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Abstract

Semantic role labeling is an important step in natural language understanding, offering a
formal representation of events and their participants as described in natural language,
without requiring the event or the participants to be grounded. Extensive annotation
efforts have enabled statistical models capable of accurately analyzing new text in
several major languages. Unfortunately, manual annotation for this task is complex and
requires training and calibration even for professional linguists, which makes the creation
of manually annotated resources for new languages very costly. The process can be
facilitated by leveraging existing resources for other languages using techniques such as
cross-lingual transfer and annotation projection.

This work addresses the problem of improving semantic role labeling models or creat-
ing new ones using cross-lingual transfer methods. We investigate different approaches to
adapt to the availability and nature of the existing target-language resources. Specifically,
cross-lingual bootstrapping is considered for the case where some annotated data is
available for the target language, but using an annotation scheme different from that of
the source language. In the more common setup, where no annotated data is available
for the target language, we investigate the use of direct model transfer, which requires no
sentence-level parallel resources. Finally, for cases where the parallel resources are of lim-
ited size or poor quality, we propose a novel method, referred to as feature representation
projection, combining the strengths of direct transfer and annotation projection.





Zusammenfassung

Rollensemantische Analyse ist ein wichtiger Teil der Computerlinguistik. Sie bietet eine
formale Repräsentation von in natürlichen Sprache beschriebenen Ereignissen und deren
Beteiligten, welche selbst nicht unbedingt formal beschrieben sein müssen. Umfangre-
iche Projekte für rollensemantische Annotation ermöglichen die Entwicklung präziser
statistischer Modelle für die Analyse neuer Texte in verschiedenen Sprachen. Für an-
dere Sprachen hingegen besteht leider immer noch Ressourcenmangel, hauptsächlich
aufgrund eines Mangels an zeit- und kostenintensiven manuellen Annotationen der
semantischen Rollen, die von professionellen Linguisten durchgeführt werden müssen
und besonderes Training voraussetzen. Dieser Zeit- und Kostenaufwand kann verringert
werden indem man mit Techniken wie Modelltransfer und Annotationsprojektion die
bestehende Ressourcen auf andere Sprachen überträgt.

Diese Arbeit beschreibt eine Reihe von Experimenten zu cross-lingualem Transfer
von rollensemantischen Analysatoren. Insbesondere betrachten wir drei Fälle:

• cross-linguales Bootstrapping, für den Fall, dass annotierte Ressourcen für Quell-
sowie Zielsprache bestehen, diese jedoch unterschiedlichen Annotationsschemata
folgen;

• direkten Modelltransfer für den Fall, dass weder annotierten Daten für die Ziel-
sprache noch alinierte Korpora für das Sprachenpaar verfügbar sind;

• ein neuer Ansatz, der die Stärken des direkten Modelltransfers und der Annota-
tionsprojektion kombiniert, für die Fälle, wo alinierte Ressourcen für den Quell-
und Zielsprache vorhanden sind, jedoch beschränkt oder von schlechter Qualität.
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Chapter 1

Introduction

Models of shallow semantics have proved useful in a variety of natural language process-
ing tasks, offering an intermediate layer of representation that can help problems such
as question answering, event extraction, machine translation and many others. While
making high-quality open-domain models available for most languages would be highly
desirable, it generally requires a very substantial amount of annotated training data due
to the high level of lexical variation, and the construction of annotated resources can be
costly.

1.1 Semantic Role Labeling

One of the most popular types of shallow semantic parsing, semantic role labeling (SRL) is
concerned with representing the propositional aspects of meaning in natural language
text. A unit of meaning is usually associated with a predicate evoked by a specific word
or phrase and its arguments, which are said to have different roles with respect to the
predicate (figure 1.1).

“[They]Agent threatened [its life]Theme [with a railway-share]Means”

Figure 1.1: Example sentence annotated with semantic roles. The predicate is highlighted
in bold and the argument spans are marked with corresponding roles.

Since there are generally many ways to describe the same event or situation (also
referred to as frame), and the same word can sometimes describe different ones, the
predicate needs to be linked to an appropriate inventory to indicate the meaning implied
in a given statement, which in turn affects the expected set of participants and their
roles. For instance, there would be separate entries in the inventory for the meaning of
“threaten” in the example above – express intention of committing some harmful action, – and
its other sense – present potential danger, – as in “the shares threatened to decline”, where
the former can have an a participant labeled Agent

1, but the latter cannot.
Both the inventory of frames and the number, names and definitions of the roles vary

between formalisms. We discuss the history behind various existing options and their
respective peculiarities in chapter 2.

1We use easily interpretable labels similar to thematic roles for illustration here. This does not necessarily
reflect how the sentence would be labeled following the guidelines of existing SRL resources.
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Even from this simple example it is clear that the problem of automatically dis-
ambiguating the predicate and assigning semantic roles to the participants is highly
non-trivial, for instance in this case the model needs to realize whether a given participant
can exercise volition.

There is also empirical evidence that training reasonably accurate models for semantic
role labeling requires larger vocabulary and larger training corpora than syntax-oriented
tasks, and that these models tend to be highly domain- and register-specific.

Accurate semantic role labeling models would enable a certain degree of generaliza-
tion over different verbalizations of the same meaning, and thereby facilitate language
understanding. A considerable amount of work has been dedicated to designing accurate
SRL models, but creating a model for a language with little or no annotated resources
available remains a challenge. Making use of existing annotated resources for other,
related languages can help accomplish this task with considerably less effort, and the
ways of profiting from such resources will be the focus of this work.

1.2 Claims

This thesis addresses the problem of bootstrapping or transferring semantic role labeling
models across language boundary.

Specifically, we state that the cost of creating a semantic role labeling model for a
given language can in certain situations be reduced by leveraging existing resources for
other languages. A workable model can even be created using cross-lingual transfer
techniques alone, without dedicated target-language annotation, but the exact approach
to adopt depends on many factors, in particular the availability of annotated resources
for the target language – both syntactic and semantic, – as well as the amount and quality
of sentence-level parallel data available for the language pairs in question.

We consider how the roles of aligned arguments in parallel data correspond to each
other, if the annotation schemes used for source and target language are different, and
show that target-language model can be improved by transferring information from the
source-language model through the alignment links. The gains are much higher if prior
information on role correspondence for aligned arguments is available.

We further identify strengths and weaknesses of existing cross-lingual transfer tech-
niques by evaluating them on multiple language pairs and propose a new, competitive
and flexible approach for this task.

1.3 Relevance

With the wide-spread adoption of natural language processing techniques by the industry,
the need for high-quality language understanding tools across languages becomes a
matter of high practical importance. Recent efforts in part-of-speech tagging, dependency
parsing, named entity recognition and other areas made accurate models available for
more languages and attempted to harmonize the output of those models to enable easier
internationalization for downstream tasks. We believe that this process will continue,
gradually covering various aspects of semantics, from predicate-argument structure to
discourse semantics and more abstract formal semantic representations, and would call
for further improvements in cross-lingual transfer methods.
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The models obtained by cross-lingual bootstrapping or transfer are generally imper-
fect, but tend to have comparatively broad coverage (assuming both the source-language
training corpus and the parallel corpus used for transfer are sufficiently large and diverse)
and can serve as a useful starting point in model development. A transferred model can
be further improved by using manual correction or employing non-expert annotators to
discriminate between correct and incorrect annotations – a generally less demanding task
than annotating a sentence from scratch.

Besides the practical benefit of reduced cost of creating a model for a new lan-
guage, cross-lingual transfer techniques encourage cross-lingual consistency – a desirable
property for semantic annotation – and may help design better formalisms.

1.4 Overview

The thesis is structured as follows. We begin with an overview of semantic role labeling
research in chapter 2, particularly focusing on the cross-lingual aspects.

Chapter 3, based on Kozhevnikov and Titov (2013b), addresses the question of
correspondence between the roles of aligned arguments in a parallel corpus with hetero-
geneous annotations used for source and target languages.

We show that the correspondence is non-trivial in general, but a usable model thereof
can be learned from automatically annotated parallel data, despite the domain shift
between annotated corpora and parallel data and correspondingly imperfect annotations
on the parallel sentences. The role correspondence model can in turn be used to
improve target-language annotations through the transfer of information from a higher-
quality source-language model using a cross-lingual bootstrapping procedure. We further
demonstrate that much more significant improvements could be obtained with a role
correspondence model based on prior, external knowledge.

Next, chapter 4, based on Kozhevnikov and Titov (2013a), describes the application of
an approach known as direct model transfer to the problem of semantic role labeling, which
enables the construction of an SRL model for a given language based on an existing
model for another language in the absence of sizable word-aligned parallel corpora. We
perform a comprehensive evaluation on several language pairs, comparing direct model
transfer to a simple annotation projection baseline and a state-of-the-art unsupervised
SRL model, and identify scenarios where one or the other is preferable.

Chapter 5 presents an alternative, novel approach to the transfer of semantic role la-
beling models, introduced in Kozhevnikov and Titov (2014). Based on the representation
learning paradigm, the proposed approach combines the strengths of direct model trans-
fer and annotation projection – another well-known cross-lingual transfer technique – to
enable efficient utilization of parallel resources, even those of smaller size or questionable
quality. The method demonstrates competitive performance compared to direct model
transfer and annotation projection baselines and we further elaborate on how it can be
adjusted for a particular transfer scenario.

Chapter 6 describes our related work in the direction of leveraging agreement on
unlabeled samples for structured prediction in monolingual semi-supervised learning
setup, and chapter 7 offers some conclusions and parting thoughts.

9
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Chapter 2

Semantic Role Labeling in

Cross-Lingual Setting

2.1 A Brief History of Semantic Roles

Semantic Role Labeling (SRL) is among the most established approaches to shallow
semantic parsing, aiming to provide a more abstract representation of predicate structure
compared to syntactic analysis, but not attempting to entirely decouple the meaning
from the words. It is often said to describe “Who did what to whom”, which reflects the
focus on events and their participants.

Such representations have proven useful in many natural language processing tasks,
including question answering (Narayanan and Harabagiu, 2004; Shen and Lapata, 2007;
Kaisser and Webber, 2007), textual entailment (Sammons et al., 2009), machine trans-
lation (Boas, 2002; Wu and Fung, 2009; Liu and Gildea, 2010; Gao and Vogel, 2011),
summarization (Trandabăţ, 2011) and dialogue systems (van der Plas et al., 2009).

From the point of natural language processing, the primary purpose of SRL is to
generalize over various alternative verbalizations of the same event, thus simplifying
subsequent analysis. Of course, there are multiple possible levels of granularity and
different phenomena to consider. Some only include verbal predicates, for instance, while
others handle nominal and adjectival ones as well, and even predicates expressed by
prepositional phrases. Other important choices are whether the role fillers should be
single words, constituents, spans or some other units, how a predicate type is defined
and whether roles are defined per individual predicate, group of predicates or globally,
for all predicates.

Here are a few examples of sentences that, in appropriate context (i.e. assuming A
and B are both companies), would indicate to a reader that B was acquired by A:

1. Last year, A acquired B.

2. B was bought by A.

3. A bought B for $ 1.7 billion.

4. A reported their acquisition of B.

5. A sells the recently acquired B again.

11



6. A paid $ 1.7 billion for B.

Here, (3) and (2) illustrate a simple active-passive alternation and can be considered
semantically equivalent, if we disregard the extra information such as the time of the
deal or the price paid. The same meaning can be expressed by a different verb (1), or
using nominal (4) or adjectival (5) predicate.

On the other hand, (6) also suggests that a transaction took place, but since there
is no explicit predicate to indicate an acquisition, this inference is generally considered
beyond the scope of shallow semantics – the purchase of something would be considered
a separate event from the transfer of money in return for the purchase, although some
formalisms may incorporate information about the typical order of events or their
composition. The interpretations of statements such as “A offered to buy B” or “B may
soon be acquired by A” would also be considered to contain the predicate buy(A, B) as a
part of the structure. Modality, negation, factuality and other extra-propositional aspects
of meaning are generally considered to be outside of the scope of this task, although in
some cases modifiers that indicate such aspects are labeled as parts of predicate-argument
structure.

2.1.1 Thematic Roles

Concepts similar to thematic roles, such as Θ-roles, deep cases and others, have been
considered by many researchers and the motivations for their existence are varied. Most
often they are viewed as a way to sub-categorize phrases in a grammar or describe linking
between formal-semantic representation of a predicate and the syntactic structure of the
corresponding sentence. Depending on the purpose and perspective of the particular
researcher, the number and definition of roles have changed.

The general intuition is that most events described by a predicate involve one or more
participants, usually corresponding to phrases governed by the predicate word or phrase,
and that the participants can be categorized according to their relation to the event into
groups known as thematic roles. In the following sentence, for example, “bashed” is the
predicate with three arguments, which are marked with their relation to the predicate,
their thematic role.

[Someone]Agent bashed [him]Theme [with a cudgel]Instrument.

Thematic roles are closely connected with grammatical functions, such as Subject,
Direct Object or Indirect Object, but are semantic in nature and must to be defined
primarily on the basis of what the predicate entails about a given participant (Dowty,
1991).

The introduction of this concept is usually attributed to Fillmore (1968) and Gruber
(1965), although some researchers track similar concepts to as far back as 4th century
BCE (Cardona, 1976).

Fillmore (1968) divides arguments into the following six categories, referred to as deep

cases, and acknowledges, that “Additional cases will surely be needed.”

Agentive: the case of the typically animate perceived instigator of the action identified by the
verb.

12



Instrumental: the case of the inanimate force or object causally involved in the action or state
identified by the verb.

Dative: the case of the animate being affected by the state or action identified by the verb.

Factitive: the case of the object or being resulting from the action or state identified by the
verb, or understood as a part of the meaning of the verb.

Locative: the case which identifies the location or spatial orientation of the state or action
identified by the verb.

Objective: the semantically most neutral case, the case of anything representable by a noun
whose role in the action or state identified by the verb is identified by the semantic
interpretation of the verb itself; conceivably the concept should be limited to things
which are affected by the action or state identified by the verb.

Multiple extensions of this list, reinterpretations of certain roles and alternative
classifications have been proposed since. The set of thematic relations suggested by
Jackendoff (1972), for example, contains ten categories: Agent, Theme, Location, Source,
Goal, Experiencer, Percept, Patient, Instrument and Benefactive. Modern resources using
concepts similar to thematic roles, such as Extended VerbNet (Kipper et al., 2006b),
contain as many as 23 different roles. Following are some points of argument:

Core roles and Modifiers. Andrews (1985) suggests that there are two different cate-
gories of thematic roles: participatory, which are central to an event, and circumstantial,
which “form part of the setting of the event”. The first category includes Agent, Pa-
tient, Instrument, Goal, and similar, while the second may contain a potentially infinite
set of secondary relations, such as Location or Time of the event. Many formalisms
make this distinction, and sometimes secondary roles are ignored completely. In cer-
tain grammar-related applications, only arguments directly governed by the verb are
considered role-bearing, while prepositional phrases are not.

Fragmentation Cruse (1973) suggests a subdivision of the Agent role into four different
roles to distinguish, for example, an action performed in person and one delegated to
a third party. It also appears hard to settle with a single set of spatial and temporal
relations.

The fact that so many different definitions of thematic roles have been proposed
suggests that there is no clear way to decide which one is correct outside of the context of
a particular application. Blake (1930) claims that the roles themselves are “numerous, but
not infinite”, while others assume that any fixed set would only serve as an approximation.
According to Dowty (1991), for example, “total indexing of verbal arguments by thematic
role type is almost certainly empirically impossible.”

While this argument is of importance in the context of theoretical linguistics, it is,
perhaps, less critical from the computational perspective. Here thematic/semantic roles
are generally used as a yet another layer of abstraction in applications, a source of
information about the content of the text considered. The most important things about
such a structure are, therefore, that (a) it is useful for the task at hand and (b) one can
derive said structure for a given sentence with reasonable accuracy.

13



Definition

During a court appearance, a Sentence, generally a punishment, is imposed on the
Convict by a Court, usually represented by a judge.

List of core roles

Convict The Convict is given a Sentence by the Court.
Court The Court imposes a Sentence on a Convict.

Offense The illegal action of which the Convict has been found guilty.
Sentence The Sentence is imposed on the Convict by the Court.

Term_of_Sentence This frame element denotes the duration of the sentence.
List of non-core roles

Depictive The state that the Convict is in at the time of their sentencing.
Place The location of the sentencing Court.

Time The Time when the Convict is sentenced.
Type This frame element denotes the type of sentence.

One or more sentences exemplifying the frame

Frame:Sentence

Court Convict Sentence Offense

[The judge] sentenced [Martha Stewart] [to 2 years in prison] [for insider trading].

List of lexical units evoking this frame

condemn.v, order.v, send up.v, sentence.n, sentence.v

Figure 2.1: FrameNet frame example

Uniqueness of Roles Most agree, that each argument should, ideally, be assigned one
and only one role with respect to a given predicate. Chomsky (1981) even uses this as
a part of their definition, requiring that each argument of a predicate in the lexicon be
assigned a unique θ-role (Θ-criterion). In practice, however, there are examples where
this principle leads to counter-intuitive results, in particular where predicate indicates
a symmetrical relationship (Dowty, 1991). Whether or not to enforce role uniqueness
therefore depends on the inventory of roles used and the task they are applied to.

Event-specific Role Definitions One way to avoid (at least some of) the granularity
issues and role ambiguity is to define possible participants for each event type separately.
This ensures that the definitions of roles are specific and unambiguous. On the other
hand, this also requires us to enumerate every possible event type for a given domain
and describe its possible participants, which may constitute a considerable amount of
work. And there remains a chance of some potential participants being overlooked.

2.1.2 Frame Semantics

FrameNet (Baker et al., 1998) adopts an intuitive definition of event type. The purpose of
the project is to come up with a set of possible events frames and describe the participants
of each such event, as well as surface forms that may indicate the presence of this event,
evoke the frame.

The description of frame Sentence, for instance, is presented in figure 2.1.
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It may also contain additional information regarding the interaction of this frame
with others – the frames are organized in a network with edges indicating various types
of interactions between frames. In case of Sentence, it is indicated that this is a subframe

of Criminal_process and that it is generally preceded by a Trial.
To date, this is, perhaps, the richest type of semantic role labeling annotation, for

which sizeable annotated resources are available. Were such annotations easily obtainable
for new text, this would greatly simplify a large number of tasks. For example, mining a
text for buying events would1 more or less boil down to finding all occurrences of the
frame Commerce_buy and then extracting the corresponding arguments, such as Buyer,
Goods, Seller or Price. Unfortunately, correctly identifying the frames and participants
is not an easy task. Moreover, the existing frame hierarchy does not yet have sufficient
coverage (Palmer and Sporleder, 2010) and expansion of this hierarchy is rather costly,
primarily due to specialized training required for annotators.

Extending FrameNet

There is one respect in which FrameNet is different from other, more data-driven ap-
proaches. The procedure here is to start out with an idea of a frame that is not in the
hierarchy thus far, describe lexical units that may evoke the frame, list possible partici-
pants and link it to other frames in the hierarchy, then collect and annotate examples by
searching a corpus for occurrences of the given frame2.

This last part can plausibly be crowd-sourced or partly automated and there are
several semi-supervised techniques that seek to extend the coverage of frame-semantic
parsing models by explicitly finding new lexical items for existing frames using graph-
based methods (Fürstenau and Lapata, 2009; Das et al., 2013) or by relying on word
representations (Collobert and Weston, 2008; Deschacht and Moens, 2009). Creating new
frames is much trickier and seems unlikely to be fully automated anytime soon, although
unsupervised techniques may help discover likely groups of predicates.

2.1.3 PropBank

Another prominent SRL resource, PropBank (Palmer et al., 2005a), chooses a different ap-
proach. Here each verb is associated with one or more framesets. A frameset corresponds
to a coarse-grained sense of a verb, meaning that “verb meanings are distinguished as
different framesets if they have distinct subcategorization frames” (Babko-Malaya, 2005).
For example, verb senses can allow a different number of arguments, or their arguments
can have significantly different thematic roles.

A single frameset may look as follows:

Roleset id: bash.01 to hit, with words or a bat (etc)
Roles: Arg0: criticizer, hitter

Arg1: entity criticized/hit
Example:
Bashing [the D.C. government]Arg1 is risk-free for [members of Congress]Arg0.

1Assuming we also had a working co-reference model and an entity linking model.
2A full-text corpus has also been annotated to enable statistical modeling for frame-semantic parsing, as

the distribution of frames and frame elements in the annotated example instances is very different from that
in continuous text.
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Note that the two intuitively distinct senses of “bash” – to hit physically and to
criticize – are assigned to the same frameset, as the distinction does not affect the number
or roles of the arguments.

The vast majority of verbs in PropBank are associated with only one frameset, but
certain distinctions are observed, e.g. frameset run.01 indicates running a machine or an
organization, whereas run.02 corresponds to running as a physical activity.

Light verbs are generally the ones associated with the most framesets. The verb
take, for example, is associated with 28 different framesets, of which 20 are present in
annotated data (the version we consider is the CoNLL 2009 Shared Task corpus) and only
9 are observed ten or more times in that corpus, while the most frequent sense covers
over 70% of all occurrences, and such skewed distributions are apparently quite typical.

PropBank distinguishes between core roles and modifiers. The core roles within a
frameset are numbered (e.g. Agr0 and Arg1 above) and modifiers are labeled separately.
These are used to label secondary attributes of an event, such as time, place, cause,
purpose, location or extent. Interestingly, depending on the predicate, any one of these
may become a core role. For example, in stay.04 (meaning “to remain in a location”), the
location argument is promoted to Arg2. It can therefore be said, that modifiers indicate
a particular thematic role of an argument, while the mapping of core roles into thematic
roles depends on the predicate (frameset) in question. A thematic role, in turn, cannot be
associated with a PropBank-style semantic role outside of a context of the predicate, as
it may become a core role or a modifier. In some cases, there may even be both a core
argument and a modifier bearing the same thematic role in one predicate (Babko-Malaya,
2005):

She put the slipper neatly [by its mate]Arg2-LOC [at the foot of the bed]ArgM-LOC

The framesets are defined based on examples. An annotator starts by collecting
instances of a particular verb from a corpus, then partitioning these instances into
framesets. This implies a substantial chance of certain roles being overlooked, if they are
not realized in any of the examples, so a predicate could potentially have roles that are
not indicated in the corresponding frameset.

As an example, let us consider predicate bash.01 again. Note that the frameset only
indicates two core roles, Arg0 and Arg1, but it is clear that in the following sentence
[with a cudgel] does represent an argument and that it should be assigned Arg2, as in
related framesets, such as hit.01.

[Someone]Arg0 bashed [him]Arg1 [with a cudgel]Arg2.

The roles are assigned in order of their prominence on a per-verb basis, starting with
Arg0 if the verb in question allows a proto-agent and with Arg1 otherwise. The first
two, Arg0 and Arg1, correspond to Proto-Agent and Proto-Patient in the terminology
of (Dowty, 1991), the other roles have no consistent interpretation across different
predicates, except where closely related verbs are concerned (e.g. hit.01 and bash.01
mentioned above or pull.01 and tug.01 in the “cause motion” sense).

It is also evident that the inventory of framesets is necessarily incomplete. Assigning
numbered role labels to the arguments of predicates not included in the inventory could
still be potentially useful, but they would no longer have a clear interpretation.
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The Computational Perspective

Even though Arg2-Arg5 mean different things in the context of different predicates, in
the applications they are usually predicted by a single model. It may take into account
the relevant predicate sense in some fashion, but building a separate classifier for every
single frameset would be impractical. Besides, the roles are highly correlated with
grammatical functions of the arguments and Arg3-Arg5 cover only about 2.5% of all
argument occurrences (see Figure 2.2) in PropBank and therefore their contribution to
the overall performance metric is limited.

The PropBank-style semantic roles have been found useful in a variety of applications,
from question answering (Kaisser and Webber, 2007; Surdeanu et al., 2011) and informa-
tion extraction (Surdeanu et al., 2003; Christensen et al., 2010) to machine translation (Wu
and Fung, 2009; Liu and Gildea, 2010; Gao and Vogel, 2011) and summarization (Melli
et al., 2005).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

A0
A1
A2
A3
A4
A5

AA
AM-ADV
AM-CAU
AM-DIR
AM-DIS

AM-EXT
AM-LOC

AM-MNR
AM-MOD
AM-NEG
AM-PNC
AM-PRD
AM-REC
AM-TMP

C-*
R-*

65,638

90,949

21,216

3,622

2,854

73

14

8,846

1,287

1,242

5,289

672

6,378

6,795

9,857

3,524

2,401

74

15

17,678

3,379

8,463

Frequency

Figure 2.2: Role frequencies in the CoNLL’09 version of PropBank.
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give-13.1

members deal, lend, loan, pass, peddle, refund, render

frame NP V NP PP.recipient
example “They lent a bicycle to me.”

syntax Agent V Theme to Recipient
frame NP V NP-Dative NP

example “They lent me a bicycle.”
syntax Agent V Recipient Theme
frame NP V NP

example “I leased my house (to somebody).”
syntax Agent V Theme
frame NP V PP.recipient

example “The bank lent to fewer customers.”
syntax Agent V to Recipient

Figure 2.3: VerbNet class give-13.1, abridged.

2.1.4 VerbNet and SemLink

VerbNet (Kipper et al., 2006b) is not an SRL corpus as such, but it is closely related to
the topic of verbal SRL. This resource describes different syntactic patterns in which a
particular class of verbs can be used and indicate the thematic roles of different arguments
in each pattern (see figure 2.3).

It is said that “PropBank provides the best training data, VerbNet provides the clearest
links between syntax and semantics and FrameNet provides the richest semantics.”3,
which indicates the necessity of linking the resources together. The project to establish the
mappings is known as SemLink4 and already has some coverage. Several studies have
compared the informativity of the PropBank semantic roles and the VerbNet thematic
roles, their robustness and ability to generalize to unseen predicates (Merlo and Van
Der Plas, 2009; Zapirain et al., 2008; Yi et al., 2007; Loper et al., 2007). The consensus
seems to be that both approaches have their merits. VerbNet roles are more fine-grained
and more informative, but also harder to learn and it is suggested that the appropriate
ones should be chosen depending on the task at hand. In certain cases the two can be
profitably combined (Yi et al., 2007).

2.1.5 Prague Dependency Treebank

Prague Dependency Treebank (PDT) stands apart from other syntactic-semantic resources
in that it relies on a somewhat different grammatical formalism. The annotation includes
three layers: morphemic, analytical and tectogrammatical. Morphemic annotation
roughly corresponds to lemmatization, morphological tagging and part-of-speech tagging.
Analytical layer describes surface syntactic structure in a fashion similar to syntactic
dependency trees. Tectogrammatical layer includes information about semantic roles,
discourse relations, grammatical functions and other phenomena, expressed in a unified

3quote from the Semantic Role Labeling Tutorial by Martha Palmer, Shumin Wu and Ivan Titov at
NAACL 2013.

4http://verbs.colorado.edu/semlink/
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fashion using functors. It is also defined on a specific type of dependency graph, the units
of which, however, are not necessarily the input tokens: some nodes are virtual, having
no corresponding tokens at all, and some of the surface tokens may not be included as a
node in the tectogrammatical dependency graph, if they do not carry semantic content of
their own. For instance, most prepositions are collapsed, similar to collapsed Stanford
dependency structures.

Most semantic roles used in PDT are predicate-independent and rather similar to the
VerbNet roles: agent, patient, result, benefactor, origin, cause, means, manner, extent, etc.
The dataset used for Czech in CoNLL 2009 Shared Task is, in fact, a conversion of one of
the early versions of PDT.

2.1.6 Span-, Constituent- and Dependency-based Formalisms

The notion of predicates and arguments may seem intuitively obvious, but there are
considerable variations between different resources. FrameNet allows both words and
phrases as lexical units, so Vehicle_landing frame, for instance, can be evoked by [land],
[touch down] or [set down]. Every argument (or Frame Element) can also be represented
by one or more arbitrary spans, provided the spans for different frame elements do not
intersect. This makes the annotation flexible, but also makes the problem harder, both for
an automatic semantic role labeler and for a human annotator, as argument boundary
can sometimes be subjective.

Of the more syntax-bound resources, some (e.g. VerbNet, PropBank, Chinese Tree-
Bank) define an argument as one or more constituents in the phrase structure tree of
the sentence. Others (e.g. AnCora, Prague TreeBank) rely on dependency structures
instead and associate arguments with subtrees in such structures, as represented by their
syntactic heads. The latter is especially suitable where languages with high degree of
non-projectivity, such as Czech or German, are concerned, as their syntactic structure is
harder to adequately represent by a phrase structure tree.

2.1.7 Less well-known aspects of SRL

Although not explicitly defined that way, SRL remains mostly verb-centric. There are
considerable advances in the handling of nominal predicates (Meyers et al., 2004; Padó
et al., 2008), but other predicate types remain largely unexplored, although there are
indications that jointly modeling different ways of expressing relations in text can be
helpful (Srikumar and Roth, 2011).

Other less well-studied questions include implicit arguments – i.e. arguments not
included in the immediate lexical context of the predicate, but rather found at longer
distances in the text (Gerber and Chai, 2012). This appears to be most common for
nominal predicates (Gerber et al., 2009), although verbal ones can also be considered
to have implicit arguments in certain cases (Roth and Frank, 2016). Other researchers
consider implicit arguments to be outside of the scope of SRL and propose to treat it as a
special case of anaphora resolution instead (Silberer and Frank, 2012).

Historically, PropBank treated these as external to the task of semantic role labeling,
whereas in FrameNet they were considered to be participants, albeit non-realized, and
further divided into three subtypes, depending on whether a given frame element is
omitted altogether or mentioned elsewhere and whether or not the omission is motivated
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by the grammar (Fillmore et al., 2003). The automatic identification and labeling of such
arguments is a complex problem and even the agreement between (non-expert) human
annotators is limited (Feizabadi and Padó, 2014).

2.2 Supervised SRL

Since the advent of computational linguistics, researchers viewed various representations
of language structure and meaning not just as formal ways of describing a phenomenon,
but also as a way to represent natural language in a usable form, particularly a form
suitable for further processing on modern computers.

Due to the inherent fuzziness of the task definition, it is hard to pinpoint the first
automatic analyzer. Most refer to Gildea and Jurafsky (2002) when introducing the
concept, but it is clear that certain domain-specific analyzers (Miller et al., 1996) and more
traditional grammar-based analyzers involving some notion of semantic roles (Pollard
and Sag, 1994) were available earlier.

Gildea and Jurafsky (2002) trained their system on the English FrameNet to identify
the constituents bearing a semantic role and assigning the correct role to them, achieving
65% precision and 61% recall on this task. A similar system described in Gildea and
Palmer (2002), which stresses the importance of accurate syntactic analysis, was among
the first PropBank-based SRL analyzers, and Gildea and Hockenmaier (2003) introduced
a closely related CCG-based system.

The subsequent works attempting to improve semantic role labeling performance
using various alternative sources of information, learning algorithms, novel features,
global constraints, reranking or joint learning are too many to list exhaustively, so we
will confine ourselves to listing only the most (subjectively) prominent points.

The problem of semantic role labeling attracted some considerable attention, as
indicated by the fact that different versions of SRL were featured in the CoNLL shared
tasks of

2004: automatically identifying arguments and assigning semantic roles in PropBank (Car-
reras and Màrquez, 2004)

2005: same as 2004, but also involving automatic predicate identification and disam-
biguation (Carreras and Màrquez, 2005)

2008: dependency-based SRL, performed jointly with syntactic parsing (Surdeanu et al.,
2008)

2009: same as 2008, but for multiple languages (Hajič et al., 2009)

There were also related shared tasks in Senseval-3 (Kwon et al., 2004) and SemEval
2007 (Baker et al., 2007).

The analysis of a sentence is generally performed in two stages, one involving only
the predicate (identifying predicates, or, more generally, parts of the sentence evoking a
frame, and figuring out what frame they are evoking) and the other handling arguments
(identifying role-bearing parts of the sentence with respect to a given predicate and
identifying their roles). These are often simply pipelined, but the latter stage is known to
provide useful information for the former (Toutanova et al., 2008), so there are also beam
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search- and reranking-based approaches attempting to identify better overall solutions,
as well as models that perform both stages jointly.

The feature sets used depend on the particular flavor of SRL performed (constituent-
vs. dependency- vs. span-based), but various patterns have been found useful over
the years. The features proposed by Gildea and Jurafsky (2002) are still used in most
applications in some form or another. For dependency-based SRL, which we will largely
focus on in this work, these typically include properties of the predicate and of the
argument phrase, especially its syntactic head, as well as the path in the dependency tree

• Dependency path between the argument head and the predicate

– Sequence of dependency relations

– Tokens on the dependency path and/or their properties, such as POS tags

– Prefixes, suffixes or individual edges in the path

• The argument phrase, its syntactic head and properties thereof

• Local dependency- or linear context around the argument

• Various properties of the predicate, in particular the voice and subcategorization
pattern

• Global (sentence-level) features, typically involving other arguments and larger bits
of the dependency tree

In subsequent work, many other sources of information have been suggested, includ-
ing selectional preference information (Zapirain et al., 2010), named entities (Surdeanu
et al., 2003), word sense tagging (Che and Liu, 2010) and morphological features, where
applicable.

Constraints have also been found beneficial in identifying arguments and labeling
semantic roles (Roth and Yih, 2005), in particular role uniqueness constraints – in
PropBank, multiple arguments typically cannot be labeled with the same core role –
as well as predicate-specific constraints, which prevent certain roles from being assigned
to the arguments of certain predicates, as they are indicated as not applicable in the
PropBank description of the corresponding frameset.

Several different types of statistical models have been applied to this task, with the
primary focus on capturing progressively more advanced features and interdependencies
between individual predicted roles.

Although most approaches to date rely on a pre-specified and often complex feature
set, various efforts have been made to simplify or entirely forego the feature engineering
step, notably using tree kernels (Moschitti et al., 2008), tensors (Lei et al., 2015) or
neural embeddings (FitzGerald et al., 2015; Roth and Lapata, 2016). A number of
neural-network-based approaches to SRL have also been proposed, from early work by
Henderson et al. (2008) to recent models based on recurrent neural networks (Zhou and
Xu, 2015; Swayamdipta et al., 2016; Shi et al., 2016).

Interestingly, ever since Gildea and Hockenmaier (2003) ported PropBank semantic
roles5 to the CCGbank (Hockenmaier and Steedman, 2007), CCG6-based semantic role

5The projection of roles has later revisited by Boxwell and White (2008).
6Combinatory Categorial Grammar (Steedman, 2000).

21



labeling has existed as a mostly independent field of research (Gildea and Hockenmaier,
2003; Boxwell et al., 2009; Lewis et al., 2015).

2.3 SRL in Low-resource Setting

Automatic assignment of various kinds of semantic roles has been studied for an extended
period of time, but most of the early work focused on the supervised setting. As a result,
there is a number of models that perform very well on the test section of the relevant
corpus, but prove somewhat less accurate on data belonging to a different domain or
register (Carreras and Màrquez, 2005; Pradhan et al., 2008).

More recent efforts seem to concentrate on several directions: some focus on interac-
tions between syntax and semantics and joint modeling thereof (Toutanova et al., 2008),
others address the question of linking together various SRL resources and other types of
lexical semantic resources (Palmer, 2009), or consider the construction of corpora and
models for new domains and new languages or refinement of existing models by using
various semi-supervised learning techniques.

It appears that due to high degree of lexical variability, semantic role labeling models
require considerable amounts of data for training. Existing corpora for some languages
contain up to 50 thousand annotated sentences, and even then their coverage is question-
able, as corpora are usually domain-specific.

Automatic or semi-automatic construction of models for new languages is of particular
interest, as annotators possessed of the necessary skills and fluent in a particular language
are hard to find.

This can be addressed in a number of ways. First, one has to decide whether or not
to commit to an annotation effort. The costs of such an effort are considerable, regardless
of the desired size of the corpus, due to initial cost of creating a new annotation scheme
(or adapting an existing one), preparing corresponding annotation guidelines, hiring and
training annotators and ensuring sufficient inter-annotator agreement.

Various strategies such as active learning (Roth and Small, 2006; Settles, 2010; Chen
et al., 2011), automatic labeling with manual correction (Basile et al., 2012) or crowd-
sourcing (Fossati et al., 2013; Feizabadi and Padó, 2014; He et al., 2015), can be employed
to reduce the cost of actual annotation, but all in all this takes a significant amount of
time and funds to accomplish. Whether or not such an investment is justified depends
primarily on the intended purpose of the resulting resource, which, in most cases, is
to have a model that can automatically assign semantic roles to inputs from a certain
distribution with a certain target accuracy, which could in turn be used by a downstream
application. Depending on the nature of said application, the specific kind of annotation
may or may not be of importance.

If all that is required is some useful notion of structure that can be used to derive
features for the task at hand, one may be able to use unsupervised methods and bypass
the whole annotation business. Such approaches generally do not assign specific role
labels to arguments, but rather cluster the arguments whose roles appear to be similar
together, which may be sufficient for certain tasks (Titov and Klementiev, 2011).

Sometimes clustering is not enough, though, in particular if the model to be built
on top of the semantic role structure is a rule-based one that expects specific role
labels, as might be the case with information extraction (Surdeanu et al., 2003) or
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summarization (Melli et al., 2005), for instance.
In such cases the alternative to annotating a new training corpus manually is either

to resort to rule-based methods, which, to our knowledge, have not been applied with
much success to the task of semantic role labeling, or to leverage existing corpora for
other languages.

2.3.1 Unsupervised Approaches

Under certain conditions a sensible SRL-like structure can be induced without using
any supervised training at all. Most approaches here start with the assumption that an
argument filling a particular semantic role tends to have a specific syntactic function
relative to the predicate as well. For instance, a subject of a transitive verb would often
have agent-like semantics, and although there is no one-to-one mapping between syntax
and semantics that would work for all cases, it can at least constitute a reasonable
baseline.

Unsupervised semantic role labeling approaches go further, adding in some amount
of lexical information (about both predicate and argument), linear order information
and some key characteristics of the predicate, such as the voice, yielding a richer rep-
resentation of an argument, sometimes referred to as an argument key. The predicates
and arguments are generally assumed to be given, or to be identifiable with reasonable
accuracy be means of heuristics (Lang and Lapata, 2010), although Abend et al. (2009)
investigate the possibility of unsupervised argument identification and further attempt
to classify these into core and adjunct roles in Abend and Rappoport (2010). The task
of an unsupervised semantic role labeler is then to group argument keys coming from
different predicate instances such that two keys would be in the same group if and only
if they bear the same semantic role.

As with other unsupervised approaches, the evaluation here is not entirely trivial.
The usual way of assessing the performance of an unsupervised SRL system is to match
the clusters against the gold labeling using metrics known as purity (Pu) and collocation

(Co):

Pu =
1
N ∑

i

max
j

|Gj ∩ Ci|

Co =
1
N ∑

j

max
i

|Gj ∩ Ci|,

where Ci is the set of arguments in the i-th induced cluster, Gj is the set of arguments in
the j-th gold cluster and N is the total number of arguments. There is a trade-off between
the two, akin to precision/recall trade-off in classification problems, in the sense that
one can achieve perfect purity by assigning every observed instance to a cluster of its
own, or achieve perfect collocation by putting all available instances into a single cluster.
Similarly to precision and recall, the two measures are combined using the harmonic
mean, which is referred to as clustering F1 (FC

1 ) or sometimes simply F1.
Computing purity, for instance, can be thought of as associating each cluster with

the gold role that shares most instances with this cluster, and then computing regular
precision given this assignment. Importantly, depending on the task formulation, this
“optimistic” assignment may be chosen once or picked anew for each predicate, as is
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often done for PropBank-style unsupervised SRL on the basis that the role interpretations
are not guaranteed to be consistent across all predicates.

Among the first to attempt unsupervised semantic role labeling were Swier and
Stevenson (2004) and Grenager and Manning (2006), both of which propose explicit
probabilistic models of syntactic-semantic linking, the former using VerbNet roles as
reference and the latter – PropBank.

Further work in this direction includes Bayesian methods with sophisticated pri-
ors (Titov and Klementiev, 2012a), graph partitioning methods (Lang and Lapata, 2011),
as well as methods leveraging parallel data (Titov and Klementiev, 2012b) or small
amounts of labeled data (Titov and Klementiev, 2012c) to guide unsupervised learning.
Lorenzo and Cerisara (2012) improves upon the results presented in Titov and Klementiev
(2012a) with another Bayesian model, possibly due to explicitly modeling syntactic verb
classes.

Garg and Henderson (2012) design a model that accounts for typical role order, and
Garg and Henderson (2016) extend that model by also using aligned parallel data, which
in this case yields no significant improvements, or small amounts of labeled data, which
helps considerably.

Following recent trends, Woodsend and Lapata (2015) and Luan et al. (2016) cast
unsupervised SRL as a problem of argument embedding, while Titov and Khoddam
(2015) propose a framework based on autoencoders.

For FrameNet, Modi et al. (2012) design a system based on that of Titov and Klemen-
tiev (2012a), but inducing frames and roles jointly. O’Connor (2013) tackles a similar
problem with a latent-variable generative model.

2.3.2 Semi-supervised Approaches

He and Gildea (2006) were among the first to approach the questions of semi-supervised
learning for semantic role labeling, though their conclusions are less than inspiring: initial
experiments demonstrated that the type of co-training in question yielded no significant
improvement and a simpler self-training approach actually proved harmful.

Further studies showed more promise, however (Zadeh Kaljahi, 2010). Probably the
most prominent is that of Fürstenau and Lapata (2009), which proposes a method of
heuristically generating surrogate training examples by selecting instances lexically and
syntactically similar to those present in the training data. This approach results in a
sizable improvement for frames that have very few annotated examples, which is not
unrealistic for FrameNet.

Others attempt to improve the performance of SRL models using co-training (Lee
et al., 2007; Kaljahi and Baba, 2011) or extend coverage by using word embeddings
learned from larger unlabeled corpora (Deschacht and Moens, 2009).

It is also important to mention Collobert et al. (2011), who propose a unified neural
architecture for multiple NLP tasks, including POS-tagging, chunking, named entity
recognition and SRL, which achieves near state-of-the-art performance without additional
feature engineering thanks to multi-task learning.
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2.3.3 Annotation Projection

While creating a large manually annotated resource for every new language appears to
be prohibitively expensive, one could reuse an existing corpus in a related language as a
source of supervision.

One way of leveraging such information is known as annotation projection. The
general idea is to align units of text in the two languages (individual tokens, sentences or
larger fragments), where the source side is already annotated with the desired information
(manually or automatically), and infer the target-side annotation by projecting it through
the alignment.

DT JJ NN IN JJ NN
a significant producer for crude oil

un producteur important de petrole brut
DT NN JJ NN JJ

Figure 2.4: Part-of-speech tag projection (Yarowsky et al., 2001). The tags highlighted in
blue are obtained by projection.

Depending on the task and the language pair, the degree of similarity between the
annotations for a sentence pair may vary, even if the translations are kept as close to
the original sentence as possible. The level of agreement is sometimes referred to as
cross-lingual compatibility. For instance, some words in one language may have to be
translated as multiword expressions in another, which would significantly complicate the
annotation projection for word-level tasks, such as part-of-speech tagging.

There is, in fact, a deeper issue known as cross-lingual applicability – certain elements
of annotation may or may not make sense for a given language, e.g. a particular part-of-
speech or dependency relation present in the source language may not actually exist in
the target one.

Lastly, most annotation projection efforts necessarily rely on existing parallel corpora,
most of which comprise translations produced for another purpose. The sources often
include translations of parliamentary proceedings (Koehn, 2005; Roukos et al., 1995),
books (Tiedemann, 2012), subtitles (Lison and Tiedemann, 2016), technical documenta-
tion (Tiedemann, 2009), talk transcripts (Tiedemann, 2012) or religious texts (Resnik et al.,
1999; Mayer and Cysouw, 2013), most of which are translated with a view to retain the
general meaning, but without taking any special care to avoid slight modifications in syn-
tactic and semantic structure. Such modifications are known as translation shifts (Cyrus,
2006) and may have various degrees of severity, from simple syntactic modifications or
mild generalizations, where the source statement still formally implies the target one,
to trickier cases, where the implication can only be detected given substantial world
knowledge external to the document under translation.

With these issues in mind, it is clear that the one-to-one correspondence as seen
in 2.4 is more of an exception than a rule. In order to produce high-quality annotation
for the target language, projection-based approaches need to work around the various
modifications, often by applying extensive post-filtering or heuristics to select examples
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where the correspondence between the source and target structures or interest is clearer.
Some approaches are edging closer towards weakly-supervised learning than annotation
projection, using the source-language annotation as a noisy signal, informative of the
expected target-language structure, but no more than that.

Annotation projection methods have been effectively applied to a number of tasks,
including

• part-of-speech tagging (Xi and Hwa, 2005; Das and Petrov, 2011; Agić et al., 2015)

• dependency parsing (Ganchev et al., 2009; Smith and Eisner, 2009; Hwa et al., 2005;
Agić et al., 2016; Johannsen et al., 2016)

• semantic role labeling (Padó and Lapata, 2009; van der Plas et al., 2011; Annesi and
Basili, 2010; Tonelli and Pianta, 2008)

• relation detection (Kim et al., 2010)

• chunking (Yarowsky et al., 2001; Zhu et al., 2014)

• morphology segmentation (Snyder and Barzilay, 2008)

• word sense disambiguation (Diab and Resnik, 2002; Bentivogli and Pianta, 2005)

• predicate disambiguation (van der Plas and Apidianaki, 2014)

• verb classification (Merlo et al., 2002)

• coreference (Grishina and Stede, 2015)

• mention detection (Zitouni and Florian, 2008)

• LFG parsing (Wróblewska and Frank, 2009)

• temporal relation prediction (Spreyer and Frank, 2008)

• discourse relation recognition (Versley, 2010)

• HPSG parse disambiguation (Frermann and Bond, 2012)

Interestingly, it has even been used to propagating morphosyntactic information
between old and modern versions of the same language (Meyer, 2011).

2.3.4 Model Transfer

Annotation projection is instrumental in generating training data for low-resource lan-
guages, but it crucially depends on high-quality parallel data and leaves open some
important questions, for instance, how to handle unaligned units.

A potentially less sensitive to parallel data and alignment quality alternative, which
we will refer to as model transfer, has been proposed by Zeman and Resnik (2008), based
on the parser adaptation technique of McClosky et al. (2006). This approach does not
explicitly rely on aligned parallel sentences, instead following the representation learning
paradigm – learning to represent units that the model operates on (tokens, in case of a
dependency parser) in such a way as to make them indistinguishable to the model. The
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shared representation can be the representation native to the source or the target language,
or something in between the two.

To illustrate, let us assume that we have an existing dependency parsing model for L1

and a second language, L2, for which no manually annotated training data is available. If
the two languages are similar in terms of grammar and vocabulary, one could attempt to
apply the L1 model directly to L2 data. But if the speakers of these languages prefer to
use different spelling of certain words (as in the case of Danish and Swedish in Zeman
and Resnik (2008)) or even opted for different writing systems (consider German and
Yiddish), chances are that the model will fail to recognize a large share of the words.

Depending on the shared representation we choose, possible solution would include
representing L1 words as their L2 translations or vice versa – a technique sometimes
known as glossing. Or one could choose some third representation, for instance translate
the words in the two languages into a third, pivot language, map words to cross-lingual
word clusters (Täckström et al., 2012) or distributed word representations (Klementiev
et al., 2012). Note that all the options mentioned above do require some knowledge of
the correspondence between the source- and target-language tokens, but none of them
necessarily need a high-quality parallel data on sentence level.

This example can further be used to illustrate why the intermediate representation
might be desirable. If we use the source-language tokens as the shared representation,
it is likely that the learned model will learn to rely on some of them as very strong
indicators of certain structures, which could be seen as overfitting with respect to the
cross-lingual problem. The glossed representation of a target sentence is likely to contain
some amount of noise, for instance due to mapping some target-language words into
their most frequent translations, not necessarily appropriate in the given context. Using
an intermediate representation which might be less expressive, but reproducible with
comparable precision for units of both languages, may alleviate this problem.

In the context of dependency parsing, this idea was developed further (Durrett et al.,
2012; Søgaard, 2011), augmented to allow for the use of parallel data (McDonald et al.,
2011) and even adapted to a multi-source transfer case to enable explicit modeling of
syntactic similarities between languages and selective parameter sharing based on this
information (Naseem et al., 2012; Täckström et al., 2013).

2.3.5 Evaluation of Unsupervised and Transfer Methods

Evaluation of unsupervised methods in natural language processing in a highly con-
troversial subject – since their objective is to induce some useful linguistic structure
without relying on annotated resources for guidance, it is not entirely clear what quality
criteria should apply. For lack of better options, one often has to resort to matching the
automatically induced structure against manual annotation of the same type. While it is
clear that a certain amount may be expected between two useful types of annotation that
aim to represent the same phenomena, but exact match is considerably less likely.

In the case of syntactic analysis, for instance, a number of decisions in designing an
annotation scheme are known to be more or less arbitrary and to vary from treebank to
treebank. Examples include attachment of prepositions, determiners and punctuation,
representation of conjunctions and light verb constructions (Zeman et al., 2012). Unsuper-
vised grammar induction approaches evaluated on being able to reproduce the structure
considered correct by the annotation guidelines of the reference treebank therefore end
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up requiring a set of tricks to mimic the aforesaid arbitrary decisions, which boosts the
scores, but does not necessarily yield a more useful structure.

Cross-lingual transfer methods face a somewhat similar problem in that we start
from the assumption of having no annotated resources for the target language. Yet for
evaluation purposes we tend to select language pairs where annotated resources are
available on both sides. Ideally these resources should be as similar as possible, so that
transferred annotations might be expected to be compatible with the reference ones, but
finding out exactly to what point the improved ability to replicate target-level annotations
implies better transfer quality is non-trivial. It is important to remember that perfect
semantic parallelism is only a simplifying assumption, and even where the meaning is
very close the annotation may not match perfectly for a variety of reasons, as we saw in
chapter 3.

To get closer to a good quality metric, one could specifically select parallel sentences
for the purpose and annotate them ensuring (1) high degree of semantic parallelism and
(2) high cross-lingual agreement in terms of annotation (Padó and Lapata, 2009).

An application-based evaluation may also present a viable alternative. Given a fixed
model and an evaluation procedure for a well-defined task that requires SRL annotation
in the target language as an input, one could measure the performance of a transfer
model using that of the resulting target-language model as a proxy. Unfortunately, the
relation between such a proxy and the quality of the transferred annotation may also be
non-trivial. For instance, certain tasks only care about a subset of semantic roles and
ignore the rest.

2.3.6 Alternatives to SRL

While semantic role labeling as described above remains a topic of active research, the
formalism itself is regularly challenged as well.

Banarescu et al. (2012), for instance, propose a way of representing shallow semantics
in a more lightweight way, referred to as Abstract Meaning Representation (AMR).

AMR does not rely on syntax, thus reducing the cost of annotation (referred to as
sembanking), and can represent whole-sentence semantics, including non-verbal predicates
and even some extra-propositional aspects. In the last few years it has sparked a whole
subfield of research into producing AMR representations automatically (Flanigan et al.,
2014; Wang et al., 2015), using them for event detection (Kai and Grishman, 2015),
summarization (Liu et al., 2015) and entity linking (Pan et al., 2015) among others, and
even investigating the feasibility of using AMR as an intermediate representation in
machine translation (Xue et al., 2014).

Other attempts to reformulate semantic role labeling aiming for better expressivity,
ease of annotation and lower language dependence have been made, such as the Universal
Conceptual Cognitive Annotation (Abend and Rappoport, 2013).

Some even propose to get rid of the concept of semantic role altogether (He et al.,
2015).

2.3.7 Our Formulation

Semantic role labeling is often regarded as a part of the sentence-level NLP pipeline along
with part-of-speech and morphological tagging, syntactic parsing, etc. It is therefore

28



desirable to make SRL models available for a number of languages. Thus far, corpora
have been annotated for several major ones following various formalisms. A series of
shared tasks conducted evaluation of different statistical models for this task first on
constituent-based SRL (CoNLL 2004-2005) and later on dependency-based SRL (CoNLL
2008-2009). To date, as far as we know, annotated semantic role labeling corpora of one
sort or another are available for Catalan, Chinese, Czech, English, German, Japanese,
Spanish and Swedish. Several other resources are presently under construction, including
ones for Dutch, Korean and Brazilian Portuguese. The cross-lingual aspect, however, has
been largely ignored until relatively recently.

When approaching this from cross-lingual perspective, it may at first appear most
natural to adopt a FrameNet-style formalism. After all, the hierarchy of frames is
language-independent, except for lexical units, which seem relatively easy to populate for
a new language. Indeed, this last part can even be largely automated if one leverages other
resources (Hartmann and Gurevych, 2013). This is perhaps why FrameNet hierarchy has
already been adapted to several other languages, including German (Burchardt et al.,
2006), Japanese (Ohara et al., 2003), Chinese (You and Liu, 2005), Spanish (Subirats and
Petruck, 2003) and others.

If we consider model transfer or cross-lingual bootstrapping as described in the next
chapter, however, there are certain issues. For instance, the coverage of the FrameNet
hierarchy is potentially insufficient (Palmer and Sporleder, 2010), which may cause issues
when analyzing data belonging to other domains. One should also point out that few
sizable full-text corpora are currently available for FrameNet-style semantic role labeling
and most of these are stored in a format of their own and we are aware of no unified
API for them. There are also certain differences between the corpora. The German
one, SALSA (Burchardt et al., 2006), for instance, is constituent-based, while the English
FrameNet allows arbitrary spans. Some resources have also extended the hierarchy with
frames of their own to account for certain examples not covered by the original frame
inventory.

FrameNet parsing in cross-lingual setting does present an interesting field of study
and there are issues to be addressed beyond those already tackled by existing re-
search (Padó and Lapata, 2009; Tonelli and Pianta, 2008).

Our choice in favor of PropBank-like formalisms is therefore due to more data and
models being readily available for a number of languages, rather than to the paradigm
itself.

We will consider different annotation schemes for different languages, but they are all
closely related and based largely on the notion the notion of dependency-based semantic
role labeling as defined in the CoNLL Shared Task 2009 (Hajič et al., 2009).

In short, we assume that the data is tokenized and lemmatized and labeled with part-
of-speech tags, morphological tags (if applicable) and syntactic dependency structures.
Single tokens are labeled as predicates and heads of dependency subtrees, identified
as arguments of a given predicate are assigned a single semantic role from a language-
specific role inventory.

We also confine ourselves to verbal predicates. There have been efforts to handle
nominal predicates in much the same fashion (Meyers et al., 2004), but currently the
annotation for such predicates is only available in few languages. Addressing the problem
of labeling nominal predicates and their arguments using techniques similar to the ones
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Figure 2.5: Dependency-based semantic role labeling example. The top arcs depict
dependency relations, the bottom ones – semantic role structure.

we describe here presents an interesting direction for further research, but for now we
will set it aside.

As mentioned above, in PropBank every predicate is associated with a frameset, which
describes the interpretations of semantic roles in the context of this particular predicate.
However, the role descriptions themselves are of little practical use to a statistical model,
so in most cases they are ignored. Some models consider the set of roles described
in a frameset as allowed for the corresponding predicate and prevent the model from
assigning any other core roles. The predicate itself is often included as a feature, but to
our knowledge, none of the existing systems have separate models for each predicate.
Instead, they assume that semantic roles largely generalize across predicates, which is
the case, to a greater or lesser extent, with all datasets we consider.
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Chapter 3

Cross-lingual Bootstrapping

Our first approach is a relatively direct application of the idea of learning from similarity
on unlabeled samples. As we already mentioned, finding tasks and datasets for the
evaluation of such methods appears to be less trivial than might seem likely. Yet there is a
kind of corpus that contains pairs of closely related documents, namely sentence-aligned
parallel corpora, which are often used in machine translation and a number of other
applications.

Most major parallel corpora are bilingual and are usually obtained by collecting texts
in one language along with their translations into another language. Usual sources in-
clude proceedings of various multilingual organizations (Roukos et al., 1995; Koehn, 2005;
Eisele and Chen, 2010), translations of literary works (Skadin, š et al., 2014), Wikipedia (Mo-
hammadi and Ghasem-Aghaee, 2010; Ştefănescu and Ion, 2013), product manuals (Tiede-
mann, 2009), etc. The necessary processing, such as sentence and word alignment is
usually performed automatically, so bilingual parallel corpora are available for a number
of language pairs, some of them containing millions of sentence pairs. Monolingual
parallel corpora do exist (e.g. Barzilay and McKeown (2001)), but are not as widespread,
since their acquisition generally requires more effort and their applications are fewer.

This setup is rather specific in two respects. Firstly, the related documents in this case
are sentences in different languages, therefore, unlike our previous experiments, different
monolingual models will have to be involved. Secondly, there are only two documents
in every group, unless we consider parallel corpora for more than two languages. It is
possible to jointly align sentences in more than two languages extracted from corpora
such as EuroParl (Koehn, 2005), as opposed to creating separate pairwise sentence-aligned
corpora and the result may have its uses in studies such as ours, but we leave this topic
outside the scope of the present work.

3.1 Motivation

Looking at the CoNLL’09 Shared Task datasets, it may strike one that most of them use
annotation schemes of their own. Of the seven languages included, Catalan and Spanish
follow the same annotation style, since both datasets were produced within the AnCora
project (Taulé et al., 2008), and Chinese is annotated in a fashion similar to English,
although, as we will see later, the set of roles is somewhat different.

Yet, as compared to such tasks as part-of-speech tagging or syntactic parsing, where
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unifying the annotation schemes for different languages comes at the cost of necessary
coarsening of categories (Petrov et al., 2012; McDonald et al., 2013; Zeman et al., 2012),
semantic role labeling is a relatively language-independent task. One might therefore
expect any reasonable set of semantic roles to be cross-lingually applicable, so the
multitude of semantic role inventories is not due to differences between languages, but
rather due to the desire of researchers to invent a better one: more informative, more
consistent, easier to learn or better characterizing the syntactic-semantic interface.

Whatever the motives, we find that developing language-specific annotated resources
in complete isolation creates certain redundancy. We would like to be able to benefit
from the growing annotated resources no matter what set of semantic roles is employed.
In the following experiment, therefore, we consider an approach which we refer to as
cross-lingual bootstrapping. It assumes that we have two corpora for different languages,
labeled with semantic roles from different sets, but in both cases following a kind of
dependency-based SRL formalism. We further assume that a parallel corpus is available
for the two languages considered and attempts to improve the performance of one or
both of the models by enforcing a certain role mapping on the aligned instances in
parallel data.

There is a piece of work by Zhuang and Zong (2010) that is closely related to this
approach, though the objectives differ considerably. The authors of this paper attempt
to achieve better decoding accuracy by performing inference on parallel data jointly for
English and Chinese. Such inference appears to improve the accuracy one held-out data
by a statistically significant margin. A core component of said joint inference step is a
model of semantic role correspondence for different predicate pairs that is trained on a
parallel corpus, manually annotated with constituency structures and semantic roles. It
is unclear, however, whether the results would hold for inference one new, unseen data,
drawn from a different domain, nor whether such inference could be used to improve
the individual monolingual model.

One observation from this paper that is important to us is that even when parallel
sentences are manually labeled using the same set of semantic roles, the mapping for
aligned arguments is not necessarily trivial. For instance, the argument labeled A1
(“thing grown”) in PropBank predicate grow.01 generally corresponds to the argument
marked A0 in Chinese增长(zengzhang).01 (see table 3.1), which in English is reserved
for the volitional agent causing the growth. Such cases are, apparently, quite frequent,
usually caused by minor translation shifts or by differences in the framesets.

Zh\En A0 A1 A2 AM* None

A0 0 16 0 0 0
A1 0 0 12 0 0
AM* 0 0 4 7 0
None 0 0 0 2 10

Table 3.1: Role correspondence for (zengzhang).01 and grow.01 (Zhuang and Zong,
2010).

Our approach is similar to that of Zhuang and Zong (2010) in the sense that we also
model role correspondence, if for a somewhat different purpose.

One crucial difference is that we do not assume the availability of a manually anno-
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tated parallel corpus for training. The availability of such a corpus does allow the role
correspondence model to be trained in a straightforward supervised fashion, but severely
limits the applicability of the proposed approach – to the best of our knowledge, such
corpora are currently only available for two language pairs: English-Chinese (Palmer
et al., 2005b) and English-Czech (Hajič et al., 2012). It may not seem like much of a
difference, but one has to acknowledge that the predicted SRL structures on parallel
data are imperfect, be it due to unseen predicates, unseen lexical items or errors in
pre-processing and therefore any model learned from automatically labeled parallel data
is likely to be less accurate.

We also do not require the annotated data for both languages to use the same set of
semantic roles, but still assume that for a given predicate pair there exists a one-to-one
mapping of roles. This holds in most cases, but not always. For instance, the Czech
corpus we use has multiple different roles for various temporal modifiers, indicating start
and end points, duration, frequency or that some other event took place simultaneously
with the one described by the predicate, while PropBank includes all these into one
category, AM-TMP. Such granularity issues are infrequent, however.

Last but not least, our purpose here is to improve the monolingual models, rather
than simply obtain more accurate predictions on parallel data. The two goals are, of
course, closely related, but the experiment in Zhuang and Zong (2010) does not provide
direct evidence that the technique could be used to improve the accuracy of individual
SRL models on unseen monolingual data.

3.2 Approach

The notion of role correspondence model (RCM) is based on the assumption that for a
given pair of predicates (ps, pt) there exists a one-to-one mapping of roles Rs → Rt. Given
a manually annotated parallel corpus, the problem of learning such a mapping would
be quite a standard one. Without one, however, we have to resort to bootstrapping-like
iterative procedure, where the parameters of the RCM are estimated simultaneously with
those of monolingual SRL models. First the initial models are trained on the available
labeled data, then the RCM parameters are estimated from a parallel corpus automatically
labeled by these models and then the RCM is used to refine the annotations of parallel
data via a joint inference procedure, serving to enforce consistency on the predictions of
monolingual models on parallel sentences.

The obtained annotations on the parallel corpus are expected to be of higher quality
than the independent predictions of the models, so they can be used to improve the SRL
models’ performance and/or coverage. We will first verify that joint inference affects the
quality of these annotations favorably by training a new pair of monolingual model on
the output of the joint inference procedure (which we denote Joint) and evaluating their
performance on a held-out test set. And then we also augment the original training set
with these annotations and measure the change in performance.

If one of the languages is relatively poor in resources, the proposed procedure will
help propagate information from the stronger model to the weaker one. This scenario is
further referred to as projection.

If the two models are comparable in their predictive power, we may still be able to
benefit from the fact that the roles of certain arguments are indicated more clearly in one
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language than in another. We will call this the symmetric setup.
More formally, let us consider a pair of languages, α and β, and their correspond-

ing datasets Tα and Tβ, annotated with semantic roles, which we will refer to as the
initial training sets. We also assume that a word-aligned parallel corpus is available
for the pair of languages, which we denote P, with the predicates and their respec-
tive arguments identified on both sides. Our purpose is to optimize a joint objective
maxθα,θβ

(

Lα(θα, Tα) + Lβ(θβ, Tβ) + LRCM(θα, θβ, θΣ, P)
)

, where θα and θβ are the parame-
ters of the monolingual SRL models and θΣ are the parameters of the agreement function
(the RCM). We approximate this using the following iterative procedure:

θ1
α = argmaxθα

Lα(θα, Tα)

θ1
β = argmaxθβ

Lβ(θβ, Tβ)

∀i∈1..N (3.1)

θi
Σ = argmaxθΣ

LRCM(θi
α, θi

β, θΣ, P)

θi+1
α , θi+1

β = argmaxθα,θβ

(

Lα(θα, Tα) + Lβ(θβ, Tβ) + LRCM(θα, θβ, θi
Σ, P)

)

In other words, we train initial monolingual models M1
α and M1

β on Tα and Tβ,
respectively, apply them to the two sides of the parallel corpus, resulting in a labeled
parallel corpus P1. Then we collect the semantic role co-occurrence information and train
the role correspondence model C1 on it, then proceed to the joint inference step involving
M1

α, M1
β and C1, resulting in a refined labeling P2 of the parallel corpus. The two sides of

the P2 are then used to augment the initial training sets, yielding T2
α and T2

β , and new
models M2

β and M2
β are trained on these. The process can then be repeated using M2

α and
M2

β instead of the initial models.
We report the model’s performance on a held-out test set, drawn from the same

corpus as the corresponding initial training set.
The procedure can be seen as a form of co-training (Blum and Mitchell, 1998) of a pair

of monolingual SRL models. In our case, however, the question of the models’ agreement
is not as trivial as in most applications of co-training, requiring a statistical model of its
own.

In the projection setup our approach is also similar to self-training with weak super-
vision coming from the stronger model. It may seem more natural to implement this
procedure using perceptron-based classifiers and refining the model directly rather than
retraining from scratch each time. We believe, however, that while this is potentially
more efficient computationally, it is likely to produce results similar to ours.

Note that although the approach is iterative, we have observed no significant improve-
ments from repeating the procedure, possibly owing to the noise introduced by errors in
preprocessing.

3.2.1 Modeling Role Correspondence

It is necessary to distinguish between semantic roles and their interpretation in a par-
ticular context. The former can be defined in a variety of ways, depending on the
formalism used. In case of FrameNet (Baker et al., 1998), for example, the interpretation
of a semantic role (frame element) is explicitly provided for each separate frame, so
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a frame and a frame element label together describe the semantics of an argument.
PropBank (Palmer et al., 2005a) follows a mixed strategy – the labels for a relatively
small set of core roles are numbered and their interpretations are provided separately for
each predicate (although those of the first two roles, A0 and A1, consistently denote what
is known as Proto-Agent and Proto-Patient), while modifiers (Merlo and Leybold, 2001)
bear labels that are interpreted consistently across all predicates. Other resources, such
as VerbNet (Kipper et al., 2006a) or Prague Dependency Treebank (Hajič et al., 2006),
use a single set of semantic roles (or functors), which are interpretable across different
predicates.

From the standpoint of defining the semantic similarity of parallel sentences, the
important implication is that we cannot assume that the corresponding arguments should
bear the same label, even if the annotation schemes used are compatible. Nor can
we write down a single mapping between the roles that will be valid across different
predicates (figure 3.1), which motivates the need for a statistical model of semantic role
correspondence.

In other words, if we consider a pair of predicate-argument structures that convey
the same meaning, the semantics of their corresponding arguments will generally match,
but the role labels may not, as in some of the formalisms we consider the interpretation
of a semantic role may depend on the predicate used. For example in PropBank terms
the argument marked A4 in the context of a predicate rise.01 will be labeled A1 if
we use reach.01 instead: “The index rose to [42 points]A4” vs “The index reached [42
points]A1”.

We therefore assume the existence of a one-to-one mapping between semantic roles
for a given predicate pair.

As the mappings for different predicates are not entirely independent – at least some
roles have a consistent interpretation across different predicates, – we choose to build a
single model, which relies on features derived from the pair of predicates in question,
rather than create a separate model for each predicate pair. The model can then make
decisions specific to particular predicates or predicate pairs, where sufficient data has
been observed or back off to a generic mapping where there is not enough data.

For the purpose of this study, we choose to separately model the probability of a
target role, given the source one and the necessary contextual information and vice versa.
These two components are referred to as projection models and realized as a pair of linear
classifiers.

3.2.2 Joint Inference

The joint inference would have been simplest if the arguments were classified indepen-
dently. This assumption is too restrictive, though, since the interdependencies between
the arguments can be used to improve the accuracy of semantic role labeling (Roth and
Yih, 2005).

Projection Setup

In the projection setup we assume that the model for one of the languages, which we will
henceforth refer to as source, is much better informed than the one for the other language,
referred to as target, so we only have to propagate the information one way. The scoring
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A0 A1
I do not have these concerns

Yo no tengo tales preocupaciones
arg1-tem arg2-atr

A0 A1
Parliament adopted the resolution

El Parlamento aprueba la resolución
arg0-agt arg1-pat

A0 A1
We would like to know their names

Nos gustaría conocer sus nombres
arg2-ben arg1-tem

Figure 3.1: Predicate-specific role mapping. Note that A0 corresponds to arg0-agt,
arg1-tem or arg2-ben, and A1 – to arg1-tem, arg1-pat or arg2-atr, depending on the
predicate.

functions of these two models will be denoted fs and ft, respectively, and that of the
projection models from source to target and from target to source – fst and fts. Source
and target sentences are denoted Ss and St, and aligned predicates in these sentences –
ps and pt.

Since we assume that the parameters of the source-language model are fixed, then
so are its predictions rs on the source side and the joint inference step will consist in
determining the assignment rt of roles for the target side:

rt = argmaxrt (λt ft(rt, St, pt) + λst fst(rt, rs, ps, pt)) , (3.2)

where λ coefficients denote the respective weights of the models, which we will discuss
below.

In the general case, optimizing such an objective is computationally expensive and
may require approximations. Assuming that the models involved can incorporate a
bias towards or away from a certain prediction on a given argument, one may use dual
decomposition (Johnson, 2008), decoupling the rt variables into rt and rst and maximizing
λt ft(rt, St, pt) + λst fst(rst, rs, ps, pt) under the condition that rt = rst and then relaxing this
constraint, replacing it with a soft one using slack variables δ, resulting in the following
objective:

minδmaxrt,rst L
′
1(rt, rst, δ) =

λt ft(rt, St, pt) + λst fst(rst, rs, ps, pt) + ∑
i

∑
r∈Rt

δi,r
(

I(ri
t = r)− I(ri

st = r)
)

,
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where i indexes aligned argument pairs and I is an indicator function. This is equivalent
to

minδmaxrt,rst L
′
1(rt, rst, δ) = minδ

(

maxrt gt(rt, St, pt, δ) + maxrst gst(rst, rs, ps, pt, δ)
)

, (3.3)

where

gt(rt, St, pt, δ) = λt ft(rt, St, pt) + ∑
i

∑
r∈Rt

δi,r I(ri
t = r)

gst(rst, rs, ps, pt, δ) = λst fst(rst, rs, ps, pt)− ∑
i

∑
r∈Rt

δi,r I(ri
st = r) (3.4)

are the augmented objectives of the two component models, incorporating bias factors
on various possible predictions. The dual objective 3.3 can then be minimized with
respect to δ using subgradient descent algorithm (Sontag et al., 2011), which essentially
increases the penalty for a given prediction by one of the models if it does not match that
of the other model until the two agree. If the consensus is achieved, the predicted role
assignment is the global maximum of the sum of the objectives.

There are other possible approximations, of course. And in our specific case the
problem is further simplified by the fact that our projection model is factorized over argu-
ments and can produce weights for every possible role being assigned to every argument,
so we can essentially pre-calculate the biases it would induce on the monolingual model
and run the inference for the target-side model with that set of biases.

Taking this into account we can also be sure that the dual decomposition procedure
described above will always converge, given appropriate update rate and a sufficient
number of iterations, – the fixed weights offered by the projection model will eventually
be overcome by the bias factors. Even limiting the number of iterations to 1000, however,
the described approximation demonstrates 99% convergence rate and we observe no
significant differences in subsequent evaluation using exact inference or the above
approximation.

Symmetric Setup

If the models have comparable accuracy, the problem becomes somewhat more complex,
as we have to propagate information in both directions, and exact inference appears to
be too expensive.

It is possible to use dual decomposition with this problem directly using three separate
components, two for the monolingual models and one for the RCM, which would have
to make its own predictions for the semantic roles on both sides without conditioning on
the predictions of the monolingual models. This calls for a different kind of model than
the one we use, however, – a model that would rely on a (possibly simplified) feature
representation of the source and target arguments to jointly predict their labels.

The approximation we use instead does not exactly fit the dual decomposition
framework, but appears to perform reasonably in practice. We use subgradient descent
as in the inference procedure for projection setup, but in both directions simultaneously,
interleaving gradient descent steps and allowing the projection models to access the
updated predictions of the monolingual models. This results in a block gradient descent
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algorithm with the following updates:

rn+1
t = argmaxrt gt(rt, St, pt, δn

t )

rn+1
s = argmaxrt gs(rs, Ss, ps, δn

s )

rn+1
st = argmaxrst gst(rst, rn

s , ps, pt, δn
t )

rn+1
ts = argmaxrts gts(rts, rn

t , pt, ps, δn
s ) (3.5)

∀i∀r∈Rs δ
n+1,i,r
s = δn,i,r

s + γs(n)(I(rn,i
ts = r)− I(rn,i

s = r))

∀i∀r∈Rt δ
n+1,i,r
t = δn,i,r

t + γt(n)(I(rn,i
st = r)− I(rn,i

t = r)),

where γs(n) = γt(n) = γ0
n+1 is the update rate function for step n, and gs and gts are

defined as in (3.4), but with the direction reversed.
The algorithm also demonstrates convergence similar to that of the projection version,

although it lacks the optimality guarantees.

3.3 Experimental Setup

We evaluate our approach on four language pairs, namely English vs German, Spanish,
Czech and Chinese, which we will denote en-de, en-es, en-cz and en-zh respectively.

3.3.1 Parallel Data

The parallel data for the first three language pairs is drawn from Europarl v6 (Koehn, 2005)
and from MultiUN (Eisele and Chen, 2010) for English-Chinese. We applied Stanford
Tokenizer for English, tokenizer scripts (Koehn, 2005) provided with the Europarl corpus
to German, Spanish and Czech, and Stanford Chinese Segmenter (Chang et al., 2008)
to Chinese, then performed POS-tagging, morphology tagging (where applicable) and
dependency parsing using MATE-tools (Bohnet, 2010).

Word alignments were acquired using GIZA++ (Och and Ney, 2003) with its standard
settings. Predicate identification on the parallel data was done using the supervised
classifiers of the monolingual SRL systems, except for German, where a simple heuristic
had to be used instead, as only some of the predicates are marked in the training data,
which makes it hard to train a supervised classifier. Following van der Plas et al. (2011),
we then retain only those sentences where all identified predicates were aligned.

In the experiments we used 50 thousand predicate pairs in each case, as increasing
the amount further did not yield noticeable benefits, while increasing the running time.

3.3.2 Annotated Data

The CoNLL’09 (Hajič et al., 2009) datasets were used as a source of annotated data for all
languages. Only verbal predicates were considered and predicted syntax was used in
evaluation.

We consider subsets of the training data in order to emulate the scenario with a
resource-poor language. Due to the different sources the datasets were derived from,
sentences contain different proportions of annotated predicates depending on the lan-
guage. The German corpus, for example, contains about 6 times fewer argument labels
per sentence than the English one. We will therefore indicate the sizes of the datasets
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Romanian is not taught in their schools
AM-LOC

LOC

Ve školách se neučí rumunsky

Figure 3.2: Role correspondence in parallel sentences, an example. Note that in the
English sentence, the preposition “in” is marked as a locative modifier and in the Czech
one it is the lexical head, “školách”.

used in the number of argument labels they contain, referred to as instances, rather than
the number of predicates or sentences. The corpus for English, for example, contains 6.2
such instances per sentence on average.

We use the 20 thousand instances of the available data as the training corpus for
each language and split the rest equally between the development and the test set. The
secondary (“out-of-domain”) test sets are preserved as they are.

In dependency-based SRL, only heads of syntactic constituents are marked with
semantic roles. The heads of corresponding arguments may or may not align, however,
even if the arguments are lexically very similar, because their syntactic structure may
differ. In general, one would have to identify the whole phrase for each argument
and take into account the links between constituents, rather than single words (Padó
and Lapata, 2005). As reconstructing the constituents from the dependency tree is non-
trivial (Hwang et al., 2010), we are using a heuristic to address the most common version
of this problem, i.e. a preposition or an auxiliary verb being an argument head. In such
a case we also take into account any alignment links involving the head’s immediate
descendants. See figure 3.2 for an example.

3.3.3 Implementation

Our system is based on that of Björkelund et al. (2009). It is a pipeline system comprised
of a set of binary or multiclass linear classifiers. Both here and in the projection model,
the classifiers are trained using Liblinear (Fan et al., 2008). Logistic regression mode was
used here, since we need accurate probability estimates in order to incorporate the bias
in the joint inference phase.

We also employed constraints on role labels, as this appears to be more reliable
in a low-resource setting we consider than the reranker the original system employed.
Punyakanok et al. (2005) list a number of constraints that are useful for constituent-based
PropBank-style semantic role labeling (Carreras and Màrquez, 2005).

1. Arguments cannot overlap with the predicate.

2. Arguments cannot exclusively overlap with the clauses.

3. If a predicate is outside a clause, its arguments cannot be embedded in that clause.
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4. No overlapping or embedding arguments.

5. No duplicate argument classes for core arguments, such as A0–A5 and AA.

6. If there is an R-arg argument, then there has to be an arg argument. That is, if an
argument is a reference to some other argument arg, then this referenced argument
must exist in the sentence. This constraint is directly derived from the definition of
R-arg arguments.

7. If there is a C-arg argument, then there has to be an arg argument; in addition, the
C-arg argument must occur after arg. This is stricter than the previous rule because
the order of appearance also needs to be considered. Similarly, this constraint is
directly derived from the definition of C-arg arguments.

8. Given the predicate, some argument classes are illegal (e.g. predicate stalk can take
only A0 or A1). This information can be found in PropBank Frames.

Constituents

These constraints are said to contribute considerably to the performance of a model. Since
we are working with dependency-based SRL, we have to make certain modifications. In
particular, in the absence of phrase structure information we ignore 2 and 3, 4 boils down
to “one label per argument” rule, which is enforced implicitly, and 1 becomes “predicate
cannot be an argument of itself”, which most models can learn without introducing an
explicit constraint.

Role Uniqueness

As Punyakanok et al. (2005) mention, there are exceptions to the core role uniqueness
constraint (5), but only in about 0.3% cases overall and no more than 0.8% for each
individual role. The exceptions usually have to do with conjunction-like structures or
enumerations:

• “a repertoireA1 thatR-A1 ranges fromA3 light classical toA4 light jazz toA4 light pop”

• “consumer pricesA1 surged byA2 5% and wholesale pricesA1 byA2 1.3%”

• “unemploymentA0 has reached 27.6%A1 inAM-LOC Azerbaijan, 25.7%A1 inAM-LOC

Tadzhikistan, 22.8%A1 inAM-LOC Uzbekistan, 18.8%A1 inAM-LOC Turkmenia, ...”

We observe that there is also a considerable number of cases where role uniqueness
is violated purely due to annotation errors, particularly where symmetrical relations are
concerned.

• “a letterA1 attached toA1 grand jury’s report”

• “adsA1 were tied in with∗A1 pitches”

• “costsA1 rose 1.2% matching the second-quarter pace∗A1”
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Note that while in case of tie.01 and match.01 the second argument should, accord-
ing to the corresponding frames, be labeled A2, for attach.01 it is explicitly stated that
multiple A1 arguments may be present in the same sentence.

Since the share of cases where the constraint does not hold is small enough and
without the constraint the model tends to assign duplicate labels quite often, we enforce
this as a hard constraint for core roles in English and Chinese.

Referential Arguments

Here the authors state that the constraint on referential arguments (6) follows directly
from their definition. One should point out that referential arguments are not a part of
the original PropBank annotation, but were produced as a part of conversion procedure,
originally developed for CoNLL Shared Task 2004. In the introduction to the shared
task (Carreras and Màrquez, 2004), it is indeed stated that “references (R-) are arguments
representing arguments realized in other parts of the sentence. The role of a reference
is the same as the role of the referenced argument.” We observe, however, that this
constraint is often violated within the corpus we use: over 12% predicates with R-A#
arguments (or 18%, if we count non-core roles as well) do not have a corresponding A#
argument and in about 2% of cases A# is not present anywhere in the given sentence
(which is, strictly speaking, irrelevant, as argument roles have little meaning outside the
context of a given predicate). Manual inspection also shows that referential arguments
often have no counterparts in a given sentence, especially where they are realized by
question words (such as what, how, when, where), as in “He believes in whatR-A1 heA0

plays.” We therefore ignore this constraint.

Continued Arguments

As in the case of referential arguments, these are not separate semantic roles, but rather
a way of representing discontinuous arguments. We use this constraint (7) without
modification.

Frames

The last constraint (8) assumes that a predicate can have only those core roles that are
mentioned in the corresponding frame file. This, as we point out in section 2.1.3, holds
for the occurrences of predicates in the corpus itself, but may not necessarily be true for
new data we address. Besides, working in a low-resource setup it appears unrealistic to
assume the existence of a resource listing every possible predicate and its roles.

We observe that in a random sample of 40 verbs from EuroParl that are not present
in the CoNLL 2009 Shared Task corpus as verbal predicates, four are not in the PropBank
inventory1 at the time of this writing. On one hand, this seems to indicate that PropBank
is rapidly developing and covering more and more domains. On the other hand, if we
assume that we deal with a resource-poor language, we must expect far worse coverage
from the frame inventory, if one is available at all.

1according to the unified verb index interface on http://verbs.colorado.edu/verb-index/index.php
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abdicate allot authorise bathe better
brainwash burrow collude compliment debilitate

deforest deliberate delude deluge devolve
disabuse disentangle effect engender fiddle
forestall habituate hassle leach legalise
leverage menace misquote network oppress
overfish overrun recollect relegate remaster

sensitise tidy transcend traumatise utilise

Figure 3.3: A sample of 40 verbs from EuroParl that are not present in the CoNLL 2009
Shared Task corpus as verbal predicates. The instances that, to our knowledge, do not
have a PropBank frameset at the time of this writing are highlighted in bold.

3.3.4 The Projection Model

Each projection model is realized by a single linear classifier applied to each argument
pair independently. It relies on features derived from the source semantic role and source
and target predicates, and predicts the semantic role for the argument in the target
sentence.

FORMPAIR=A3-went-ging

LEMMAPAIR=A3-go-gehen

FORMSRC=A3-went

FORMTGT=A3-ging

LEMMASRC=A3-go

LEMMATGT=A3-gehen

LABEL=A3

Figure 3.4: Projection model features example.

The features include the source semantic role and its conjunctions with (lowercased)
forms and lemmata of the source and target predicates. For example, assuming the
source semantic role is A3 and the source and target predicates are went and ging (past
tense of “gehen”, German), the features would be as shown in figure 3.4.

3.3.5 Parameters

In case of projection there are two parameters, λst and λt, – the weights of the component
models in the objective. Only their relative values matter (except in the choice of γ0), so
we set λt to 1 and only tune the weight of the role correspondence model.

In the symmetric setup, the objective takes the form L(rt, rs) = λt ft(rt, St, pt) +

λst fst(rt, rs, ps, pt) + λs fs(rs, Ss, ps) + λts fts(rs, rt, pt, ps). Since we assume that the two
monolingual models here have comparable performance, we do not tune their relative
weights, setting both λs and λt to 1.

We also use the same weight for both projection models, λst = λts, and this value
plays an important role – it basically indicates how strongly we insist on the role
correspondence models’ correctness. If this weight is set to 0, the RCM will accept
the initial predictions the monolingual models make, and if it is set to a sufficiently
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large value, the predictions of the monolingual models will be biased until they match
the mapping suggested by the RCM. The optimal weight will therefore depend on the
language pair, the sizes of the initial training sets and the RCM used. We use the value
of 0.7 in all projection experiments and 0.5 in the symmetric setup, however, as excessive
tuning may be undesirable in the low-resource setting.

3.3.6 Domains

One important factor in the understanding of the evaluation figures presented is the
fact that sources of annotated and parallel data belong to different domains. The
former usually contains some sort of newswire text – Wall Street Journal in case of
English (Palmer et al., 2005a), Xinhua newswire, Hong Kong news and Sinorama news
magazine for Chinese (Palmer et al., 2005b), etc.

Parallel data, on the other hand, comes from the proceedings of European Parlia-
ment (Koehn, 2005) and United Nations (Eisele and Chen, 2010), which are quite different.
For example, the sentences in the latter domain often start with someone being addressed,
either by name or by title, which can hardly be expected to occur as often in a newspaper
or a magazine article.

3.4 Evaluation

As is well-known, the performance of many statistical tools drops significantly outside
the domain they were trained on, and the preprocessing and SRL models used here
are no exception (Pradhan et al., 2008), which results in relatively low quality of the
initial predictions on the parallel text. The low argument identification performance,
in particular, is presumably due to inaccurate dependency parses, on which it heavily
relies. Several approaches have been proposed to improve the accuracy of dependency
parsers and other tools on out-of-domain data, such as Choi and Palmer (2011), but they
are often non-trivial to apply or require additional resources, so we have not considered
using them here. In some cases, though seldom, sources of parallel data belonging to the
same domain as the annotated training data can be obtained.

Another concern is that the performance of a model trained on automatically labeled
parallel data as measured on a test set we use may not reflect the quality of these
annotations. To assess the resulting model’s coverage, it would be interesting to evaluate
it on data outside the original domain, so we consider the out-of-domain (OOD) test sets
as provided for the CoNLL Shared Task 2009 where available.

Perhaps the most interesting one of these is the German OOD test set, which is
drawn from Europarl (as is the parallel data we use). It was originally annotated with
syntactic dependency trees and semantic structure in the SALSA format (Burchardt et al.,
2006) for Padó and Lapata (2005), and then converted into a PropBank-like form for the
CoNLL Shared Task 2009 (Hajič et al., 2009). The OOD test set for English is drawn
from the Brown corpus (Francis and Kucera, 1967) and the one for Czech – from a Czech
translation of Wall Street Journal articles (Hajič et al., 2012).

In the notation introduced above, the self-training baseline model (Self) is trained on
P0

β , the joint model (Joint) – on P1
β and the combined model (Comb) – on T1

β .
The first question we are interested in is how the joint inference affects the quality
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Figure 3.5: Projection setup results: self-training baseline, refined model and the dif-
ference in their performance. The numbers next to the bar indicate the improvement
of Joint model over the self-training baseline. Asterisk indicates out-of-domain test set,
statistically significant improvements are highlighted in bold.

of the automatically obtained annotations on the parallel data. To answer this, we will
run the monolingual models independently and jointly, then train models on the output
of these two procedures and compare their performance on a test set. Note that we do
not add the initial training data at this point, so the initial model scores are provided for
reference, rather than as a baseline.

3.4.1 Projection Setup

A small initial training set of 600 instances was used here for the target language here
and the full training set (20000 instances) for the source one. λst was set to 0.7 in all
experiments in this section.

In figure 3.5, we present the accuracy of the model trained on the output of the
joint inference (Joint) against that of the self-training baseline (Self). The ∆Self column
contains the difference between the two. Note that the Self model is trained on the
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Figure 3.6: Comparing Joint model against the self-training baseline in symmetric
setup. Asterisk indicates out-of-domain test set, statistically significant improvements are
highlighted in bold.

parallel data automatically annotated using monolingual SRL models (not mixed with the
initial training set), since we are interested in the effect of joint inference on the quality of
the annotation obtained. Where the improvement is positive and statistically significant
with p < 0.005 according to the permutation test (Good, 2000), they are highlighted in
bold.

We can see that the refined model (Joint) outperforms the self-training baseline in
most cases by a moderate, but statistically significant margin, which indicates that the
joint inference does improve the quality of annotations on the parallel corpus.

The slightly higher improvement on the German OOD test set supports our hypothesis
that the procedure enhances the performance of the model on parallel data, as the data for
this test set is also drawn from the Europarl corpus. The result is statistically significant
with p < 0.05 (higher p-value is primarily due to the smaller size of the evaluation set).

Figure 3.7 shows how the performance of the Joint model changes with the size of
the initial training set. The improvements are smaller for en-cz, en-de and en-zh, but they
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Figure 3.7: English-Spanish projection setup, model performance as a function of the size
of the initial training set.

are also statistically significant for initial training sets of up to 2000 instances. Projection
to English from other languages performs worse.

3.4.2 Combining

In practice, automatically obtained annotations are usually combined with the existing
labeled data. For this purpose, the initial training set is replicated so as to constitute 0.3
(an empirically chosen value that appears to work well in most experiments) of the size
of the automatically labeled dataset. We compare the performance of the model trained
on the resulting dataset (Comb) with that of the Joint model and the initial models. The
results are presented in table 3.9. We omit projection from other languages to English,
since the Joint model there fails to outperform the initial model and we do not expect to
benefit from adding the automatically annotated data to the initial training set in this
case.

The procedure yields a small, but statistically significant improvements for English-
Czech and English-German, and has very little effect otherwise. It should be noted that
the approach of simply pooling the training data is rather ad hoc, and certain types of
models would allow for more elegant and more efficient ways to do this. Models trained
via stochastic gradient descent, for instance, could conceivably be post-trained directly
on the newly available data, possibly incorporating an additional regularization term to
ensure the parameters do not stray too far from those of the initial model.
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Figure 3.8: Performance using oracle RCM. The numbers next to the bars indicate the
improvement from using the joint model over the initial one in absolute accuracy. Asterisk
indicates out-of-domain test set, statistically significant improvements are highlighted in
bold.

3.4.3 Symmetric Setup

In the symmetric setup evaluation, we use a slightly larger initial training set of 1400
instances for both source and target language. The projection model weight is set to 0.5.
Figure 3.6 shows the accuracy of the Joint model and the Self baseline.

Note that here, unlike section 3.4.1, the joint inference is run once and then a model
is trained for each language and evaluated on the corresponding test set. The results
support our intuition that joint inference helps improve the quality of the resulting
annotations, at least in some cases, even though all we are doing is essentially enforcing
consistency on the semantic role correspondence across languages.
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Figure 3.9: The effect of adding automatically obtained annotation to the initial training
set. Asterisk indicates out-of-domain test set. The numbers indicate the improvement of
the combined system (rightmost bar) over the respective baseline, and are highlighted in
bold if the difference is statistically significant.

3.4.4 Oracle RCM

It would be useful to know to what extent the performance of the role correspondence
model affects the quality of the output (and thus the performance of the resulting model).
The RCM we use is rather simplistic, and we believe it can be substantially improved for
any given language pair by incorporating prior knowledge and/or using external sources
of information. In order to estimate the potential impact of such improvements, we
simulate a better informed projection model, giving it access to the predictions of more
accurate monolingual models on the parallel data – those trained on the full training set,
rather than the initial training set used in this particular experiment. The result, referred
to as oracle RCM, is evaluated in the projection setup in figure 3.8.

The more informed RCM clearly makes a big difference, yielding significant improve-
ments over the self-training baseline in all cases, and up to 11 points in absolute accuracy
compared to the initial model.

3.5 Role Correspondence Model Experiments

As we observe above, the role correspondence model has limited accuracy. This may be
accounted for by several factors:

• argument misalignment: where the two arguments do not, in fact, have the same
meaning and therefore should not bear the corresponding role

• role granularity: as we pointed out earlier, in some cases the target semantic roles
are more fine-grained and the source roles may not be sufficiently informative to
predict the target ones

• unseen predicates: if the roles are predicate-specific, it may be hard to deduce the
correct mapping if the particular pair of predicates has not been seen previously
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• translation shifts: this includes cases where two arguments roughly correspond
to each other, but due to rephrasing in translation they have somewhat different
semantic roles

• interpretation variations: even if roles are not predicate-specific, their interpreta-
tion may be somewhat different in the two languages (this may actually be seen as
a type of mild translation shift as well)

Let us use the full models to label the two sides of the parallel corpus, train a role
correspondence model on that and consider the cross-validation score of the resulting
classifier. The results are as shown in figure 3.10. Given that only one of the datasets here
relies on semantic roles that are not expressly predicate-specific, it is not surprising that
using predicates as features improves the scores considerably.
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Figure 3.10: RCM cross-validation scores for different language pairs with and without
using predicates as features.

To eliminate two of these factors, we consider the role correspondence on a manually
annotated parallel resource, Prague Czech-English Dependency Treebank 2.0 (Hajič et al.,
2012). The set of roles used for both sides is the same and is largely not predicate-specific,
which excludes the granularity issues and limits the effect of unseen predicate pair
problem. In this case a model taking into account only source roles, as may be expected,
learns the identity mapping, which yield approximately 87% accuracy. A model that also
can observe source and target predicate lemmata gets up to 90%.

3.6 Discussion

Our conclusion from this study, put simply, is that while predicate-argument structures
in translated sentences are certainly related and knowing them for one sentence can help
analyze its counterpart, various factors render the specific approach we consider here
impractical. Firstly, the predicted syntactic structure of sentences in a parallel corpus
is often inaccurate, which leads to unreliable argument correspondence information.
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We also observe that in the parallel data we use a large share of predicted arguments
are unaligned (even taking into account only aligned predicates), which is only partly
accounted for by inaccurate argument identification. Perhaps we could benefit more
from such approaches using more sophisticated argument matching or, possibly, by
considering semantic representations not directly bound to specific tokens.

Secondly, the relation between semantic roles of corresponding arguments is less
straightforward that it may seem at first, especially where semantic roles of different
types are concerned. As we mentioned earlier, even if a manually aligned parallel corpus
annotated with semantic roles from the same inventory is used, the accuracy of a role
correspondence model reaches only about 90%.

Lastly, on closer inspection of the various datasets and annotation schemes, it appears
to us that neither of the semantic role inventories in question is noticeably language-
specific, though the associated resources (such as the PropBank frameset inventory) often
are. We are thus led to believe that the multiety of dependency-based SRL annotation
cannot be fully accounted for by the differences in the subject languages, and that in the
future we might benefit from reusing existing annotation schemes insofar as possible,
rather than inventing a new one every time.

50



Chapter 4

Direct Model Transfer

In this chapter we describe application of direct model transfer to dependency-based
semantic role labeling.

Though the general approach is well established and reasonably straightforward, to
our knowledge, this is the first time it is used in conjunction with semantic role labeling.

4.1 Motivation

Annotation projection works well given sufficient amounts of high-quality parallel data (as
in most applications, by parallel data we mean word-aligned translated sentences). Since
sentence boundary detection, tokenization, sentence alignment and word alignment are
usually performed automatically, they are subject to errors and the sentences themselves
can undergo various modifications in translation.

Admittedly, word-alignment errors are fairly uncommon, especially when the inter-
section heuristic known to favor high-confidence alignments is applied. This comes at
the price of having some missing alignment links which in turn hinders projection-based
approaches.

Semantic role labelling typically requires some additional annotations, such as part-of-
speech tags or dependency trees, which are in turn subject to prediction errors. Syntactic
parsing, in particular, is rather error-prone (see, for example, figure 4.2), especially where
sentences from a different domain/register are concerned. Parliamentary proceedings
constituting Europarl, in particular, contain significant amounts of direct speech, impera-
tive statements and questions, which are less common in newswire text typically used to
train syntactic parsers.

Direct model transfer, on the other hand, does not explicitly rely on parallel data.
Instead, it acts on the assumption that the instances from source and target languages are
similar enough in the chosen shared representation that they can be treated uniformly by
the model.

The choice of the shared representation is therefore of utmost importance. Ideally, it
should be picked such as to preserve as much relevant information as possible, while
omitting the aspects that are likely to be language-specific.
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Six people lost their lives and initial assessments put the material damage at at least EUR 200 million

Šest lidí přišlo o život , a hmotné škody se podle počátečních odhadů pohybují nejméně kolem 200 milionů eur
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Figure 4.1: An example of bi-sentence containing a parsing error. The wrong edges are
highlighted in red.

4.2 Direct Model Transfer for Dependency Parsing

Among the major applications of direct model transfer are part-of-speech tagging and
dependency parsing (Zeman and Resnik, 2008; McDonald et al., 2011).

The idea of this approach consists in modifying a source-language model to make
it directly applicable to a new language, which involves constructing a shared feature
representation across the two languages. McDonald et al. (2011) successfully apply
this idea to the transfer of dependency parsers, using part-of-speech tags as the shared
representation of words. A later extension of Täckström et al. (2012) enriches this
representation with cross-lingual word clusters, considerably improving the performance.

In the case of SRL, a shared representation that is purely syntactic is likely to be
insufficient, since structures with different semantics may be realized by the same
syntactic construct. For instance, “walking with a stone” is not the same as “hitting with
a stone”, although their dependency structure should be identical.

We therefore make use of recently introduced cross-lingual word representations,
such as the cross-lingual clustering (Täckström et al., 2012) and cross-lingual distributed
word representations of Klementiev et al. (2012), as well as simple gloss translations.

4.3 Model Transfer

As mentioned above, the idea of this approach is to abstract the model away from a
particular source language and apply it to a new one. This setup requires that we use the
same feature representation for both languages. The features generally used in semantic
role labeling are often language-specific. In dependency-based SRL the features used
for classification usually include lexical and syntactic properties of the predicate word,
argument word and its parent, siblings and children in the dependency tree, as well as
those of preceding and following words.

Much of this information is specific to a particular language and dataset – different
part-of-speech tag and dependency relation inventories and, of course, the word types
themselves. Some of this information can be mapped into a common space, though
usually at the cost of considerable coarsening.

Depending on the pair of languages concerned and how structurally similar they are,
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different levels of abstraction may become necessary, as a particular semantic role can be
indicated by a particle, position of the argument word or its inflection, or combination
thereof. For instance,

• English, position: “The dog chases the cat”

• Hungarian, inflection: “A kutya kergeti a macskát”

• Japanese, particle: 「犬は猫を追う」

There are some attempts at representing these various signals in a unified fash-
ion (Tsarfaty, 2013), but the problem is non-trivial and may require considerable manual
effort as well as in-depth knowledge of the languages concerned. Most direct transfer
approaches, ours included, assume a comparatively high level of similarity and ignore
structural issues, assuming that the correspondence is comparatively straightforward.

Further, in this work we only use the attributes available in all languages concerned
to define the shared representation: part-of-speech tags, syntactic dependency structures
and representations of word types.

4.3.1 Word Types

We assume the word types from the two languages in question to be from distinct sets.
This is not necessarily true, especially of closely related languages, due to borrowing
and other phenomena. There are also named entities and other foreign (with respect to
one or both of the languages) words that may be left untranslated, as well as numbers,
punctuation and other non-word tokens. Proper handling of these phenomena would
require a module capable of automatically identifying such occurrences in each of the
languages to avoid confusion of tokens whose surface representations match incidentally.
For example, both English and Czech have a token “a”, but in the latter case it is a
conjunction (corresponding to English “and”), rather than an article. For the purpose of
this work, we assume all tokens to be language-specific.

Word types from the two languages have to be mapped into a common feature space.
We would like this mapping to preserve as much relevant information as possible and
assign closely related words from both languages similar representations. That is, for a
given word w ∈ L1, its representation should be

1. be close to w′ ∈ L1, if replacing w with w′ in most cases will preserve the meaning
of the utterance

2. be close to v ∈ L2, if w is likely to be translated into v

3. preserve useful information, so two words that are not close in the above mentioned
sense are clearly distinguishable in said representation

Gloss.

The most straightforward way of addressing this is to represent each source-language
word as itself (for instance, using the traditional one-hot encoding) and map target-
language words into their likely translations.
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This representation essentially preserves all word-type information available (item
3) and implements item 2 more or less directly. We can expect it to work well enough,
except where highly polysemous words or certain function words that have no natural
counterpart in the source language (e.g. particles, determiners or prepositions) are
concerned. On the downside, it does not generalize well over related words in the source
language – if we observe “blue” in the training data, but not, for instance, “teal”, any
word that translates into the latter will not yield any useful information.

The mapping itself can be derived from a bilingual dictionary, if available, or estimated
based on a parallel corpus. We follow the latter path, collecting co-occurrence rates and
mapping each target-language word into the source-language word it is aligned to most
often. The result is, admittedly, somewhat noisy, but seems to be useful as a feature in
our experiments.

Note that it is also possible to use target-language words as a shared representation,
but intuitively one may expect such a mapping to introduce a certain amount of noise,
thereby hindering the training of the source-language model.

Cross-lingual clusters.

One way to provide better generalization at the cost of some coarsening is to use cross-
lingual clusters (Täckström et al., 2012), rather than separate words.

These can be obtained, for instance, by first clustering source-side words using a
regular monolingual clustering algorithm, then projecting these clusters to the target side
through word alignment links and again running clustering on the target side using the
projected assignment as a constraint.

This has an edge over the gloss approach, as far as generalization among the source-
language words is concerned, and is likely to yield much fewer unseen items, but at the
cost of losing some information.

We did not rerun the procedure, but instead used the cross-lingual clusters provided
by the authors. Unfortunately, these are available only in one granularity – with 256
clusters per language pair, – which, as we show later, may be insufficient for our purposes.

Distributed Word Representations.

Cross-lingual distributed word representations offer an alternative to hard clustering
in that each word is represented by a real-valued vector, rather than a single id, which
allows this representation to capture multiple notions of similarity. Intuitively, using
such a representation of word type information may be expected to benefit model
transfer (Turian et al., 2010). However, at the time this work was performed, the only
published method of deriving cross-lingual word representation was the multi-task-
learning-based (MTL) approach proposed by Klementiev et al. (2012). We attempted to
make use of said representations, but observed no significant improvements compared
to using the feature groups described above and will omit these experiments in further
discussion for the sake of conciseness.

One could speculate why using cross-lingual vector representations fails to yield an
improvement in our case. First of all, we note that the proposed MTL training procedure
is rather computationally expensive, which caused the authors to limit the vocabulary
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to the 3000 most frequent tokens and subsample the available training data, which may
have a negative impact on the utility of the resulting word representations for our task.

4.3.2 Syntactic Information

As mentioned above, we ignore certain types of information, such as morphological
tagging, and concentrate on basic attributes that can be found in any language and
represented with reasonable consistently across languages in question.

Identifying representations that generalize better over less closely related languages
is an open problem (Tsarfaty, 2013), which is, unfortunately, largely beyond the scope of
this work.

Part-of-speech Tags.

We map part-of-speech tags into the universal tagset following Petrov et al. (2012). This
may have a negative effect on the performance of a monolingual model, since most part-
of-speech tagsets are more fine-grained than the universal POS tags considered here. For
example, Penn Treebank inventory contains 36 tags and the universal POS tagset – only
12. On the other hand, the finer-grained POS tags often reflect more language-specific
phenomena and may not be very useful (except for very closely related languages) in the
cross-lingual setting.

The universal part-of-speech tags used in evaluation are derived from gold-standard
annotation for all languages except French, where predicted ones were used instead (due
to unavailability of gold-standard annotations for this dataset).

Dependency Structure.

Another important aspect of syntactic information is the dependency structure and
dependency relations between modifiers and their respective heads. Most dependency
relation inventories are language-specific, and finding a shared representation for them is
a challenging problem1. One could map dependency relations into a simplified form that
would be shared between languages, as it is done for part-of-speech tags in Petrov et al.
(2012). The extent to which this would be useful, however, depends on the similarity of
syntactic-semantic interfaces of the languages in question.

In this work we discard the dependency relation labels where the inventories do not
match and only consider the unlabeled syntactic dependency graph. Note that some
discrepancies, such as variations in attachment order, may be present even there, but
this does not appear to be the case with the datasets we use for evaluation. If a target
language is poor in resources, one can obtain a dependency parser for the target language
by means of cross-lingual model transfer (Zeman and Resnik, 2008). We later compare
the results based on the original dependency structures and the ones obtained by means
of cross-lingual model transfer.

1The problem has since been addressed to some extent, in particular by McDonald et al. (2013) (cf.
http://universaldependencies.org) and Zeman et al. (2014) (cf. http://ufal.mff.cuni.cz/hamledt).
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4.3.3 Feature Selection

Compatibility of feature representations is necessary but not sufficient for successful
model transfer. We have to make sure that the features we use are predictive of similar
outcomes (in our case – the same semantic role) in the two languages as well.

Depending on the pair of languages in question, different aspects of the feature
representation will retain or lose their predictive power. We can be reasonably certain
that the identity of an argument word is predictive of its semantic role in any language,
but it might or might not be true of, for example, the word directly preceding the
argument word. It is therefore important to prevent the model from capturing overly
specific aspects of the source language, which we do by confining the model to first-order
features. We also avoid feature selection, which, performed on the source language, is
unlikely to help the model to better generalize to the target one. The experiments confirm
that feature selection and the use of second-order features degrade the performance of
the transferred model.

4.3.4 Feature Groups

For each word, we use its part-of-speech tag, cross-lingual cluster id, word identity
(glossed, when evaluating on the target language) and its dependency relation to its
parent. Features associated with an argument word include the attributes of the predicate
word, the argument word, its parent, siblings and children, and the words directly
preceding and following it. Also included are the sequences of part-of-speech tags and
dependency relations on the path between the predicate and the argument.

Since we are also interested in the impact of different aspects of the feature represen-
tation, we divide the features into groups as summarized in table 4.1 and evaluate their
respective contributions to the performance of the model. If a feature group is enabled –
the model has access to the corresponding source of information. For example, if only
POS group is enabled, the model relies on the part-of-speech tags of the argument, the
predicate and the words to the right and left of the argument word. If Synt is enabled
too, it also uses the POS tags of the argument’s parent, children and siblings.

Word order information constitutes an implicit group that is always available. It
includes the Position feature, which indicates whether the argument is located to the
left or to the right of the predicate, and allows the model to look up the attributes of
the words directly preceding and following the argument word. The model we compare
against the baselines uses all applicable feature groups (Deprel is only used in en-cz and
cz-en experiments with original syntax).

POS part-of-speech tags
Synt unlabeled dependency graph
Cls cross-lingual word clusters
Gloss glossed word forms
Deprel dependency relations

Table 4.1: Feature groups.
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4.4 Evaluation

4.4.1 The Model

We use a simple linear model for the following experiments with the feature extractors
based on those in Björkelund et al. (2009), which we modified to accommodate the
cross-lingual cluster features. The classifiers are trained using Liblinear (Fan et al., 2008).

4.4.2 Datasets

Evaluation of the cross-lingual model transfer requires a rather specific kind of dataset.
Namely, the data in both languages has to be annotated with the same set of semantic
roles following the same (or compatible) guidelines, which is seldom the case. Indeed,
scarcity of such data is a primary reason for investigating direct transfer approaches.
We have identified three language pairs for which such resources are available: English-
Chinese, English-Czech and English-French.

English-Chinese

The evaluation datasets for English and Chinese are those from the CoNLL Shared Task
2009 (Hajič et al., 2009) (henceforth CoNLL-ST). Their annotation in the CoNLL-ST is not
identical, but the guidelines for “core” semantic roles are similar (Kingsbury et al., 2004),
so we evaluate only on core roles here.

English-Czech

The data for the second language pair is drawn from the Prague Czech-English Depen-
dency Treebank 2.0 (Hajič et al., 2012), which we converted to a format similar to that
of CoNLL-ST2. The original annotation uses the tectogrammatical representation (Hajič,
2002) and an inventory of semantic roles (or functors), most of which are interpretable
across various predicates.

Since tectogrammatical adopted by PCEDT is substantially different from dependency-
based SRL we are working with, the conversion is necessarily lossy.

PCEDT, based on and partly overlapping with the Prague Dependency Treebank we
briefly discussed in section 2.1.5, contains several connected layers of annotation:

• M-layer (morphemic), containing lexical and morphological information

• A-layer (analytical), describing syntactic structure of a sentence using something
closely resembling a dependency tree.

• T-layer (tectogrammatical), describing shallow semantics of a sentence. Some of the
tectogrammatical functors in T-layer serve the same purpose as semantic roles in
PropBank, others are closer to syntax.

The layers are connected, with the relation between morphemic and analytical layers
being relatively straightforward in that each node in one corresponds to exactly one node
in the other, so one could think of the information contained in the morphemic layer as

2see http://www.ml4nlp.de/code-and-data/treex2conll
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annotations on the nodes of the analytical tree. The alignment between analytical and
tectogrammatic layers is trickier, however, since T-layer consists of a separate tree, only
partially aligned with the A-layer one (see figure 4.4.2).

The conversion procedure is largely based on the script used by the CoNLL 2009
shared task organizers. Unfortunately, the format PCEDT is available in is different and
said script is not directly applicable. We have therefore implemented a similar procedure
for this new format in python3.
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Figure 4.2: Example sentence pair from Prague Czech-English Dependency Treebank.
EN: The Senate plans to take up the measure quickly and is expected to pass it.
CZ: Senát má v plánu toto opatření rychle projednat a očekává se, že jej schválí.

The conversion is mostly straightforward, treating the A-layer tree as a dependency
structure and porting over a subset of T-layer functors as semantic roles. The only tricky
items concern generated nodes and handling of co-reference and conjunctions.

Figure 4.4.2 contains the bisentence converted from the structure in figure 4.4.2.
Note that the syntactic annotation of English and Czech in PCEDT is quite similar (to

the extent permitted by the difference in the structure of the two languages), so we can

3see http://www.ml4nlp.de/code-and-data/treex2conll
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The Senate plans to take up the measure quickly and is expected to pass it .
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Obj
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Pred

AuxP Adv Obj

AuxG

ACT PAT PAT

MANNACT

PAT PAT

Figure 4.3: An English sentence converted from PCEDT.

also use the dependency relations in our experiments.

English-French

For English-French, the English CoNLL-ST dataset was used as a source and the model
was evaluated on the manually annotated dataset from van der Plas et al. (2011). The
latter contains one thousand sentences from the French part of the Europarl (Koehn, 2005)
corpus, annotated with semantic roles following an adapted version of PropBank (Palmer
et al., 2005a) guidelines. The authors perform annotation projection from English to
French, using a joint model of syntax and semantics and employing heuristics for filtering.
We use a model trained on the output of this projection system as one of the baselines.
The evaluation dataset is relatively small in this case, so we perform the transfer only
one-way, from English to French.

4.4.3 Preprocessing

The part-of-speech tags in all datasets were replaced with the universal POS tags of
Petrov et al. (2012). For Czech, we have augmented the mappings to account for the tags
that were not present in the datasets from which the original mappings were derived.
Namely, tag “t” is mapped to “VERB” and “Y” – to “PRON”.

We use parallel data to construct a bilingual dictionary used in word mapping, as
well as in the projection baseline. For English-Czech and English-French, the data is
drawn from Europarl (Koehn, 2005), for English-Chinese – from MultiUN (Eisele and
Chen, 2010). The word alignments were obtained using GIZA++ (Och and Ney, 2003)
and the intersection heuristic.

4.4.4 Syntactic Transfer

In the low-resource setting, we cannot always rely on the availability of an accurate
dependency parser for the target language. If one is not available, the natural solution
would be to use cross-lingual model transfer to obtain it.

Unfortunately, the models presented in the previous work, such as Zeman and Resnik
(2008), McDonald et al. (2011) and Täckström et al. (2012), were not made available, so we
did our best to reproduce the direct transfer algorithm of McDonald et al. (2011), using
Malt parser (Nivre, 2008) and a similar set of features. Note, however, that we did not

59



reimplement the projected transfer algorithm and used the default training procedure
instead of perceptron-based learning suggested by the authors.

Features:

1. POS tags and CLC ids for the top two tokens on the stack

2. POS tags and CLC ids for the three input tokens

3. bigrams of POS tags and CLC ids within and across (1) and (2)

4. combination of POS tag and CLC id for each of the first three input tokens and top
two tokens on the stack

5. dependency relation of the top token on the stack to its rightmost and leftmost
dependents and its head

6. dependency relation of the first input token to its leftmost dependent

The full list of features can be found in figure A in the appendix.

Despite recent declines in yields , investors continue to pour cash into money funds .
ADP ADJ NOUN ADP NOUN . NOUN VERB PRT VERB NOUN ADP NOUN NOUN .
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Figure 4.4: Original (above) and transferred (below) unlabeled dependency trees. We
highlight the edges present only in the gold parse in red and those only present in the
transferred syntactic tree in blue.

Figure 4.4.4 shows an example of a transferred syntactic parse compared to the
gold syntactic parse (we use an English sentence and the output of a syntactic parser
transferred from Czech for demonstration). Overall, the dependency structure does seem
to contain some useful information. Some typical errors we observe here are due to
lack of information or discrepancies in the annotation between the source and the target
language.

For example,

(a) in Czech, any modifier preceding the head noun would typically be adjectivized, so
it is reasonable for the model to assume the first noun in a noun phrase would be
the head.

(b) given the coarse representation we use, the model often has trouble discriminating
between possible roots.

(c) “to” has its own part-of-speech tag in PTB, which gets mapped into PRT (particle),
rather than ADP (adposition), making the situation rather complicated. Interest-
ingly, the Czech word it translates into, “v” in this context, is consistently marked
with tag R in PDT, which is mapped into universal POS category PRON (pronoun).
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(d) in PDT (or, rather, in its dependency version), terminal punctuation is typically
attached directly to the root, rather than to the main verb – one of the many
arbitrary decisions that differentiate dependency treebanks without reflecting actual
language specificity.

The scores vary considerably across language pairs and within a language pair,
depending on the direction of transfer. Their values are shown in table 4.2. It is clear
that the dependency structure thus obtained is only a rough approximation and could
be improved by using more sophisticated model transfer techniques or even simple
feature selection. However, it serves our purpose as we will demonstrate that this is a
useful source of information for SRL model transfer and, besides, even more advanced
approaches are unlikely to perform very well transferring syntax between such languages
as Czech and English, given the inherent difference in their structure.

Setup UAS, %

en-zh 35
zh-en 42
en-cz 36
cz-en 39
en-fr 67

Table 4.2: Syntactic transfer accuracy, unlabeled attachment score (percent). Note that
in case of French we evaluate against the output of a supervised system, since manual
annotation is not available for this dataset. This score does not reflect the true performance
of syntactic transfer.

We will refer to the syntactic annotations that were provided with the datasets as
original, as opposed to the annotations obtained by means of syntactic transfer (transferred).

4.4.5 Baselines

Unsupervised Baseline:

We are using a version of the unsupervised semantic role induction system of Titov and
Klementiev (2012a) adapted to the shared feature representation considered in order to
make the scores comparable with those of the transfer model and, more importantly, to
enable evaluation on transferred syntax. Note that the original system, tailored to a more
expressive language-specific syntactic representation and equipped with heuristics to
identify active/passive voice and other phenomena, achieves higher scores than those we
report here.

Projection Baseline:

The projection baseline we use for English-Czech and English-Chinese is a straightforward
one: we label the source side of a parallel corpus using the source-language model, then
identify those verbs on the target side that are aligned to a predicate, mark them as
predicates and propagate the argument roles in the same fashion. A model is then trained
on the resulting training data and applied to the test set.
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For English-French we instead use the output of a fully featured projection model of
van der Plas et al. (2011), published in the CLASSiC project.

4.4.6 Evaluation Measures

We use the F1 measure as a metric for the argument identification stage and accuracy as
an aggregate measure of argument classification performance. When comparing to the
unsupervised SRL system the clustering evaluation measures are used instead. These are
purity and collocation

Pu =
1
N ∑

i

max
j

|Gj ∩ Ci|

Co =
1
N ∑

j

max
i

|Gj ∩ Ci|,

where Ci is the set of arguments in the i-th induced cluster, Gj is the set of arguments
in the jth gold cluster and N is the total number of arguments. We report the harmonic
mean of the two (Lang and Lapata, 2011) and denote it Fc

1 to avoid confusion with the
supervised metric.

4.5 Results

In order to ensure that the results are consistent, the test sets, except for the French one,
were partitioned into five equal parts (of 5 to 10 thousand sentences each, depending
on the dataset) and the evaluation performed separately on each one. All evaluation
figures for English, Czech or Chinese below are the average values over the five subsets.
In case of French, the evaluation dataset is too small to split it further, so instead we
ran the evaluation five times on a randomly selected 80% sample of the evaluation data
and averaged over those. In both cases the results are consistent over the subsets, the
standard deviation does not exceed 0.5% for the transfer system and projection baseline
and 1% for the unsupervised system.

4.5.1 Argument Identification

We summarize the results in figure 4.5. Argument identification is known to rely heavily
on syntactic information, so it is unsurprising that it proves inaccurate when transferred
syntax is used. Our simple projection baseline suffers from the same problem. Even with
original syntactic information available, the performance of argument identification is not
very satisfactory. We therefore set the problem of argument identification aside and in
the following experiments consider argument classification based on the gold argument
positions.

Most unsupervised SRL approaches assume that the argument identification is per-
formed by some external means, for example heuristically (Lang and Lapata, 2011). Such
heuristics or unsupervised approaches to argument identification (Abend et al., 2009) can
also be used in the present setup.
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Figure 4.5: Argument identification, transferred model vs. projection baseline, F1.

4.5.2 Argument Classification

In the following tables, Trans column contains the results for the transferred system,
Unsup – for the unsupervised baseline and Proj – for projection baseline. We highlight
in bold the higher score where the difference exceeds twice the maximum of the standard
deviation estimates of the two results.

Figures 4.7 and 4.6 present the unsupervised evaluation results. Note that the unsuper-
vised model performs as well as the transferred one or better where the original syntactic
dependencies are available. In the arguably more realistic scenario with transferred
syntax, however, the transferred model proves more accurate.

In figures 4.8 and 4.9 we compare the transferred system with the projection baseline
using original and transferred syntax, respectively. The scores vary rather strongly
between language pairs due to both the difference in the annotation scheme used and the
degree of relatedness between the languages. The drop in performance when transferring
the model to another language is large in every case, though, see table 4.3.

Setup Target Source

en-zh 71.7 87.1
zh-en 66.1 86.2
en-cz 59.0 80.1
cz-en 61.0 75.4
en-fr 63.0 82.5

Table 4.3: Model accuracy on the source and target language using original syntax. The
source language scores for English vary between language pairs because of the difference
in syntactic annotation and role subset used.

We also include the scores for individual labels for en-cz transfer with original syntax
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Figure 4.6: Argument classification, transferred model vs. unsupervised baseline, trans-
ferred syntax.
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Figure 4.7: Argument classification, transferred model vs. unsupervised baseline, original
syntax.
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Figure 4.8: Argument classification with original syntax, supervised evaluation.
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Figure 4.9: Argument classification with transferred syntax, supervised evaluation.
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in figure 4.10. The model provides meaningful predictions for most of these, despite
somewhat low overall accuracy.
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Figure 4.10: Per-role precision and recall for en-cz transfer (with original syntax).

Most of the labels are self-explanatory: Patient (PAT), Actor (ACT), Time (TWHEN),
Effect (EFF), Location (LOC), Manner (MANN), Addressee (ADDR), Extent (EXT), Cause
(CAUS), Aim (AIM), Difference (DIFF), Means (MEANS), Condition (COND), Benefactor
(BEN), etc. For the less obvious ones we refer the reader to the description provided by the
corpus authors, see http://ufal.mff.cuni.cz/pcedt2.0/en/functors.html.For example
THL stands for duration (Time, How Long), CPHR marks the nominal part of a complex
predicate, as in “to have [a baby]CPHR”, DIR3 indicates destination, and ORIG indicates
origin in non-locative sense – a source of something or a material something is made of.

4.5.3 Additional Experiments

We now evaluate the contribution of different aspects of the feature representation to the
performance of the model. Figure 4.11 contains the results for English-French.

The fact that the model performs slightly better with transferred syntax may be ex-
plained by two factors. Firstly, as we already mentioned, the original syntactic annotation
is also produced automatically. Secondly, in the model transfer setup it is more important
how closely the syntactic-semantic interface on the target side resembles that on the
source side than how well it matches the “true” structure of the target language, and in
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Figure 4.11: en-fr model transfer accuracy with different feature subsets, using original
and transferred syntactic information.

this respect a transferred dependency parser may have an advantage over one trained on
target-language data.

The high impact of the Gloss features here may be partly attributed to the fact that
the mapping is derived from the same corpus as the evaluation data – Europarl (Koehn,
2005) – and partly by the similarity between English and French in terms of word order,
usage of articles and prepositions. The moderate contribution of the cross-lingual cluster
features are likely due to the insufficient granularity of the clustering for this task.

For more distant language pairs, the contributions of individual feature groups are
less interpretable, so we only highlight a few observations. First of all, both en-cz and
cz-en benefit noticeably from the use of the original syntactic annotation, including
dependency relations, but not from the transferred syntax, most likely due to the low
syntactic transfer performance. Both perform better when lexical information is available,
although the improvement is not as significant as in the case of French – only up to 5%.

The situation with Chinese is somewhat complicated in that adding lexical information
here fails to yield an improvement in terms of the metric considered. This is likely due
to the fact that we consider only the core roles, which can usually be predicted with high
accuracy based on syntactic information alone.

4.6 Conclusion

We have considered the cross-lingual model transfer approach as applied to the task
of semantic role labeling and observed that for closely related languages it performs
comparably to annotation projection approaches. It allows one to quickly construct an
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SRL model for a new language without manual annotation or language-specific heuristics,
provided an accurate model is available for one of the related languages along with
a certain amount of parallel data for the two languages. While annotation projection
approaches require sentence- and word-aligned parallel data and crucially depend on
the accuracy of the syntactic parsing and SRL on the source side of the parallel corpus,
cross-lingual model transfer can be performed using only a bilingual dictionary.

Unsupervised SRL approaches have their advantages, in particular when no annotated
data is available for any of the related languages and there is a syntactic parser available
for the target one, but the annotation they produce is not always sufficient. In applications
such as Information Retrieval it is preferable to have precise labels, rather than just clusters
of arguments, for example.

Also note that when applying cross-lingual model transfer in practice, one can
improve upon the performance of the simplistic model we use for evaluation, for example
by picking the features manually, taking into account the properties of the target language.
Domain adaptation techniques can also be employed to adjust the model to the target
language.
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Chapter 5

Feature Representation Projection

5.1 Motivation

Let us recapitulate our discussion of cross-lingual transfer methods in sections 2.3.3 and
2.3.4.

Direct model transfer attempts to find a shared feature representation for samples
from different languages, usually generalizing and abstracting away from language-
specific representations. Once this is achieved, instances from both languages can be
mapped into this space and a model trained on the source-language data directly applied
to the target language. If parallel data is available, it can be further used to enforce
model agreement on this data to adjust for discrepancies between the two languages, for
example by means of projected transfer (McDonald et al., 2011), or refined using heuristics
or linguistically-motivated constraints.

The shared feature representation depends on the task in question, but most often
each aspect of the original feature representation is handled separately. Word types,
for example, may be replaced by cross-lingual word clusters (Täckström et al., 2012) or
cross-lingual distributed word representations (Klementiev et al., 2012). Part-of-speech
tags, which are often language-specific, can be converted into universal part-of-speech
tags (Petrov et al., 2012) and morpho-syntactic information can also be represented in a
unified way (Zeman et al., 2012; McDonald et al., 2013; Tsarfaty, 2013). Unfortunately,
the design of such representations and corresponding conversion procedures is by no
means trivial.
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Annotation projection, on the other hand, does not require any changes to the
feature representation. Instead, it operates on translation pairs, usually on sentence level,
applying the available source-side model to the source sentence and transferring the
resulting annotations through the word alignment links to the target one. The quality
of predictions on source sentences depends heavily on the quality of parallel data and
the domain it belongs to (or, rather, the similarity between this domain and that of the
corpus the source-language model was trained on). The transfer itself also introduces
errors due to translation shifts (Cyrus, 2006) and word alignment errors, which may
lead to inaccurate predictions. These issues are generally handled using heuristics and
filtering, for example based on alignment coverage (Padó and Lapata, 2006; van der Plas
et al., 2011).

5.1.1 Approach

In this chapter we propose an alternative approach to cross-lingual transfer (Kozhevnikov
and Titov, 2014), which we will refer to as feature representation projection (FRP), based on
representation learning. FRP occupies a middle ground between annotation projection
and direct transfer and can be seen as a compromise between the two.

It is similar to direct transfer in that it also relies on a shared feature representation.
Instead of designing this representation manually, however, we create compact monolin-
gual feature representations for source and target languages separately and automatically
estimate the mapping between the two from parallel data.

This allows us to make use of language-specific annotations and account for the
interplay between different types of information. For example, a certain preposition
attached to a token in the source language might map into a morphological tag in the
target language, which would be hard to handle for traditional direct model transfer
other than using some kind of refinement procedure involving parallel data. Note also
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that any such refinement procedure applicable to direct transfer would likely work for
FRP as well.

Compared to annotation projection, our approach may be expected to be less sensitive
to parallel corpus size and quality, since we do not have to commit to a particular
prediction on a given instance from parallel data. We also believe that FRP may profit
from using other sources of information about the correspondence between source and
target feature representations, such as dictionary entries, and thus have an edge over
annotation projection in those cases where the amount of parallel data available is limited.

5.2 Evaluation

Similarly to chapter 4, we evaluate the proposed approach on the task of dependency-
based semantic role labeling (SRL) (Hajič et al., 2009), focusing specifically on the role
assignment step cast as a multiclass classification problem.

Following the work described in the preceding chapter, we conducted a more detailed
analysis of the evaluation setup and refined it accordingly here.

5.2.1 Cleaning up Parallel Data

We found that many of the errors we observed were due to low-quality syntactic annota-
tion of the parallel data and certain issues with the parallel corpus itself. In particular, we
found that the target side of the parallel corpus contained a small number of sentences
in other languages, e.g. for English-Czech including English, French, Italian, Spanish,
Greek, etc. The syntactic analysis and SRL annotations were also found to be rather
inaccurate for certain types of sentences that the model may not have been exposed to in
the training data, specifically direct speech, remarks in parentheses, sentences lacking
terminal punctuation. Some examples:

• Žádost o ochranu parlamentní imunity: viz zápis

– Request for the defence of parliamentary immunity: see Minutes

• (‘ συνεδρίαση αρχίζει στις 9.40 π.µ.)

– (“ meeting will begin at 9:40 a.m.)

• (NL) Prezident Obama dodržel slovo.

– (NL) President Obama kept his word.
Some of these cases have been eliminated using a small set of regular expressions,

keeping only sentences starting with a capital letter and ending in a valid terminal
punctuation mark and eliminating anything that contains characters from other character
sets.

The latter is a very simple heuristic, of course, since character sets of many European
languages overlap significantly. Indeed, the Czech one is a strict superset of the English
one. A better way to handle language mixing would be to employ a statistical language
identification model (Cavnar et al., 1994), but even that may not work perfectly, especially
for single sentences (Baldwin and Lui, 2010). Fortunately, language mixing is only
occasional in the dataset in question and its impact is limited.
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5.2.2 Evaluation Protocol

Our intuition is that given a parallel data set of sufficient size and quality, one may expect
methods that rely on parallel data to eventually achieve superior performance. Therefore
in this chapter we make a set of experiments with subsets of the parallel data of different
size, namely 1, 2, 5, 10, 20, 50 and 100 thousand aligned argument instances and plot
the performance of the models depending on it. To ensure reliability, the models are
evaluated on 20 random samples of parallel data of each size and averaged over those.

5.2.3 Language Pairs

In addition to the language pairs used in the direct transfer experiments, here we
include English-Spanish as well. The monolingual corpus for Spanish is derived from
AnCora (Taulé et al., 2008), which has a more fine-grained set of labels than PropBank –
each core argument is marked with both a numeric role similar to the PropBank ones and
a thematic role. The two are concatenated and generally treated as a unit, e.g. arg1-pat
(core argument A1, Patient) or argM-loc (modifier, Location). A simple mapping A.1 is
applied to the Spanish corpus to make the role sets compatible.

Note that for English-Chinese, we also include the non-core roles, which are, though
named differently, appear to be largely compatible. The role labels are mapped into a
shared inventory according to the semi-automatically constructed mapping in table A.2.

5.3 Approach

We consider a pair of languages (Ls, Lt) and assume that an annotated training set
Ds

T = {(xs, y)} is available in the source language as well as a parallel corpus of instance
pairs Dst =

{(

xs, xt
)}

and a target dataset Dt
E =

{

xt
}

that needs to be labeled.
Intermediate compact monolingual feature representations ωs

1 and ωt
1 are defined,

as well as transformations Ms and Mt to map source and target samples xs and xt from
their original representations, ωs

0 and ωt
0, into the intermediate representations.

The aligned instances found in the parallel data are transformed into the intermediate
feature representations

D̄st =
{(

xs
1, xt

1
)}

=
{(

Ms(xs), Mt(xt)
)}

,

and the transformation between the source and target intermediate feature representa-
tions Mts is learned from the resulting set of pairs.

Mts = argmaxM ∑
(xs

1,xt
1∈D̄st)

∥

∥xs
1 − M(xt

1)
∥

∥

2

A classification model My is trained on the source-language training data, taking
source-side intermediate representation as input:

D̄s
T = {(xs

1, y)} = {(Ms(xs), y) , (xs, y) ∈ Ds
T} .

The target language model M′
y is then produced as a composition of My, Mts and Mt,

so the label for a target-language instance xt ∈ Dt
E can be obtained as

yt = My(Mts(Mt(xt))).

The following diagram illustrates the approach graphically.
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5.3.1 Feature Representation

Our objective is to make the intermediate feature representation sufficiently compact that
the mapping between source and target feature spaces could be reliably estimated from a
limited amount of parallel data, while preserving, insofar as possible, the information
relevant for classification.

We start out with a generic feature set, covering the properties – word type, part-of-
speech tag, dependency relation to the respective head and morphological tags, if any –
of the argument head token, the predicate token and the parent token of the argument
in the dependency tree. Following prior works, a position feature, indicating whether a
given argument appears before or after the predicate, is also included.

Compared to the features used in direct model transfer experiments in chapter 4,
we omit the features involving the argument’s siblings in the dependency tree and the
tokens preceding and following the argument token. This is done for technical reasons,
namely to limit the dimensionality of the input feature vector.

This feature representation, ω0, is sparse – using one-hot encoding the feature vectors
in our experiments have between 20 and 60 thousand components. Estimating the
mapping directly between ωs

0 and ωt
0 is both computationally expensive and likely

inaccurate – using one-hot encoding the feature vectors in our experiments would have
between 20 and 60 thousand components. Fortunately, there is a number of ways to
make this representation more compact. We start with the most obvious one, namely
representing word types with neural word embeddings produced by the skip-gram
model (Mikolov et al., 2013a). This corresponds to Ms and Mt above and significantly
reduces the dimension of the feature space, making direct estimation of the mapping
practical. We will refer to this representation as ω1.

In the present work we keep all syntactic features in one-hot encoding, since they are
comparatively few – Czech has the most at just over three hundred, mostly due to the
morphological tags – and to our knowledge there are no readily available ways to make
this information even more compact.
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5.3.2 Learning Better Monolingual Representations

To go further, one can, for instance, apply dimensionality reduction techniques to
obtain a more compact intermediate representation by eliminating redundancy, or define
auxiliary tasks and produce a vector representation useful for those tasks. One may
speculate that this would be especially helpful if the amount of monolingual data
available for either language significantly exceeds the size of the available parallel corpus.
We have conducted initial experiments using simple neural autoencoders with and
without additional hidden layers and with different activation functions, albeit without
introducing additional monolingual corpora into the equation, but were unable to attain
significant dimensionality reduction without a noticeable loss in informativeness. It is
possible that more recent deep learning techniques could yield better results here.

In general, the intermediate representation needs only retain the information that
is important for the particular task. For the source language it is possible to train a
supervised model which would rely on a compact latent representation (such as a hidden
layer in a network) and reuse that latent representation as ω1 in the present approach.

For the target language we assume no SRL-annotated training data to be available, but
one may consider using other, related tasks to derive a useful intermediate representation,
or even use a simple context-prediction setup similar to the skip-gram model. The shift
towards learning reusable dense vector representations of various language units was
shown to benefit many NLP applications, and such representations can be derived for
predicates and arguments in the context of semantic role labeling as well. In fact, such are
already produced as a side-product of unsupervised semantic role labeling (Woodsend
and Lapata, 2015; Luan et al., 2016).

5.3.3 Baselines

As mentioned above we compare the performance of this approach to that of direct
transfer and annotation projection baselines.

The shared feature representation for direct transfer is derived from ω0 by replacing
language-specific part-of-speech tags with universal ones (Petrov et al., 2012) and adding
cross-lingual word clusters (Täckström et al., 2012) to word types. The word types
themselves are left as they are in the source language and replaced with their gloss
translations in the target one (Zeman and Resnik, 2008). For reference, we also provide
the score of the direct transfer model relying on transferred, rather than gold syntax,
produced as described in section 4.4.4.

The annotation projection baseline implementation is straightforward. The source-side
instances from a parallel corpus are labeled using a classifier trained on source-language
training data and transferred to the target side. The resulting annotations are then used
to train a target-side classifier for evaluation.

5.3.4 Word Embeddings

The 250-dimensional monolingual word representations for ω1 are obtained using
Word2vec tool applied to all available monolingual data – a concatenation of the labeled
corpus and the relevant side of the parallel corpus. In Mikolov et al. (2013b) the authors
consider embeddings of up to 800 dimensions, but we would not expect to benefit as
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Figure 5.1: Results for English-Czech (top) and Czech-English (bottom).

much from larger vectors since we are using a much smaller corpus to train them.
A possible extension of the proposed model would be to use cross-lingual word

embeddings produced by one of the many promising models that became available
recently (Gouws et al., 2015; Lauly et al., 2014).

5.3.5 Projection Model

The projection model, Mts, maps a dense vector representation of instances from the
target language into a similar dense vector representation for the source language. In
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other words, one would like to learn a transformation between the two vector spaces
from the available aligned instances, which would generalize well to unseen examples at
decoding time. Depending on the type of transformation chosen, a variety of methods
could be employed to learn the parameters. We decided in favor of a neural network
for its flexibility and used the Pylearn2 toolkit (Goodfellow et al., 2013), based on
Theano (Bergstra et al., 2010), to conduct the experiments.

Having considered networks with up to two hidden layers and a number of different
training regimes, we observed that learning a non-linear mapping between two spaces
with up to 1000 dimensions each is non-trivial, especially when presented with fewer
training samples. The model ended up with very different mappings depending on the
subset of parallel data presented to it, often of poor quality, therefore in the experiments
below we are learning a linear mapping only.

In the initial experiments, we used the same toolkit to learn the source-side classifica-
tion model My and to decode on the target side. Unfortunately, at the time the support
for sparse features was not available – a dense matrix was generated based on the inputs –
which made it impossible to run the baseline experiments without truncating the feature
vocabulary to a few thousand items, which may be seen as unfair towards the baselines
using a sparse input representation. Consequently, here train the classification model
and decode using LIBLINEAR (Fan et al., 2008) instead, i.e. using an L2-regularized
max-margin classifier capable of handling sparse feature spaces.

Another concern regarding the results of the initial experimental presented in Kozhevnikov
and Titov (2014) had to do with how much simply using the word embeddings rather
than one-hot encoding would contribute towards the performance of the model. To eval-
uate this, we introduce an additional baseline, same as the regular annotation projection
baseline, but relying on the word embeddings that FRP model uses.

We observe no consistent improvement from using the embeddings in the annotation
projection model, possibly due to the limited quality of the embeddings themselves – the
training corpus for them is comparatively small (3 to 8 million tokens depending on the
language) and dominated by the Europarl data belonging to a highly specialized register.

5.3.6 Data

The evaluation is performed on four different language pairs, English-Czech, English-
Chinese, English-Spanish and English-French. The labeled data is drawn from the CoNLL
2009 shared task (Hajič et al., 2009) dataset and, in the case of Czech, from the Prague
Czech-English Dependency Treebank 2.0 (Hajič et al., 2012). For French, the manually
corrected evaluation set from van der Plas et al. (2011) is used as the test set. Since this is
comparatively small – one thousand sentences – we reserve the whole dataset for testing
and only evaluate transfer from English to French, not the other way around. For other
languages, 30 thousand labeled instances are reserved for testing and the rest is used as
training data.

Similar to the previous chapter, the parallel data is drawn from Europarl (Koehn,
2005) and MultiUN (Eisele and Chen, 2010), aligned using GIZA++ (Och and Ney, 2003)
and pre-processed using mate-tools (Björkelund et al., 2009; Bohnet, 2010).
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Figure 5.2: Results for English-Spanish (top) and Spanish-English (bottom).

5.4 Results

The accuracy of the proposed model and the baselines given varying amount of parallel
data is reported in figures 5.1-5.4. The training set for each language is fixed. We denote
the two baselines AP (annotation projection), using sparse word representation or word
embeddings and DT (direct transfer), using gold or transferred syntax.

The number of parallel instances in these experiments is shown on a logarithmic
scale, the actual values considered are 1, 2, 5, 10, 20, 50 and 100 thousand pairs.

Note that we report only a single value for direct transfer, since this approach does not
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Figure 5.3: Results for English-Chinese (top) and Chinese-English (bottom).

explicitly rely on parallel data. Although some of the features – namely, gloss translations
and cross-lingual clusters – used in direct transfer are, in fact, derived from parallel
data, they generally do not require well-formed parallel sentences and can potentially be
learned from alternative sources.

We observe that the performance of both annotation projection and FRP improves
with the size of the parallel corpus, as expected, but seems to get flatter as we approach
the maximum available parallel dataset size. It would be natural to expect it to plateau
eventually, but for FRP in particular this could also be caused by the intentionally
limited, fixed capacity of the model, which may explain the superior performance of the
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annotation projection baseline given larger parallel datasets in figure 5.1. We further note
that, as we conjectured, both annotation projection and FRP tend to outperform direct
transfer given a sufficient amount of (cleaned-up) parallel data.

Given a very large parallel corpus one may benefit from using higher-dimensional
embeddings or additional features in the source and target representations.
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Figure 5.4: Results for English-French.

Consistently with previous experiments, the direct transfer approach tends to yield
better results when relying on the original unlabeled syntactic dependency information,
compared to the dependencies obtained by direct transfer.

Note also that the comparative performance of the two variants of annotation projec-
tion – the one using sparse word type features and the one using word embeddings –
varies considerably between language pairs and the sparse version seems to performs
slightly better on average. It is therefore safe to assume that the performance differences
between FRP and the regular annotation projection baseline cannot be attributed solely
to the use of word embeddings in the former.

5.5 Conclusions

We observe that the performance of this method is competitive with that of established
cross-lingual transfer approaches and its application requires very little manual adjust-
ment – particularly no explicit shared feature representation design. It may have some
advantage when presented with a limited amount of parallel data, or parallel data of
poor quality.

We have demonstrated the general viability of the approach, but there are many
directions to explore further.

The real test for any cross-lingual transfer approach is to apply it in a real-world
annotation scenario involving an actual resource-poor language. Such studies do exist,
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but they generally focus on a single transfer method and the results across different
studies are quite hard to compare.

5.6 Possible Extensions

A primary argument if favor of the proposed approach is its flexibility, allowing for many
possible improvements.

In addition to the already mentioned variations using pre-learned monolingual
representations in section 5.3.2, one can consider adapting existing techniques from
both annotation projection and direct transfer, many of which will be applicable to this
problem. Certain filters commonly used in annotation projection can be applied here
directly, for instance filtering out sentence pairs where some predicates are unaligned.

If little parallel data is available, one can simplify the learning by leveraging tech-
niques from direct transfer, for instance converting the dependency annotations on both
sides to universal dependencies (McDonald et al., 2013) or HamleDT-style dependency
annotation (Zeman et al., 2014).

In structured prediction tasks, such as dependency parsing (or semantic role labeling,
should one take into account the inter-argument constraints), a technique similar to
projected transfer (McDonald et al., 2011) could be of use.

Finally, one can adapt FRP to the multi-source transfer scenario, should compatible
resources be available for multiple source languages, although in this case a separate
projection model will be necessary for each language pair.

5.6.1 Alternative Sources of Information

The amount of parallel data available for many language pairs is growing steadily. How-
ever, cross-lingual transfer methods are often applied in cases where parallel resources are
scarce or of poor quality and must be used with care. In such situations an ability to use
alternative sources of information may be crucial. Potential sources of such information
include dictionary entries or information about the mapping between certain elements of
syntactic structure, for example a known part-of-speech tag mapping.

The available parallel data itself may also be used more comprehensively – aligned
arguments of aligned predicates, for example, constitute only a small part of it, while
the mapping of vector representations of individual tokens is likely to be the same
for all aligned words, so we could start by learning a cross-lingual word embedding
model (Gouws et al., 2015; Hermann and Blunsom, 2013; Luong et al., 2015) on all aligned
tokens, and use it to initialize the transformation model.
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Chapter 6

Learning from Agreement in

Monolingual Setting

This work started out with the idea of improving semantic parsing models by learn-
ing from similarity or agreement between instances, specifically considering the semi-
supervised learning scenario where in addition to the annotated training data one
has access to a number of groups of instances which are known to have compatible
interpretations.

Much of human knowledge, whether absolute or transient, is put into words many
times by different people. Consider for instance (1) news, where a given event is observed
and described by multiple reporters, then picked up and reformulated again by social
media, (2) scientific or educational information, which needs to be presented to different
audiences at different level of detail, or (3) instructions such as cooking recipes, which
get passed on from person to person with little or no modification, but likely described
slightly differently every time.

The variations in the wording may sometimes appear trivial to a human reader, since
it is generally obvious to them whether or not two fragments of text express the same
meaning, but for machines – and sometimes human readers with imperfect command
of the language, such as non-native speakers – recognizing paraphrases is a very hard
problem (Dolan et al., 2004; Blacoe and Lapata, 2012). In second language learning,
reading or listening comprehension is often evaluated based on the learner’s ability to
recognize textual entailment, of which paraphrasing is a special case.

Taking the parallel with language acquisition further, when a learner expresses lack
of understanding of a certain statement, our first impulse is to rephrase the statement
in different, simpler terms, so paraphrasing data is a natural source of information for
semantic parsing models.

To somewhat formalize the idea, one may consider training a model to recognize
meaning representation y in a natural-language utterance x on a corpus of utterances
explicitly annotated with such meaning representations Da = {(x, y)}1..N and another
corpus containing groups of utterances expressing some meaning that is unknown to us,
but consistent among the utterances within a given group Dp = {(x1, x2, x3, . . .)}1..M.

For classification tasks data of this sort could be incorporated into training by using
a self-training-like approach with the additional constraint of assigning all items in a
group the same label, for example by choosing an example within each group where
model’s uncertainty is lowest and considering the group to be labeled according to this
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sample. For structured prediction tasks this is complicated by the fact that it is often
hard to measure the model’s confidence and that there can be no majority agreement
– the model can produce similar, but distinct interpretations for each item in a group,
without a natural way of identifying one of those interpretations as correct.

Besides, in practice different verbalizations will rarely have absolutely identical
semantics – one would expect them to be consistent with respect to the essentials, but
different people describing the same entity, event or process would tend to verbalize
different aspects of its semantics and may often disagree as to the finer details. Indeed,
one could question if it is at all possible to have two distinct documents with exactly the
same semantics – every tiny variation in the wording might subtly alter the meaning, –
and whether or not the semantics of two documents can be considered identical depends
mostly on how fine-grained our model of semantics happens to be. One could say that
paraphrasing is in the eye of the beholder.

In practice, given a fixed level of granularity, it would generally benefit a model to
learn the different ways of verbalizing a given aspect of the semantic representation, and
we believe that groups of documents with consistent hidden semantics can be used to
this end.

6.1 Aligning Semantics and Verbalizations

We applied the idea of learning from agreement to the task of semantic parsing in the
weather forecast domain, introduced in Liang et al. (2009).

Here the semantics are represented as a set of database records, with each field storing
the expected value of a particular aspect of the weather at a given point in time, e.g.
“.id:3 .type:windDir .date:2009-02-08 .label:Tonight @time:17-30 @mode:SSW”,
in this case indicating that wind from south-south west was expected. A single forecast
contains 36 records in total (see example in figure A.1).

Each forecast is accompanied by a short textual description, generated from the
database record, e.g.

Mostly cloudy ,

with a low around 30 .

South wind between 7 and 9 mph .

as well as an alignment between the textual description and the record, in this case

0 5

1 0

2 3 2,

indicating that the first line of the textual description corresponds to the 5th record, the
second – to the 0th one, and the last line covers records 2 and 3. Note that the model only
describes a subset of records and within each record some information can be omitted as
well (for instance the maximum temperature in the example above).
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Figure 6.1: A hierarchical segmentation of a text fragment into spans corresponding to
individual records and fields.

6.1.1 Approach

The structure of the domain implies a simple generative story – for each record, a subset
of records is selected for verbalization and for records containing several values a subset
of values is selected in addition (for instance, one can choose to only mention the peak
temperature, but not the mean one). A textual description of the weather conditions is
then produced, mentioning the selected values in a chosen order. We will refer to these
descriptions as documents. Note that given the same world state, selecting different fields
would result in documents that are not paraphrases of each other. Strictly speaking,
we cannot guarantee that there is any overlap at all, only that no two documents will
contradict each other if they do mention the same aspect of the world state. Hence we
refer to these documents as non-contradictory.

Liang et al. (2009) learn semantic alignment models capable of establishing the
correspondence between the textual representation and the world state without relying
on explicit alignments at training time. In Titov and Kozhevnikov (2010)1 we adopt this
setup to evaluate the proposed approach: learning from both documents associated with
a known world state and groups of documents corresponding to the same hidden world
state.

The objective of the original model (Liang et al., 2009) was to segment a textual
description, simultaneously linking each segment to the appropriate aspect of the world
state (figure 6.1). Importantly, the world state would be available both at training and
inference time, so it does not need to be generated. In our scenario, however, the groups
of non-contradictory documents correspond to a hidden world state, which needs to
be modeled in order for us to benefit from this signal. Figure 6.2 shows the generative
model for this domain, covering both the world state and the textual representation.

6.1.2 Data Collection

For evaluation, we augmented the dataset with alternative weather forecasts for a small
subset of records. Each rater was shown a table representation of the weather conditions
(see figure 6.3) and asked to produce a description, mentioning the information of general
interest, such as the expected temperature and sky cover, as well as any other aspects
worth mentioning – precipitation, if expected, strong winds or unusually low or high
humidity.

We collected a total of 391 descriptions from two raters using an Amazon Mechanical
Turk HIT sandbox, together with the texts from the original dataset yielding 259 groups –
650 texts with an average of 2.5 texts per group.

1Please note that the author is not the primary contributor on that paper.
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Figure 6.2: The generative model of a weather forecast {w} given the shared world state
s. t denotes a time of day, r is a record index and f is a field index inside a record.

Figure 6.3: Representation of the weather conditions as shown to the annotators. For
simplicity we display the conditions for a single timestamp.

The overlap in terms of the verbalized fields between documents within a group was
about 35%, and 60% of fields were only mentioned in a single document. See an example
in figure 6.4.

For the test set, we selected 50 documents from the original dataset and 50 more
produced by each of the two raters. The newly added documents were manually aligned
to the corresponding fields.

6.1.3 The Model

The proposed approach exploits the labeled data in much the same fashion as Liang
et al. (2009), using Expectation Maximization (Dempster et al., 1977). For the groups of
non-contradictory documents, we need to generate a world state, which is non-trivial
due to the relative complexity of the semantic space.

Jointly parsing multiple documents turns out to be rather expensive computationally,
so instead an iterative procedure is proposed, selecting one document at a time and
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Current temperature is about 70F,

with high of around 75F amd low

of around 64.

Rain is quite possible tonight,

as t-storms are.

South wind of around 19 mph.

2
w

w 1
3
w

A slight chance of showers 

Mostly cloudy,  

with a high near 75.

South wind between 15 and 20 mph,

Chance of precipitation is 30%.

with gusts as high as 30 mph.

and thunderstorms after noon.

Thunderstorms and pouring are possible

throughout the day,

with precipitation chance of about 25%.

possibly growing up to 75 F during the day,

as south wind blows at about 20 mph.

The sky is heavy.

It is 70 F now,

temperature (time = 6-21; min = 64, max = 75, mean = 70)

windDir(time=6-21,mode=S)

gust(time=6-21, min=0, max=29, mean=25)

precipPotential(time=6-21,min=20,max=32,mean=26)

thunderChance(time=6-21,mode=chance)

freezingRainChance(time=17-30,mode=--)

sleetChance(time='6-21',mode=--)

skycover(time=6-21,bucket=75-100)

windSpeed(time=6-21; min=14,max=22,mean=19, bucket=10-20)

rainChance(time=6-21,mode=chance)

windChill(time=6-21,min=0,max=0,mean=0)

                ......

Overcast,

Figure 6.4: An example of three non-contradictory weather forecasts and their alignment
to the semantic representation. Note that the semantic representation (the block in the
middle) is not observable at training time.

inferring the part of the world state it describes. To ensure consistency, the interpretation
of remaining documents is conditioned on the state inferred so far. Since the order in
which the documents are parsed also affects the outcome, at each step the algorithm
selects a document such that the world state following this step would maximize the
probability of the remaining documents.

This approach yields a noticeable improvement in the overall scores for alignment
prediction, covering 55% of the gap between the semi-supervised baseline and the
supervised upper bound:

P R F1

Supervised baseline 63.3 52.9 57.6
Semi-supervised baseline 68.8 69.4 69.1
Proposed approach 78.8 69.5 73.9

Supervised upper bound 69.4 88.6 77.9

Qualitative evaluation also shows that the word forms unseen in labeled training data
– such as “sun”, “cloudiness” or “gaps” – generally get assigned to correct clusters by
the model leveraging groups of non-contradictory documents, with a small number of
errors caused by correlation between different aspect of the world state. For example,
words such as “rainfall” or “inch” get aligned to the sky cover field, rather than the
precipitation field, because the two are strongly correlated. However, this is likely to
be largely mitigated by using larger amounts of data covering more diverse weather
conditions.

6.2 Weather Forecast Parsing Experiments

Given the encouraging results described above for the semantic alignment problem, we
decided to look into bootstrapping an actual parser from the same type of data, capable
of recovering the world state based on a description. The fact that the alignment model
can benefit from the non-contradictory document groups already implies, if indirectly,
that the model is capable of inferring a reasonable approximation of the world state
during training.
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As mentioned already, a single weather forecast in the dataset created by Liang et al.
(2009) contains 36 records, some with multiple fields, but only an average of 6 records
is verbalized in any given document. The alignment scenario has a certain advantage
here, in that some parts of the world state can be safely ignored, although the can make
the inference more expensive computationally. Predicting the actual world state given a
document that only covers one in six records is somewhat trickier, as is the subsequent
evaluation. One could imagine a generative model of the world state that would condition
records that have not been verbalized on those that have (e.g. if the forecast says it is
going to rain it is likely that the atmospheric pressure is low), plus some sensible prior
(e.g. if precipitation is not mentioned, there is likely to be none).

To mitigate this issue, for the parsing setup we reduce the world state representation
to a handful of fields mentioned most often, namely the high, mean and low temperature,
wind speed and direction, sky cover and chances of rain or snow.

We used a CRF (Lafferty et al., 2001) model with factors covering label unigrams and
bigrams for each token, similar to a regular linear chain CRF, with additional factors
connecting tokens aligned to a given field to the value of that field. The model was
trained using stochastic gradient descent, with the expectations computed using a custom
Metropolis-Hastings sampling procedure – sampling the world state and computing ex-
pectations for the labeling using the traditional forward-backward algorithm. At decoding
time, the same sampling procedure was used in simulated annealing setting (Kirkpatrick
et al., 1983) .

Unfortunately, using groups of non-contradictory documents in this setup yields
only moderate gains in terms of labeling accuracy, which translate into even smaller
improvements in terms of the ability to accurately predict the world state. We attribute
this primarily to the fact that accurate prediction of the world state in this domain does
not necessarily require a very accurate labeling of the textual representation, since only
a few key tokens need to be labeled correctly to reconstruct the correct world state.
In fact, for some values one may not need to refer to the document at all due to the
strong correlations between the different aspects of the world state we mentioned in the
preceding section. One could say the task is simply too easy.

6.3 Conclusions

The general approach of learning from documents with non-contradictory semantics can
be useful for certain applications, especially where such data occurs naturally. However,
most semantic parsing tasks considered at the time would use smaller, and often highly
specialized types of text (e.g. NFL recaps or Robocup sportcasting (Liang et al., 2009)),
so one would likely need to construct the dataset from scratch, as we did for the
weather forecasts. Natural sources of such data usually contain larger documents with
complex semantics, which are hard to represent formally, although one could use a
similar approach in the context of shallower analysis, for instance in event extraction
models (Doddington et al., 2004). In fact, some event extraction systems make use of
a similar signal – automatically identified groups of documents with overlapping and
presumably compatible semantics – in a fully unsupervised setting (Krause et al., 2015).

Based on these considerations we decided to shift focus to transfer- and agreement-
based learning for shallower semantics, namely semantic role labeling (SRL), which
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became the subject of this work.
Fürstenau and Lapata (2009) already demonstrated that SRL models can be improved

by using sentences with similar semantic structure, even if the instances are selected
automatically, so having groups of sentences that are known to have consistent semantics
can be expected to yield an improvement as well. However, there are few manually
curated datasets available (Vila et al., 2010; Dolan and Brockett, 2005) and these tend
to contain up to a few thousand sentences, which makes the practical applicability of
approaches relying on these corpora questionable. Hence the focus of our work is on the
cross-lingual setting, where parallel data tends to occur naturally and is readily available
for many language pairs.

87



88



Chapter 7

Conclusions

We have presented three approaches aiding cross-lingual transfer for semantic role
labeling models. Specifically,

Cross-lingual Bootstrapping We investigate the possibility of improving a semantic
role labeling model for a language, where only a small annotated corpus is available,
by enforcing agreement between the source- and target-language models on parallel
sentences. In experiments with four language pairs we observe improvements under
certain conditions, but the idea appears to have limited practical applicability in cases
where substantially different annotation schemes are used for the two languages, as we
demonstrate the role correspondence to be non-trivial to learn, at least for the languages
and formalisms in our experiments. If a role correspondence model can be provided
externally, the quality of the target-language model can be improved substantially through
the bootstrapping process.

Direct Model Transfer To our knowledge, this is the first application of direct model
transfer in the context of semantic role labeling. We compare this approach to another
established cross-lingual technique, annotation projection, and a state-of-the-art unsuper-
vised SRL baseline. The general technique shows competitive performance under the
experimental conditions and we further investigate the contributions of various sources
of information and the effect of using syntactic annotation obtained by syntactic transfer.

Feature Representation Projection A novel approach to cross-lingual transfer is pro-
posed, based on representation learning and aiming to combine the strengths of anno-
tation projection and direct transfer. We demonstrate the viability of the approach in
experiments with four language pairs and propose a number of ways in which it can be
refined further. As a part of this work, we also compare the performance of the proposed
approach to that of annotation projection and direct transfer as a function of the size of
the parallel corpus.

7.1 Multilingual Language Processing

Despite the growing interest in multilingual NLP, most research in computational lin-
guistics and natural language processing still focuses on a single language, sometimes
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borrowing from existing work for other languages with more developed infrastructure,
but rarely taking a holistic, multilingual perspective from the start. Attempts to link
various resources in different languages together, reconcile the annotation differences
and make them more cross-lingually consistent usually come as an afterthought.

For certain tasks, this bottom-up approach can make a lot of sense. Consider depen-
dency parsing: different languages have quite different syntactic structure and therefore
it is reasonable to maintain language-specific sets of dependency relation markers and
design annotation guidelines for each language more or less from scratch (although even
here many of the variations between language-specific formalisms are quite arbitrary).
Developing a unified way to represent syntactic dependency structures across languages
and procedures to derive these from the existing language-specific resources is a separate,
non-trivial effort, which for dependency parsing has started only a few years ago (Mc-
Donald et al., 2013; Zeman et al., 2014). This unification also comes at the cost of some
considerable coarsening, so the universal dependency annotations are potentially less
informative for downstream tasks.

For higher-level, semantic annotation, on the other hand, language-specificity appears
less necessary. At least some degree of cross-lingual applicability and compatibility
would be desirable, and in certain cases these can even be seen as additional quality
criteria for the proposed formalism.

The variations we observe in SRL formalisms and datasets for different languages,
for instance, appear to largely be byproducts of researcher’s desire to refine and improve
what others have come up with, not some specific properties of the language concerned.

Going forward, it seems fairly clear that as a community we would benefit from
maintaining some level of consistency across languages. Yet even now we see exam-
ples of new formalisms being designed in a way that makes them inherently hard to
internationalize. Abstract Meaning Representation, or AMR (Banarescu et al., 2012) is
one such example, based as it is on the system of PropBank framesets. Xue et al. (2014)
offer an interesting analysis of cross-lingual compatibility of AMR structures, but such
comparison, as well as any future attempt to apply this representation in a cross-lingual
setting is made harder by its reliance on language-specific inventories.

We hope to see the notion of multilinguality built directly into the design of the
semantic formalisms to come.
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Appendix A

Appendix

.id:0 .type:temperature .date:2009-02-08 .label:Tonight @time:17-30 #min:32 #mean:35 #max:44

.id:1 .type:windChill .date:2009-02-08 .label:Tonight @time:17-30 #min:0 #mean:0 #max:0

.id:2 .type:windSpeed .date:2009-02-08 .label:Tonight @time:17-30 #min:7 #mean:8 #max:9 @mode-bucket-0-20-2:0-10

.id:3 .type:windDir .date:2009-02-08 .label:Tonight @time:17-30 @mode:SSW

.id:4 .type:gust .date:2009-02-08 .label:Tonight @time:17-30 #min:0 #mean:0 #max:0

.id:5 .type:skyCover .date:2009-02-08 .label:Tonight @time:17-30 @mode-bucket-0-100-4:50-75

.id:6 .type:skyCover .date:2009-02-08 .label:Tonight @time:17-21 @mode-bucket-0-100-4:50-75

.id:7 .type:skyCover .date:2009-02-08 .label:Tonight @time:17-26 @mode-bucket-0-100-4:50-75

.id:8 .type:skyCover .date:2009-02-08 .label:Tonight @time:21-30 @mode-bucket-0-100-4:50-75

.id:9 .type:skyCover .date:2009-02-08 .label:Tonight @time:26-30 @mode-bucket-0-100-4:50-75

.id:10 .type:precipPotential .date:2009-02-08 .label:Tonight @time:17-30 #min:9 #mean:10 #max:14

.id:11 .type:thunderChance .date:2009-02-08 .label:Tonight @time:17-30 @mode:–

.id:12 .type:thunderChance .date:2009-02-08 .label:Tonight @time:17-21 @mode:–

.id:13 .type:thunderChance .date:2009-02-08 .label:Tonight @time:17-26 @mode:–

.id:14 .type:thunderChance .date:2009-02-08 .label:Tonight @time:21-30 @mode:–

.id:15 .type:thunderChance .date:2009-02-08 .label:Tonight @time:26-30 @mode:–

.id:16 .type:rainChance .date:2009-02-08 .label:Tonight @time:17-30 @mode:–

.id:17 .type:rainChance .date:2009-02-08 .label:Tonight @time:17-21 @mode:–

.id:18 .type:rainChance .date:2009-02-08 .label:Tonight @time:17-26 @mode:–

.id:19 .type:rainChance .date:2009-02-08 .label:Tonight @time:21-30 @mode:–

.id:20 .type:rainChance .date:2009-02-08 .label:Tonight @time:26-30 @mode:–

.id:21 .type:snowChance .date:2009-02-08 .label:Tonight @time:17-30 @mode:–

.id:22 .type:snowChance .date:2009-02-08 .label:Tonight @time:17-21 @mode:–

.id:23 .type:snowChance .date:2009-02-08 .label:Tonight @time:17-26 @mode:–

.id:24 .type:snowChance .date:2009-02-08 .label:Tonight @time:21-30 @mode:–

.id:25 .type:snowChance .date:2009-02-08 .label:Tonight @time:26-30 @mode:–

.id:26 .type:freezingRainChance .date:2009-02-08 .label:Tonight @time:17-30 @mode:–

.id:27 .type:freezingRainChance .date:2009-02-08 .label:Tonight @time:17-21 @mode:–

.id:28 .type:freezingRainChance .date:2009-02-08 .label:Tonight @time:17-26 @mode:–

.id:29 .type:freezingRainChance .date:2009-02-08 .label:Tonight @time:21-30 @mode:–

.id:30 .type:freezingRainChance .date:2009-02-08 .label:Tonight @time:26-30 @mode:–

.id:31 .type:sleetChance .date:2009-02-08 .label:Tonight @time:17-30 @mode:–

.id:32 .type:sleetChance .date:2009-02-08 .label:Tonight @time:17-21 @mode:–

.id:33 .type:sleetChance .date:2009-02-08 .label:Tonight @time:17-26 @mode:–

.id:34 .type:sleetChance .date:2009-02-08 .label:Tonight @time:21-30 @mode:–

.id:35 .type:sleetChance .date:2009-02-08 .label:Tonight @time:26-30 @mode:–

Table A.1: An example weather forecast record from the dataset of Liang et al. (2009).
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InputColumn(POSTAG, Stack[0])

InputColumn(POSTAG, Stack[1])

InputColumn(POSTAG, Input[0])

InputColumn(POSTAG, Input[1])

InputColumn(POSTAG, Input[2])

Merge(InputColumn(POSTAG, Input[1]), InputColumn(POSTAG, Input[0]))

Merge(InputColumn(POSTAG, Input[2]), InputColumn(POSTAG, Input[1]))

Merge(InputColumn(POSTAG, Input[0]), InputColumn(POSTAG, Stack[0]))

Merge(InputColumn(POSTAG, Input[1]), InputColumn(POSTAG, Stack[0]))

Merge(InputColumn(POSTAG, Input[2]), InputColumn(POSTAG, Stack[0]))

Merge(InputColumn(POSTAG, Input[0]), InputColumn(POSTAG, Stack[1]))

Merge(InputColumn(POSTAG, Input[1]), InputColumn(POSTAG, Stack[1]))

Merge(InputColumn(POSTAG, Input[2]), InputColumn(POSTAG, Stack[1]))

Merge(InputColumn(POSTAG, Stack[1]), InputColumn(POSTAG, Stack[0]))

InputColumn(CLC, Stack[0])

InputColumn(CLC, Stack[1])

InputColumn(CLC, Input[0])

InputColumn(CLC, Input[1])

InputColumn(CLC, Input[2])

Merge(InputColumn(CLC, Input[1]), InputColumn(CLC, Input[0]))

Merge(InputColumn(CLC, Input[2]), InputColumn(CLC, Input[1]))

Merge(InputColumn(CLC, Input[0]), InputColumn(CLC, Stack[0]))

Merge(InputColumn(CLC, Input[1]), InputColumn(CLC, Stack[0]))

Merge(InputColumn(CLC, Input[2]), InputColumn(CLC, Stack[0]))

Merge(InputColumn(CLC, Input[0]), InputColumn(CLC, Stack[1]))

Merge(InputColumn(CLC, Input[1]), InputColumn(CLC, Stack[1]))

Merge(InputColumn(CLC, Input[2]), InputColumn(CLC, Stack[1]))

Merge(InputColumn(CLC, Stack[1]), InputColumn(CLC, Stack[0]))

Merge(InputColumn(CLC, Input[0]), InputColumn(POSTAG, Input[0]))

Merge(InputColumn(CLC, Input[1]), InputColumn(POSTAG, Input[1]))

Merge(InputColumn(CLC, Input[2]), InputColumn(POSTAG, Input[2]))

Merge(InputColumn(CLC, Stack[0]), InputColumn(POSTAG, Stack[0]))

Merge(InputColumn(CLC, Stack[1]), InputColumn(POSTAG, Stack[1]))

OutputColumn(DEPREL, Stack[0])

OutputColumn(DEPREL, ldep(Stack[0]))

OutputColumn(DEPREL, rdep(Stack[0]))

OutputColumn(DEPREL, ldep(Input[0]))

Table A.2: Features used in syntactic transfer in the format used by the Malt Parser. CLC
indicates the cross-lingual cluster ID associated with a given token.
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arg0-agt A0

arg0-cau A0

arg0-exp A0

arg0-null A0

arg0-pat A0

arg0-src A0

arg1-ext A1

arg1-loc A1

arg1-null A1

arg1-pat A1

arg1-tem A1

argL-null A1

arg2-atr A2

arg2-ben A2

arg2-efi A2

arg2-exp A2

arg2-ext A2

arg2-ins A2

arg2-loc A2

arg2-null A2

arg2-tem A2

argM-ins A2

arg3-ben A3

arg3-des A3

arg3-ein A3

arg3-exp A3

arg3-fin A3

arg3-ins A3

arg3-loc A3

arg3-null A3

arg3-ori A3

arg4-des A4

arg4-efi A4

argM-adv AM-ADV

argM-cau AM-CAU

argM-ext AM-EXT

argM-loc AM-LOC

argM-atr AM-MNR

argM-mnr AM-MNR

argM-fin AM-PNC

argM-tmp AM-TMP

Figure A.1: Role mapping for English-Spanish. The original ones are derived from
AnCora and are mapped here to be compatible with the PropBank-based ones.
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A0 A0

A1 A1

A2 A2

A3 A3

A4 A4

A5 A5

AA A0

AM AM

AM-ADV ADV

AM-CAU ADV

AM-DIR DIR

AM-DIS DIS

AM-EXT EXT

AM-LOC LOC

AM-MNR MNR

AM-MOD _

AM-NEG _

AM-PNC PNC

AM-PRD PRD

AM-PRT _

AM-REC _

AM-TMP TMP

A0 A0

A1 A1

A2 A2

A3 A3

A4 A4

A5 A5

ADV ADV

ARGM AM

ASP _

BNF ADV

C-A0 A0

C-A1 A1

C-A2 A2

C-A3 A3

C-ADV ADV

C-ARGM-DIS DIS

C-TMP TMP

CND ADV

CRD _

DGR EXT

DIR DIR

DIS DIS

EXT EXT

FRQ TMP

LOC LOC

MNR MNR

PRD PRD

PRP PNC

PSE _

PSR _

QTY _

TMP TMP

TPC ADV

VOC _

Figure A.2: Role label mapping for English-Chinese. The sets of roles are partially
compatible, but the naming is different and some roles have no clear counterparts. We
map compatible roles from both sets into a smaller, simplified role inventory and omit
the remaining ones. The mapping for the English corpus is on the left and for Chinese
on the right.
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