popular due to its flexibility of 

allowing students to practise their language skills in a 

stress-free environment at their convenient time and pace. 
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CAPT as an indispensable component of the CALL system 

aims to improve learner’s speaking skill through providing 

corrective feedbacks for pronunciation errors just like an 

experienced teacher does. To provide useful pronunciation 

instructions, the CAPT module needs to perform pronunciation 

error detection and diagnosis. Pronunciation errors are usually 

characterized at the phonetic (segmental) and prosodic 

(suprasegmental) levels. We focus on phonetic pronunciation 

errors in this paper. In terms of the diagnosis for detected errors, 

one main approach is identifying incorrect phones produced by 

the learner [1]. A typical feedback based on this approach is 

“You made an r-l substitution error” when a student pronounces 

the word “red” as “led”. Instead of specifying the phoneme 

uttered in place of the canonical one, exploiting information 

directly related with articulation is more attractive because it 

provides corrective feedback of how to move the articulators in 

order to produce the target sound. Facing the same 

pronunciation error described above, learners would be 

instructed with “Try to retract your tongue when speaking the ‘r’ 

sound”. Various kinds of articulatory attributes have been 

explored by the researchers in CAPT research field [2]-[5]. And 

this approach has been demonstrated more helpful in many 

areas, such as pronunciation perceptual training [6], speech 

therapy [7], and speech comprehension improvement [8]. 

Conducting diagnosis on the articulation level is focused in our 

work as a result. 

As pronunciation of a foreign language is easily affected by 

the learners’ native language, it is better to train acoustic model 

with the learners’ speech data of target foreign language. 

However, it is much more difficult to collect and label 

non-native speech than native speech because of the fewer user 

populations and unnatural pronunciations [9]. While automatic 

speech recognition (ASR) has recently achieved great progress 

due to the emergence of Deep Neural network (DNN) and big 

data, DNN-based CAPT cannot benefit a lot because of the 

scarce of a large amount of training data. To overcome the 

problem of lacking large-scale annotated resources, we have 

explored several transfer learning based methods for Mandarin 

Chinese learning in [10] and several knowledge combination 

strategies in [11] which aim at effective learning of DNN 

articulatory models of non-native speakers without using such 

training data. The proposed cross-lingual transfer-learning is 

essentially multi-lingual training of DNN using the target 
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language dataset and the learners' native language dataset. 

Cross-lingual knowledge transfer was shown the most effective 

among those different kinds of prepared knowledge. Notice that 

this is different from the conventional cross-lingual or 

multi-lingual transfer applied to ASR [12]-[15] in that we do 

not assume any dataset of the target non-native speech that will 

be used during testing, but only assume the native speech 

datasets. In this paper, we extend proposed cross-lingual 

transfer learning [10] to a new L2 language (English), aiming to 

investigate its generality. In addition, the transfer learning is 

applied to not only the articulatory level [10] but also the 

phonetic level. Their effects will be examined in a newly 

designed CAPT system, in which the acoustic-phonetic model 

is used to recognize the non-native speech and perform 

pronunciation error detection while the acoustic-articulatory 

model is to conduct diagnosis of pronunciation errors. This 

framework allows for detection and diagnosis of any error 

patterns while our previous work [10] [11] based on a 

single-pass framework could be applied to only pre-defined 

limited patterns. We will present how the phone model and 

articulatory models can be effectively trained based on the 

cross-lingual and multi-task transfer-learning, and evaluate 

their effect on three steps of non-native speech recognition, 

pronunciation error detection, and articulatory error diagnosis. 

The rest of this paper is organized as follows: In Section Ⅱ, 

we review previous related work on pronunciation error 

detection and diagnosis. Section Ⅲ introduces the acoustic 

modeling with conventional DNN based method. We present 

our proposed cross-lingual transfer learning based acoustic 

modeling approach in Section Ⅳ. Section Ⅴ describes the 

speech corpora used for acoustic model training and evaluation. 

Section VI reports experiment evaluations in native attribute 

recognition and three non-native speaker related tasks of 

non-native speech recognition, pronunciation error detection 

and diagnosis. Conclusions are in the final section. 

II. RELATED WORK 

While a limited number of studies have been conducted on 

unconstrained spontaneous speech [16] [17], most of previous 

works in CAPT are based on read speech where it assumes 

text-dependence [18]-[22]. The major challenge to achieve a 

text-independent system comes from the difficulty of 

non-native speech recognition. However, as the students 

improve, especially for those advanced learners, it would be 

better to let them speak freely and create their own sentences as 

opposed to reading a given text. We focus on text-independent 

CAPT and show the framework of proposed system in Fig. 1. 

The system includes four parts: First is recognizing the 

learner’s speech; the next two are detecting the pronunciation 

errors using the recognized text and diagnosing the causes for 

errors. The last part is to provide articulatory feedbacks based 

on the diagnostic result.  

A. Non-native Speech Recognition 

To support text-independent CAPT, the system needs to 

recognize non-native speech in the first place irrespective of 

any pronunciation errors. However, recognition accuracy has 

been observed to be drastically lower for non-native speakers 

than for the native speakers [23]-[26]. This is mainly because 

the non-native speakers’ pronunciation often differs from the 

native speech used in acoustic model training. Pronunciation 

errors, non-native accents, and disfluent speech all pose 

substantial difficulties for ASR. The most straightforward 

approach to tackle the mismatch problem is to use non-native 

speech data to train the acoustic model [25]. However, this kind 

of data is scarcely available and expensive to collect. An 

alternative approach has been proposed for acoustic model 

adaptation with limited non-native training data. The 

adaptation in [26] is conducted by freezing the lower layers of 

DNN while only the output layer is updated with a non-native 

dataset. Another popular approach to cover pronunciation 

variations is to construct a non-native pronunciation lexicon in 

 
 

Fig. 1.  Framework for pronunciation error detection and diagnosis. Learner’s speech is first sent to the ASR engine which outputs the recognized text. For 

example, a single word “berry”. Then its canonical phone sequence (b eh r iy) are used to calculate the recognition confidence score, such as the GOP score which 

is a variation of phone posterior probability. After that, the system can specify which phone is an error using a predefined threshold. The detected phone segment 

error is then sent to the diagnosis part which is a bank of articulatory attribute recognizers. The recognized attributes (Alveolar and Approximant) will be compared 

against the canonical attributes (Palato-alveolar and Approximant) of the target phone, and the difference (Alveolar vs. Palato-alveolar) reflects the cause of 

pronunciation error. The feedback related to articulators is naturally formulated as shown in this figure. 
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which the pronunciation of each lexical item is augmented with 

multiple pronunciations. It is constructed by using either 

linguistic rules which are derived through analyzing 

phonological structures of each L1-L2 pair [27], or a 

data-driven approach [28]. 

B. Pronunciation Error Detection 

Pronunciation error detection is used to specify the 

correctness for each target phoneme. A pre-defined script or the 

recognized text (in a text-independent scenario) is used to 

perform forced alignment and to calculate the pronunciation 

‘correctness’. The most widely-used approach is based on ASR 

confidence measures which show the probability of correctness 

per speech segment. Up to now, various types of confidence 

measures, such as likelihood score [29], posterior probability 

[30], and likelihood ratio [31] have been investigated for 

pronunciation error detection. With the improvement in 

acoustic modeling, GOP (goodness of pronunciation) score, a 

variation of posterior probability, has been extensively adopted 

from traditional GMM-based acoustic model [32] to the current 

DNN-based system [33]. The decision to specify a 

pronunciation error is made by thresholding the GOP score 

where the thresholds are determined empirically. Considering 

native acoustic model is not well suitable to non-native testing 

samples, KL adaptation techniques were explored to reduce the 

mismatch [34]. In this study, we adopt the DNN-based GOP 

method as it can be obtained easily with the ASR system and 

assembled into our system quickly. 

C. Pronunciation Error Diagnosis 

From a pedagogical point of view, the CAPT system should 

be capable of not only pinpointing pronunciation errors, but 

also diagnosing the causes in order to provide corrective 

feedback to learners. Some prior studies focus on specific 

phoneme pair errors that are frequently made by foreigners, and 

design a corresponding classifier to identify errors spoken by 

the learner [35]-[37]. Instead of defining a special set of 

classification targets, a more general approach is directly 

recognizing the surface phoneme sequence produced by 

language learners. This implies we need to recognize erroneous 

non-native speech while simultaneously detecting errors. One 

of the most popular approach is one-pass pronunciation error 

detection and diagnosis with an “extended recognition network” 

(ERN) [38]. The ERN is usually constructed with a customized 

pronunciation lexicon. In addition to the canonical 

pronunciation per word, it explicitly incorporates all possible 

phonetic error patterns into the lexicon. The incorporated error 

patterns can be found from the knowledge of each L1-L2 pair. 

Some studies consult experienced expertise or carry out 

phonological comparisons between the L1-L2 pair [39]-[41] 

while others adopt data-driven approaches [42] [43]. Though 

above approaches are able to provide corrective feedback, the 

performance heavily relies on the quality of constructed error 

patterns. Moreover, one-pass based approach cannot easily 

select optimal models and take the “cost/benefit” context into 

consideration. On the other hand, the two-pass framework [1] 

detects the places where there are possible errors in first pass. In 

the second pass, phone loop recognition is conducted at the 

problematic places to identify the actual error types. We 

conduct articulatory-level diagnosis through articulatory 

attributes loop recognition in the second pass. The main 

advantage of this framework is that the detection pass can be 

used to control the system risk naturally (e.g. false alarm rate 

should be lower in the context of CAPT) through varying the 

threshold value.  

III. ACOUSTIC MODELING WITH CONVENTIONAL DNN 

As introduced in Section Ⅱ, acoustic model is an essential 

component employed in CAPT systems. In this paper both 

acoustic-phonetic and acoustic-articulatory models are 

designed and implemented. The acoustic-phonetic model is 

used in non-native speech recognition and pronunciation error 

detection while the acoustic-articulatory model is to conduct 

diagnosis on learner’s articulation. Articulation means the 

movement of the tongue, lips, and other organs to make speech 

sounds. 

A. Phonetic and Articulatory Attributes Transcription 

The phone level transcription is derived from the word 

sequence using the CMU pronunciation dictionary1. For the 

articulatory transcription, various methods have been 

investigated to generate speaker’s articulatory attributes, 

including X-rays [44], electromagnetic articulography (EMA) 

[45], magnetic resonance imaging (MRI) [46], and ultrasounds 

[47]. However, all of the above direct measurements have 

disadvantages [48]. Above all, it is not easy to obtain such 

kinds of physical resources, especially in a large scale. In 

present work, we derive the attribute transcriptions from the 

phone transcription according to the phone-to-attribute 

mapping rules, which is a practical option adopted by many 

researchers [49]-[53]. Place of articulation and manner of 

articulation are used to describe the attributes of consonant 

sounds, while vowels are described with three-dimensional 

features: horizontal dimension (tongue backness), vertical 

dimension (tongue height), and lip shape (roundedness). From 

the example in Fig. 2, we can see the mapping relation between 

the phone class and the attribute class is many-to-many (phone 

/M/ has two attributes nasal and bilabial while both vowels /IH/ 

and /AX/ are mapped to the unrounded attribute). Therefore, we 

 
1 http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/ 

 
 

Fig. 2.  Converting word labels to phone labels and articulatory attribute labels. 

Word sil MR. sil

English phone sil m ih s t ax r sil

Manner sil nasal vowel
unvoiced-

fricative

unvoiced-

stop
vowel
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mant
sil

Place &

Backness
sil bilabial anterior alveolar alveolar central

palato-

alveolar
sil

Place &

Height
sil bilabial mid alveolar alveolar mid

palato-

alveolar
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Roundedness
sil bilabial unround alveolar alveolar unround

palato-

alveolar
sil
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prepare four kinds of transcriptions (manner, 

place-roundedness, place-backness and place-height) to 

represent all articulatory attributes. In each kind of transcription, 

the attributes are disjoint to each other so that it can be used to 

train a DNN model.  

B. DNN based Acoustic Modeling using L2 Native Data 

Inspired by the great success of DNN based acoustic 

modeling in ASR, we follow the conventional DNN [54] to 

train both phonetic and articulatory models using the L2 native 

data (see Fig. 3). The language learners in this study are 

Japanese students who learn English. As a consequence, the 

acoustic models are trained from English native speech 

database. Considering the co-articulation effect, we model all 

acoustic units (phone and attribute) in a context dependent way. 

Tri-phone is used to train the acoustic-phonetic model while 

tri-attribute unit (e.g. tri-manner) is adopted for the 

acoustic-articulatory model. All of them are generated by 

taking into account the labels of neighboring phones or 

attributes. The targets in the output layer are the senone states 

and obtained by using a baseline GMM-HMM system to 

produce a forced alignment. A bank of DNNs are usually 

adopted [49] [51] because of the many-to-many mapping 

relation discussed above. In this work, we trained four 

articulatory DNNs in which each DNN was used to represent 

one-kind attribute shown in Fig. 2. The articulatory models are 

used for diagnosis of learners’ pronunciation, while the phone 

model is used for non-native speech recognition and 

pronunciation error detection in our CAPT system depicted in 

Fig. 1.  

IV. ACOUSTIC MODELING BASED ON TRANSFER LEARNING 

 The idea of transfer learning (TL), which traces back to 20 

years ago, has been successfully employed in broad research 

fields [55]-[60]. Two major issues in TL are what knowledge to 

transfer and how to transfer. In order to enhance the acoustic 

model of non-native learners, two kinds of knowledge are 

investigated and compared in this paper. In terms of how to 

transfer, we assume the DNN consists of shared hidden layers 

and task-dependent output layers in this study, and shared 

hidden layers are used to transfer the knowledge of the source 

task to our target task. 

A. Cross-Lingual Transfer using L1 and L2 Native Corpora 

According to the language transfer theory [61]–[63], which 

refers to speakers applying knowledge from one language to 

another language, we assume the following: when the relevant 

aspect of both languages is same or very similar, linguistic 

interference can result in positive language transfer. On the 

other hand, when they are only comparable but not similar 

enough, or the linguistic unit in L2 is absent from L1, negative 

transfer will occur. For Japanese students learning English, 

they can easily pronounce an accented but correct English 

consonants /p, k, s, z/, which are shared by the two languages, 

while pronunciation becomes much more difficult when they 

turn to the English vowels, most of which are not present in 

Japanese. When we compare the vowel inventory, there are 

only five vowels in Japanese language while sixteen vowels 

(including the schwa sound) are in English. This significant 

phonological difference between the Japanese vowel system 

and the English one pose a big challenge for Japanese students. 

Based on the language transfer theory, we propose to model 

the cross-lingual phenomena by exploiting two large native 

speech corpora (English and Japanese in this study) and 

employing the DNN structure made of shared hidden layers and 

separate output layers. The positive transfer is expected to be 

learned through shared hidden layers, while we model the 

differences at the separated outputs. Fig. 4 shows the designed 

DNN structure. Different from the traditional modeling method 

in Section Ⅲ which only use L2 native dataset, both L1 and L2 

native data are used during the training process. Each frame is 

firstly fed into the shared hidden layers and then its 

corresponding language-dependent output layer. During 

backpropagation, hidden neurons are then trained by two 

language samples while the gradient values of neurons in the 

output layer are fixed to zero if the language ID of current input 

is different from the output layer language ID. Assuming that 

 
 

Fig. 3.  Diagram of DNN based acoustic modeling for phones and attributes. 

 

 
 

Fig. 4.  Diagram of transfer learning based acoustic modeling using 

cross-lingual knowledge. Acoustic characteristic of language learners is 

learned through transferring knowledge of the learners’ native language. 

Senones are prepared for both phones and articulatory attributes  
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there are N speech samples in a minibatch, the loss function is 

defined as: 

 

𝑙𝑜𝑠𝑠$%('()**+,-./01,) = 	
5

6
∑ 8𝐼%:;(𝑖)𝑙𝑜𝑠𝑠%=- + 81 − 𝐼%:;(𝑖)A𝑙𝑜𝑠𝑠%5- A
6
-B5  (1) 

 

where 𝑙𝑜𝑠𝑠%= and 𝑙𝑜𝑠𝑠%5 are the Cross-Entropy loss functions 

of the target language of English and the learner’s native 

language of Japanese, respectively. 𝐼%:;(𝑖) is the language ID 

indicator function that has the value 1 for speech sample i 

belonging to L2 and the value 0 for all training samples of L1. 

Shared hidden layers can be seen as a feature extraction 

module which learns the commonality across English and 

Japanese based on their shared aspects, such as similar phones 

or the shared articulatory attributes. Acoustic model adaptation 

is consequently done during this training process. Non-native 

acoustic features extracted from the shared hidden layers are 

expected to provide better coverage of acoustic characteristics 

of the language learners. This architecture allows for learning 

non-native acoustic features without using a non-native dataset. 

Same as in Section Ⅲ, one acoustic-phonetic model and four 

acoustic-articulatory models are trained. The acoustic-phonetic 

model is used in non-native speech recognition and 

pronunciation error detection components while the 

articulatory models are for diagnosing the pronunciation error 

at articulation level. We should note that the output layer for L1 

will be removed during testing. 

B. Multi-task Knowledge Transfer 

We also explore the knowledge transfer effect of another 

related task. To fairly compare the effectiveness of different 

knowledge, a similar architecture to that used in cross-lingual 

transfer is adopted as shown in Fig. 5. There are two tasks of 

phonetic and articulatory modeling in this work. As introduced 

in Section III-A, there is a very close relationship between the 

phones and the articulatory attributes. For example, different 

vowels (/IH/ and /AX/) are mapped to a same attribute 

(unrounded). When we train the acoustic-phonetic model used 

for speech recognition, the knowledge of one kind of 

articulatory attribute is used. The manner of articulation is 

found to be the most useful knowledge, which we adopt in this 

study. When we train four articulatory models for 

pronunciation error diagnosis, we use the phonetic knowledge. 

Compared to the cross-lingual transfer, two differences should 

be noted. One is we only employ the L2 native data to train the 

acoustic model while two native language datasets are used in 

the cross-lingual transfer. The other difference is in the training 

process. In the cross-lingual transfer, only hidden layers are 

trained using samples of two languages. In other words, the 

output layer is separately trained with the samples of each 

language. As for those model parameters in Fig. 5, both hidden 

layers and two output layers are trained with all speech 

samples. The loss function is defined as: 

 

𝑙𝑜𝑠𝑠$%((C,1DCE	D1*F) =	 𝑙𝑜𝑠𝑠$ +	𝜔 ∗ 𝑙𝑜𝑠𝑠I (2) 

 

where 𝑙𝑜𝑠𝑠$ and 𝑙𝑜𝑠𝑠I are the Cross-Entropy loss functions of 

the target primary task and the related secondary task, 

respectively. In theory and conventions, these two loss terms 

can be weighted. In our previous study [11], we tuned the 

weight and found there is no significant performance difference 

among different weight values (placed on 𝜔 from 0.1 to 1.0). 

Based on this finding, we regard the two terms with a same 

weight in the above equation so that the model architecture 

essentially becomes a multi-task DNN. 

V. CORPUS AND EXPERIMENTAL SETUP 

Three native speech corpora and a non-native speech corpus 

are used in this experiment. The native speech corpora are used 

to train the acoustic models and evaluate the performance of 

different acoustic modeling methods for native attribute 

recognition. The non-native testing corpus is to evaluate the 

performance on all three modules of the proposed CAPT 

system. 

A. Native Database 

The native corpus for L2 are Wall Street Journal (WSJ) 

database [64] and LibriSpeech database [65], which are 

commonly used for English large-vocabulary continuous 

speech recognition research. Sixty-four hour speech data from 

the SI-284 training data (WSJ0 and WSJ1) is selected after 

removing noisy utterances. There are 282 different speakers in 

total. It is used in both conventional DNN based acoustic 

modeling and two TL based approaches. Another sixty-four 

hour speech data from the LibriSpeech “train-clean-100” subset 

were used to investigate the effect of training data size. We 

conduct the native attribute recognition on two standard testing 

datasets of WSJ (Nov’92 and Nov’93). The other native corpus 

for L1 is JNAS [66], which is recorded by Japanese native 

speakers. It is also a commonly used database for Japanese 

large vocabulary continuous speech recognition research. We 

randomly select sixty-four hour speech utterances uttered by 

324 speakers. This L1 native dataset is incorporated into the 

 
 

Fig. 5.  Diagram of transfer learning based acoustic modeling complemented 

with an auxiliary task. By using equal weights, articulatory models and 

phonetic model are jointly trained using a multi-task learning (MTL) 

framework. The articulatory models are used for pronunciation error diagnosis 

while the phonetic model is used to recognize the non-native speech and detect 

the pronunciation errors. 
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cross-lingual based TL modeling which aims to characterize 

the phonological processes in Japanese speaking students 

learning English. 

B. Non-native Database 

The foreign language learners’ speech database is a set of 

English words spoken by Japanese college students [67]. There 

are 7 speakers (2 male, 5 female) and each speaker uttered a 

same set of 850 basic English words. Each word contains 

phones which are difficult for Japanese students. These phones 

either do not exist in Japanese language or are pronounced in a 

very different manner. This non-native dataset is used to 

evaluate the performance of different modeling methods on the 

three tasks: non-native speech recognition, pronunciation error 

detection, and pronunciation error diagnosis. 

C. Experiment setup 

The acoustic feature consists of 40-dimensional log 

Mel-scale filter-bank outputs plus first and second temporal 

derivatives. The input to the network is 11 contiguous frames, 5 

frames on each side of the current frame. The neural network 

has 7 hidden layers with 2048 nodes per layer. DNN training 

consists of unsupervised pre-training and supervised 

fine-tuning. All modeling methods in this paper adopt the same 

configuration above, and hyper-parameters are optimized on 

the development data set (Dev’93) of WSJ. 

VI.  EXPERIMENTS AND ANALYSIS 

In order to assess the performance of the acoustic modeling 

methods, we conduct experiments on the four tasks and present 

their results in this section. We first assess our acoustic models 

on attribute recognition of English native speakers for 

reference, before conducting evaluations on non-native English 

speech. 

A. Native Attribute Recognition Results 

The CAPT system should not only be effective for 

non-native foreign language learners but also work for native 

speakers whose pronunciation is regarded as the gold standard. 

We first assess our acoustic models on attribute recognition of 

English native speakers. Since the native training data are 

incorporated in all different model training processes and the 

testing datasets come from the same corpus, there is no 

mismatch problem in this experiment. We conduct free 

articulatory attribute recognition for the native speakers. 

Similar to the phone error rate, the attribute recognition error 

rate is used as an evaluation measure, which is computed over 

all four articulatory attributes. 

We show the recognition error rates of all attributes in Fig. 6. 

Compared to DNN-64h, a further error reduction can be 

obtained when we increase the training data to 96 hours but no 

further improvement by increasing it to 128 hours. TL-128h 

(cross-lingual knowledge), which uses the same amount of data 

in total (128 hours), brings limited effect with mixed language 

datasets. On the other hand, the multi-task learning using 

phonetic knowledge achieves much more improvement. It 

substantially reduced the error rate on both “Nov’92 and 

Nov’93” testing datasets. When we average the performance 

over the two datasets, the recognition error rate is reduced from 

9.64% to 8.89% with 64 hours of training data. The relative 

error reduction over the DNN-64h baseline is 7.82%, which is 

even better than the model trained with doubled data 

(DNN-128h). The effect is maintained for the model trained 

with 128-hour data (DNN-128h and MTL-128h). These results 

confirmed that phones and articulatory attributes are closely 

related, and phonetic knowledge help improve the performance 

of articulatory attribute recognition.  

The articulatory attribute recognition method, in principle, 

can also be directly applied to non-native speakers for 

pronunciation error identification. However, the strategy of free 

decoding is expected to bring poor performance for non-native 

speech because of the significant difference between native and 

non-native speech. To support the CAPT system with attribute 

recognition of non-native speech, we restrict the recognition 

conducted on each detected phone error. Its details will be 

described in Section VI-D. 

B. Non-native Speech Recognition Results 

In the previous experiment, we have shown the proposed 

methods are effective for native speakers. From this subsection 

onwards, we focus on non-native speakers, which is our main 

target. The non-native speech corpus is used to evaluate the 

performance of different methods. 

Accurate recognition of the learner’s speech is important for 

the text-independent CAPT system. We evaluate the proposed 
methods on non-native speech recognition in this section. The 

knowledge from the articulatory attributes is used to improve 

acoustic-phonetic modeling. We conduct word recognition 

experiments with different settings. One is continuous speech 

recognition (CSR) while the other is isolated word recognition 

(IWR) which is more constrained. No language model is used 

in addition to the lexicon. Although all testing samples are 

single words, we do not assume the number of words in CSR so 

that both insertion and deletion errors could happen in the 

recognition result. As for the configuration in IWR experiment, 

word insertions and deletions are not allowed to occur because 
only one single word is assumed when decoding each utterance. 

To deal with pronunciation variation of non-native speakers, 

 
 

Fig. 6.  Articulatory attribute recognition error rate of English native speakers 

on two standard testing datasets of WSJ corpus. The models are named after 

the total number of training data. The models marked with 64h are trained on 

the WSJ corpus only. Ave. means the average performance over two datasets. 
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we also construct an extended lexicon, in which each word is 

represented by both canonical pronunciation and other possible 

pronunciation variations. These variations are derived by 

comparing the phone inventories of English and Japanese. In 

this section, word error rate (WER) is adopted as an evaluation 

metric. 

Fig. 7 demonstrates the recognition performance of three 

different modeling methods at various conditions. We observe 

that TL based modeling methods consistently perform better 

than the DNN baseline under all four different recognition 

configurations. The main reason of high WERs is there are 
many minimal pairs (e.g. “frame” and “flame”) included in the 

dataset. Confusing phones in these minimal pairs are useful for 

pronunciation learning while they are a challenge for speech 

recognition. The phone sequences of two words differ only in 

one phone so that misrecognizing a single phone will result in 

the whole word recognition error. Compared with the method 

that transfers articulatory knowledge to acoustic-phonetic 

modeling, the cross-lingual based TL method outperforms the 

DNN baseline by a large margin. The relative reduction of 

WER over the DNN baseline is 14.3% in CSR, 15.9% in CSR 

with the extended lexicon, 12.5% in IWR, and 16.2% in IWR 
with the extended lexicon. Compared with the result of native 

speech (Fig. 6), transferring knowledge of the learner’s native 

language is more useful for non-native speech. The shared 

hidden layers are able to implicitly learn a better feature 

representation of the non-native acoustic space. In addition, 

when we employ the extended lexicon, even larger WER 

reduction is observed on both CSR and IWR tasks.  The 

extended lexicon compensates for the pronunciation variants of 

non-native speakers, and this compensation works on the 

constructed decoding network, which is different from the 

acoustic model compensation by TL method.  As a result, a 

synergetic effect is obtained when we combine these two 
methods together. The combination further decreases the WER 

to 30.16% which yields 22% relative improvement over the 

DNN baseline. In the IWR task, similarly, 19% relative WER 

reduction is achieved, which leads to the best WER of 28.91%. 

C. Pronunciation Error Detection Results  

As shown in Fig. 1, the two-pass pronunciation error 

detection and diagnosis framework is adopted in this study. 

The pronunciation error detection is conducted in the first pass 

which tells whether any phone is correct or not. We adopt the 

DNN-based GOP score proposed in [33] to detect the 

pronunciation errors. The GOP score of a target phone 𝑝 given 

the observations o is computed as: 

 

GOP(𝑝) ≈ log R(S|𝐨;	DW,DY)

Z1[{]∈_}R(a|𝐨;	DW,DY)
 (3) 

where 𝑡*  and 𝑡C  are the start and end frame indexes of 

observations o, which is obtained by Viterbi alignment of the 

ASR output in the text-independent scenario. In the evaluation 

of this section, however, we use the ground-truth text (that the 

learners should utter) for this GOP computation to make a 

meaningful comparison of the different methods. 𝑄 represents 

the whole phone sets. It is approximately calculated by the log 

posterior ratio between the target canonical phone p and its 

most competing phone 𝑞  which has the highest posterior 

probability. 

The log posterior of phone 𝑝 given the observations o is 

computed as: 

 

log P(𝑝|𝐨;	𝑡*, 𝑡C) ≈
5

DY+	DWe5
∑ log∑ P(𝑠|𝑜D)*∈S
DY
DBDW

 (4) 

 

where 𝑜D is the input acoustic feature of frame 𝑡, 𝑠 is the senone 

label belonging to the phone 𝑝. 𝑃(𝑠|𝑜D) is given by the softmax 

output of the senone DNN. 
We calculate the GOP score for each phone segment using 

the equations defined above. A unique phone-independent 

threshold is then used to determine whether it is a pronunciation 

error or not. 

To illustrate the detection performance of this binary 

pronunciation error classifier, receiver operating characteristic 

curve (ROC curve) is used. It is created by plotting the true 

positive rate (TPR) against the false positive rate (FPR) at 

various threshold values. The TPR is also known as Recall and 

the FPR is also known as false alarm rate (FAR). In the task of 

pronunciation error detection, a false positive occurs when a 
learner’s pronunciation is judged as incorrect, but actually is 

not a pronunciation error. FAR, as a result, shows how many 

incorrect results occur among learners’ all correct 

pronunciations during the detection. The metric of Recall 

defines the fraction of true errors that are detected over the total 

number of pronunciation errors. We draw the ROC curve for 

three different methods in Fig. 8(a). 

As shown in this figure, two TL based models outperform the 

baseline DNN system consistently when we vary the threshold 

for the GOP score. When we compare the effects of two 

different knowledge based TL methods, similar to that result 
observed in non-native speech recognition (Fig. 7), the 

knowledge derived from the learner’s native language is more 

effective. This better performance mainly benefits from the 

more accurate forced alignment senone sequence of the 

non-native speech, which is generated from the adapted 

acoustic model. As there is an inherent trade-off between FAR 

and Recall, increasing the GOP threshold will result in a higher 

 
 

Fig. 7.  English non-native word recognition on different settings. “CSR 

(extended lexicon)” means the continuous speech recognition is conducted 

using a lexicon in which each word has multiple pronunciation entries. 
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risk of FAR despite of a better coverage of the true 

pronunciation errors. Considering the purpose of CAPT, a high 

FAR is not desirable because it would discourage learners by 
rejecting their correct pronunciation. In this study, we control 

the risk of FAR below 10%. Fig. 8(b) shows a zoomed-in view 

of ROC curve where FAR is less than or equal to 10%. At the 

operating point where FAR equals 10%, the recall of true errors 

is increased from 37.8% to 42.8% by the cross-lingual based 

TL. 

D. Pronunciation Error Diagnosis Results 

Pronunciation error diagnosis serves as the last but the most 

critical part in the CAPT system. It identifies the detected 

errors in a higher resolution and is conducted based on the 

results of the first pass of pronunciation error detection. 

During the error detection pass, the system points out which 

part of learner’s speech is probably a pronunciation error and 

should be considered in the diagnosis pass. The non-native 

attribute recognition as a consequence becomes easier now 

because it only needs to focus on a very short segment. This 

scenario is different from the native attribute recognition on 

the whole utterance without any constraint.  Articulatory 

attributes are focused to characterize the segmental 

pronunciation errors. The attributes are related to human 

speech production so that articulator related feedbacks could 

be naturally generated by comparing recognized attributes 

with the canonical attributes. We conduct the articulatory 

attribute recognition in the detected segments. Diagnostic 

error rate (DER) [68] is adopted as an evaluation measure. 

The diagnostic performance at different thresholds on the 

GOP score for controlling the FAR is plotted in Fig. 9. The 

threshold is adjusted so that a reasonable low risk of FAR 

which equals 3%, 5%, 7%, or 10% is adopted. From the figure, 

we see that in all different settings, TL based methods perform 

better than the DNN baseline. Cross-lingual knowledge based 

TL achieves a lower DER than the phonetic knowledge 

transfer, in which phonetic information is used as the source 

knowledge to improve the articulatory modeling. This result 

shows effectiveness of the cross-lingual transfer for the 

articulatory modeling. 

For all three models, as the FAR gradually increased from 3% 

to 10%, the DER begins to rise as well. This increase is caused 

by the thresholds adopted in the different settings of FAR. If a 

looser threshold is adopted, more pronunciation samples being 

less confident of an error will be included. These less 

confident target samples will pose a bigger challenge to the 

system. We present the average performance over those four 

FAR settings at the rightmost in Fig. 9. In contrast to the 2% 

improvement achieved in the phonetic knowledge based TL, a 

 
 

Fig. 9.  Performance of three modeling methods on pronunciation error 

diagnosis. Avg. means the average DER over four different FAR settings. 

 

 
 

Fig. 10.  Pronunciation error diagnostic performance of three modeling 

methods on consonant and vowel categories. It is averaged over the four FAR 

settings shown in Fig. 9. The model marked with JP is trained on the JNAS 

corpus only. 

 
(a) 

 

 
(b) 

Fig. 8.  Performance of three modeling methods on pronunciation error 

detection. The best possible detection method would yield a point in the upper 

left corner or coordinate (0.0, 1.0) of the ROC space, representing a perfect 

classification, 100% accuracy (no false detection). A low FAR (less than 10%) 

is more interesting in this study and its zoomed-in view is shown in (b). 
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much larger DER decrease from 22.8% to 14.1% is observed 

with cross-lingual TL. 

Fig. 10 gives the diagnostic performance breakdown for 

consonants and vowels. From the result, we first observe 

vowels are better identified than consonants. This is mainly 

because there are fewer articulatory attribute classes in the 

vowel category. Considering the linguistic interference, we 

also conduct the attribute recognition using Japanese 

acoustic-articulatory models, which are trained with the JNAS 

corpus only. From the diagnostic results shown in Fig. 10, we 

see the error rate is almost twice as much as the result with the 

English acoustic model. This is not surprising because of the 

significant phonological difference between Japanese and 

English. 

When we review all experiments, we note the different 

tendencies of two kinds of knowledge presented on the three 

non-native speech related tasks and the native attribute 

recognition task. The related task knowledge is more helpful 

in native attribute recognition. However, the cross-lingual 

knowledge derived from the L1-L2 pair is more effective for 

non-native speech related tasks while no significant positive 

effect on native speech. This indicates that “what to transfer?” 

is important and should be carefully selected when applying 

transfer learning. In this study, transferring knowledge of the 

learner’s native language is most relevant to cover 

characteristics of non-native speech. 

VII. CONCLUSIONS 

In this paper, we have proposed an effective acoustic model 

training for the CAPT application. Considering there exists 

very limited amount of non-native speech data, we address 

acoustic modeling without using target non-native speech in 

this paper. To mitigate the mismatch between native and 

non-native speakers, we characterize the non-native speech by 

exploiting two large native speech corpora of the learner’s 

native language and the target foreign language based on the 

cross-lingual language transfer learning. The proposed DNN 

consists of shared hidden layers and language-dependent 

output layers to learn a better feature representation of 

non-native speech through the shared layers. 

In the non-native speech recognition and pronunciation error 

detection experiments, we confirmed the effectiveness of the 

proposed cross-lingual based transfer learning on 

acoustic-phonetic modeling. For corrective feedback, we 
conduct the articulatory level diagnosis for each detected phone 

error. Experimental results demonstrate that the proposed 

method of acoustic-articulatory modeling based on 

cross-lingual transfer learning is effective. 

Though allowing the language learners to speak freely is 

desired, it brings challenges as well. First, the system needs to 

recognize every intended word even if the learner 

mispronounced it to another word. It is also challenging to get 

an accurate alignment boundary when the learner’s 

pronunciation is incorrect. Incorporating appropriate linguistic 

models and contextual models will be beneficial for speech 

recognition while adding possible pronunciation errors to the 
alignment graph might be helpful for forced alignment. These 

directions should be explored in the future. 

In this paper, we have demonstrated the effect of transferring 

the knowledge from learner’s native language with a fully 
connected feedforward network architecture. In our future work, 

more sophisticated deep learning models such as neural 

attention models will be investigated. The proposed method, in 

theory, can be applied to any language pairs as long as there is 

a native corpus. We have applied our proposed method to 

English language learning. In the future, we will apply it to 

more language learning datasets. 
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