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Abstract  Hydrogels represent a class of high water content polymers with physical or chemical crosslinks. Their physical 
properties are similar to soft tissues. Cross linking is a stabilization process in polymer chemistry which leads to 
multidimensional extension of polymeric chain resulting in network structure. Cross-link is a bond which links one polymer 
chain to other. It can be ionic or covalent. Cross linking changes a liquid polymer into ‘solid’ or ‘gel’ by restricting the ability 
of movement. When polymer chains are linked together by cross-links, they lose some of their ability to move as individual 
polymer chains. A liquid polymer (where the chains are freely flowing) can be turned into a ‘solid’ or ‘gel’ by cross-linking 
the chains together. Cross linking increases the molecular mass of a polymer. Cross-linked polymers are important because 
they are mechanically strong and resistant to heat, wear and attack by solvents. However, the drawback associated with 
cross-linked polymers is that they are relatively inflexible when it comes to their processing properties because they are 
insoluble and infusible. 
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1. Introduction 
Hydrogels are crosslinked hydrophilic polymer structures 

that can imbibe large amounts of water or biological fluids. 
Hydrogels are one of the upcoming classes of polymer-based 
systems that embrace numerous biomedical and 
pharmaceutical applications. Because of their inherent 
property of biocompatibility they offer good opportunities as 
protein delivery systems or tissue engineering scaffolds. 
Their hydrophilic, soft and rubbery nature ensures minimal 
tissue irritation and a low tendency of cells and proteins to 
adhere to the hydrogel surface. 

The use of hydrogel for biomedical applications dates 
back to 1960 when Wichterle and Lim developed crosslinked 
poly (hydroxyethyl methacrylate) (pHEMA) [1]. First 
synthetic hydrogels of HEMA with EGDMA (Ethylene 
glycol di-methyl acrylate) as cross-linker were prepared for 
biological use and later used for production of contact lenses 
[1]. 

Because of their versatile and unique properties, hydrogels 
have vast potential applications, including soil/water 
stabilization layers in farming and civil engineering 
structures [2], soil conditioners, controlled release of 
fertilizers [3,4], fiber and metallic cable sealing [5], in water 
technologies [6], thickening agents for cosmetics [7], in drug 
delivery systems [8] and in many other fields. One of the 
most dynamic fields in which the super-absorbent hydrogels  
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play the principle role is in the manufacture of personal care 
products such as feminine hygiene products, adult 
incontinence products and disposable diapers [9]. 

2. Significance of Crosslinking 
Adding cross-links between polymer chains affect the 

physical properties of the polymer depending upon the 
degree of cross linking and presence and absence of 
crystallinity. Cross linking results in: 

i) Elasticity (they can stretch and return to their original 
form). Elastomers are elastic polymers created by limited 
cross-linking. As the number of cross-links increases, 
however, the polymer becomes more rigid and cannot stretch 
as much; the polymer will become less viscous and less 
elastic and might even become brittle. 

The vulcanization or sulfur curing of rubber, for example, 
results from the introduction of short chains of sulfur atoms 
that link the polymer chains in natural rubber. Bridges made 
by short chains of sulfur atoms tie one chain of polyisoprene 
to another, until all the chains are joined into one giant super 
molecule. The chemical process of vulcanization is a type of 
cross-linking which increases the strength of rubber. It 
makes rubber hard and durable material associated with car 
and bike tires.  

ii) Decrease in the viscosity (the resistance to flow) of 
polymers. In order for polymers to flow, the chains must 
move past each other and cross-linking prevents this. As a 
result of restriction in flow there is improvement in the creep 
behavior. 

iii) Insolubility of the polymer. Cross linking results in 
insolubility as the chains are tied together by strong covalent 
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bonds. Crosslinked materials can't dissolve in solvents, but 
can absorb solvents. Crosslinked material after absorbing lot 
of solvent is called a gel. For example crosslinked 
polyacrylamide gel. Uncrosslinked polyacrylamide is 
soluble in water, and crosslinked polyacrylamides can 
absorb water but is insoluble. Water-logged gels of 
crosslinked polyacrylamides are used to make soft contact 
lenses.   

iv) Increased Tg and increase strength and toughness. 
Crosslinking changes the local molecular packing, resulting 
decrease in free volume, leading to increase in Tg. PVA 
crosslinked with boric acid showed increased glass transition 
temperature [10]. Cross-links slow down the PVA molecular 
motion and must not be included in the crystalline domains. 

v) Lower melting point. For crystalline polymer with low 

degree of cross linking there is a decrease in the crystalline 
behavior, as cross linking introduces hindrance to the chain 
orientation resulting in softer, elastic polymer having lower 
melting point. 

vi) Transformation of therrmoplasts into thermosets. 
Heavy cross-linking changes thermoplasts to thermoset 
plastics. Once the cross-links form, the polymer’s shape 
cannot be changed again without destroying the plastic. 
Unlike thermoplastic polymers, the process cannot be 
undone by reheating; thermoset plastics will start to 
decompose rather than becoming moldable and pliable. The 
first thermoset was polyisoprene. More the sulfur crosslinks 
put into the polyisoprene, the stiffer it gets. Lightly 
crosslinked, it's a flexible rubber. Heavily crosslinked, 
becomes a hard thermoset. 

 
Figure 1.  Vulcanization of rubber 

 
Figure 2.  Reaction of PVA with boric acid 
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3. Methods of Crosslinking 
Depending upon the nature of the polymer, different 

techniques may be used to cause cross linking. Cross-linking 
may occur through polymerization of monomers having 
functionalities more than two (by condensation) or by 
covalent bonding between polymeric chain through 
irradiation, sulphur vulcanization or chemical reactions by 
adding different chemicals in conjunction with heating and, 
sometimes, pressure. In all cases, the chemical structure of 
the polymer is altered through the cross linking process. 
Cross linking by irradiation is done by using high-energy 
ionizing radiation, like electron beam (e-beam), gamma, or 
x-ray. Gamma irradiation is usually most economical at 
lower doses (~80 kGy and below) and for large, high density 
parts. Electron beam is commonly used for small parts, 
particularly low density parts, and in linear product 
processed reel to reel (eg, wire, cable, tubing).  

4. Hydrogels and Crosslinking 
The term “hydrogel” represent water insoluble polymeric 

network that has capacity to absorb large amount of water 
[11-15]. A hydrogel is a macromolecular polymer gel 
constructed of a network of crosslinked polymer chains. 
They are synthesized from hydrophlic monomers by either 
chain or step growth, along with a functional crosslinker to 
promote network formation. Synthetic or natural polymers, 
homopolymer or copolymer, are used to make three 
dimensional networks by molecular entanglements or by 
chemical crosslinking [16].  

 
Figure 3.  Cross-linking in polymer 

The property of hydrogels to swell under biological 
conditions makes them an ideal class of materials for 
biomedical applications, such as drug delivery and tissue 
engineering [17–30]. Cross linking either physically or 
chemically gives hydrogel a 3D network structure, making it 
insoluble. This insoluble cross-linked structure allows 
effective immobilization and release of active agents and 
biomolecules. Hydrogels appear similar to natural soft 
tissues because of their high water content. 

Classification of hydrogels: Hydrogels can be classified 
into physical and chemical hydrogels based on their 
cross-linking mechanism [19, 28]. Physical crosslinks 
include entangled chains, hydrogen bonding, hydrophobic 
interaction and crystallite formation. These physical 
crosslinks may not be permanent in nature, but they are 
sufficient to make hydrogels insoluble in an aqueous media. 
Physical crosslinking gives reversible hydrogels. Physical 
hydrogels can absorb the water but inhomogeneities or 

network defects may occur due to free chain ends or chain 
loops [29, 30].  

Chemical or permanent hydrogels are formed by covalent 
crosslinking of polymers [31]. One common way to create a 
covalently crosslinked network is to polymerize 
end-functionalized macromers [23, 27, 32]. 

Hydrogels are crosslinked with many compounds such as 
glutaraldehyde [33]. Some other crosslinking compounds are 
formaldehyde, epoxy compounds, dialdehyde [34, 35, 36]. 

A net-like structure along with void imperfections 
enhance the hydrogel's ability to absorb large amounts of 
water via hydrogen bonding. 

The type and degree of crosslinking influences many of 
the network properties, like swelling properties, elastic 
modulus and transport of molecules [37]. Hydrogels can be 
prepared from natural, synthetic or synthetic/natural hybrid 
polymers. 

A variety of polysaccharides like heparin, chitosan, 
dextran and alginate have been explored as hydrogels for 
tissue engineering owing to their good biocompatibility, 
biodegradability, as well as excellent gel-forming properties 
[38–42]. Polysaccharide hydrogels can be formed by 
covalent crosslinking, chemical conjugation, esterification 
and polymerization. In addition, polysaccharides have been 
combined with proteins such as collagen, gelatin, laminin 
and fibrin to form an interpenetrating network or composite 
hydrogels [43–51]. 

Protein-based hydrogels can be formed by thermal 
gelation and their mechanical properties can be enhanced 
using chemical crosslinkers such as glutaraldehyde. 

Synthetic polymers possess more reproducible physical 
and chemical properties compared to natural, which is very 
important for the fabrication of tissue-engineering scaffolds. 
While designing a scaffold mechanical stability of the gel is 
an important consideration. The strength of hydrogels can be 
increased by incorporating crosslinking agents, comonomers, 
and increasing the degree of crosslinking [11, 49, 50].  

Nonbiodegradable synthetic hydrogels can be prepared 
from the copolymerization of various vinylated monomers or 
macromers [52–60], such as 2-hydroxyethyl methacrylate 
(HEMA), 2-hydroxypropyl methacrylate (HPMA), 
acrylamide (AAm), acrylic acid (AAc), N-isopropylacrylam
ide (NIPAm), and methoxyl poly (ethylene glycol) (PEG) 
monoacrylate (mPEGMA or PEGMA), with crosslinkers, 
such as N,N′-methylenebis(acrylamide) (MBA), ethylene 
glycol diacrylate (EGDA) and PEG diacrylate (PEGDA). 

Poly (N-isopropylacrylamide) (PNIPAm) has been 
investigated extensively as a thermo-sensitive polymer, 
which can form thermosensitive hydrogels from free radical 
copolymerizing of NIPAm with crosslinkers like MBA [54, 
55]. PEG-based hydrogels can be prepared by radiation 
crosslinking of PEG or free radical polymerization of PEG 
macromers. 

PVA is another synthetic hydrophilic polymer that has 
been explored as hydrogels for tissue-engineering 
applications [61, 62]. PVA can also be modified with 
acryloyl chloride or glycidyl methacrylate to generate 
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reactive acrylate groups through the pendant hydroxyl 
groups, followed by crosslinking polymerization to form 
hydrogels. In addition, PVA can blend with other 
water-soluble polymers to form hydrogels. Polyvinyl alcohol 
(PVA) based hydrogels have advantageous characteristics of 
good mechanical strength and high water retaining ability 
along with properties of biocompatibility, flexibility and can 
also be used as artificial soft tissue [62].  

5. Synthesis of Hydrogels 
Hydrogels are synthesized by different polymerization 

methods using both chemical and physical crosslinking 
routes. Both natural polymers such as proteins or synthetic 
polymers like PVA with a high affinity for water can be 
crosslinked. Different crosslinking methods can be 
implemented for the design of a hydrogel. The following 
chemical and physical methods reflect the synthesis of 
hydrogels. PVA cross-linked membranes were synthesized 
using glutaraldehyde as cross-linking agent [63].  

Chemically crosslinked hydrogels are synthesized by 
chain growth polymerization, addition and condensation 
polymerization and gamma and electron beam 
polymerization. 

Chain-growth polymerization includes free radical 
polymerization, controlled free radical polymerization, 
anionic and cationic polymerization. It is done by three 
process viz., initiation, propagation, and termination. After 
initiation, a free radical active site is generated which adds 
monomers in a chain link-like fashion. 

Poly (N-isopropyl acrylamide) hydrogel are synthesized 
by typical free radical polymerization PVA based hydrogels 
are prepared by free radical copolymerization. PVA has been 
cross-linked chemically with monomer (methacrylic acid) in 
aqueous medium using ethylene glycol di-methacrylate 
(EGDMA) as cross-linking agent and benzoyl peroxide as 
reaction initiator. Monomer MAA is used to impart pH 
sensitive characteristics. This pH sensitive chemically 
cross-linked PVA hydrogels is a promising delivery system 
for colonic delivery of 5-fluorouracil in colorectal cancer 
[64]. 

Controlled living radical polymerizations offer the 
benefits of longer growing chain life compared to free 
radical polymerizations for macromolecular engineering.  

Anionic and Cationic polymerization methods suffer from 
extreme sensitivity toward aqueous environments and 
therefore, are not used in the synthesis of polymeric 
hydrogels. 

Addition and condensation polymerization involves 
stepwise addition of Polyfunctional crosslinking agents with 
monomer functional groups. Water soluble monomers can be 
converted into hydrogels using crosslinking agents such as 
tetramethylethylenediamine (TEMED). Polymer chains may 
be crosslinked in the presence of water to form a hydrogel. 
Water occupies voids in the network, giving the hydrogel its 

characteristic surface properties. Polyurethanes, polyesters, 
or nylon polymers are most commonly synthesized for 
hydrogel applications [65]. 

Gamma and electron beam polymerization involves high 
energy electromagnetic irradiation as crosslinker. These high 
energy radiations can crosslink water-soluble monomer or 
polymer chain ends without the addition of a crosslinker. 
During irradiation, using a gamma or electron beam, aqueous 
solutions of monomers are polymerized to form a hydrogel. 
Gamma and electron beam polymerizations also involves the 
initiation, propagation, and termination steps as in the free 
radical polymerization. Hydroxyl radicals are formed and 
initiate free radical polymerization among the vinyl 
monomers which propagate in a rapid chain addition fashion 
[65]. The hydrogel is finally formed once the network 
reaches the critical gelation point. This process has an 
advantage over other crosslinking methods since it can be 
performed at room temperature and in physiological pH 
without using toxic and hard to remove crosslinking agents 
such as potassium persulfate [65]. 

Physically crosslinked hydrogels are synthesized by ionic 
interaction, crystallization, stereocomplex formation, 
hydrophobized polysaccharides, protein interaction and 
hydrogen bond. 

In ionic interactions, hydrogels can be crosslinked under 
mild conditions, at room temperature and physiological pH. 
This process of cross-linking doesnot require presence of 
ionic groups in the polymer. The use of metallic ions yield 
stronger hydrogel [65].  

For stereocomplex formation, a hydrogel is formed 
through crosslinking that is formed between lactic acid 
oligomers of opposite chirality [65].  

Hydrophobic interactions results in the polymer to swell 
and uptake water that forms the hydrogel. Polysaccharides 
such as chitosan, dextran, pullulan and carboxymethyl 
curdlan [65] are reported in literature for the preparation of 
physically crosslinked hydrogels by hydrophobic 
modification. 

Protein interaction involves block copolymers that 
contains repetition of silk-like and elastine-like blocks called 
ProLastins [65]. These ProLastins are fluid solutions in 
water and can undergo a transformation from solution to gel 
under physiological conditions because of the crystallization 
of the silk-like domains [65]. 

Poly Acrylic Acid (PAA) and Poly Methacrylic Acid 
(PMA) form complexes with Poly Ethylene Glycol (PEG) 
from the hydrogen bonds between the oxygen of the PEG 
and carboxylic group of PMA [65]. This interaction allows 
for the complex to absorb liquids and swell at low pH which 
transforms the system into a gel. Crystallization involves 
freezing-thawing process and creates a strong and highly 
elastic gel [66]. PVA hydrogels can be formed by physically 
crosslinking through repeated freezing/thawing methods, or 
chemically crosslinked with glutaraldehyde or 
epichlorohydrin. Table 1 shows the name of some hydrogels, 
cross-linking agents and their applications.  
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Table 1.  Hydrogels, crosslinking agent and their applications  

Hydrogel Cross linking agent Applications 

Poly Vinyl Alcohol Sodium borate/boric acid [10] Packaging 

Polyvinyl alcohol Glyoxal 

Adhesives 
Plastic films for packaging and 

water-soluble plastic bags Binders 
Fuel-resistant hoses 

Starch Glyoxal Paper industry 

Cellulose Glyoxal Textile industry 

Protein and gelatin Glyoxal Food packaging 

Polyethylene Silane Wires, cables, pipes heat shrinkable tubes 

Agarose and chitosan Oxidized dextrins [67] Tissue engineering applications 

Chitosan Glutarldehyde [68] Scaffold of hepatocyte 

Guar gum Epichlorohydrin [69] Biomedical application 

Gellan gum Endogen polyamine spermidine [70] Drug delivery 

Glycol chitosan Oxidized alginate [71] Drug delivery 

Hydroxamated alginates Zinc [72] Drug delivery 

Alignate bead Zinc [73] Drug delivery 

Scleroglucan Borax [74] Drug delivery 

Poly(acrylic-co-vinylsulfonic) acid Ethylene glycol dimethacrylate (EGDMA) [75] Drug delivery 

Polyacrylamide N,N′-methylenebisacrylamide [76] Dehydrating agent 
Polyacrylamide/guar gum graft 

copolymer Glutaraldehyde [77] Sorbent material for chromium ion (Cr (VI) 

Polyacrylamide/guar gum graft 
copolymer Glutaraldehyde [78] Water transport and drug release 

 
6. Conclusions 

Chemical cross-linking is a highly versatile method to 
improve the mechanical property of the hydrogels. However, 
cross-linking agents are often toxic compounds and not 
environmental friendly. They give unwanted reactions with 
the bioactive substances present in the hydrogel matrix. The 
adverse effects of chemical cross-linking can be avoided by 
the process of physical cross linking using radiation or 
electron beam method. Radiation cross-linking is more 
advantageous as the amount of cross-linking can be 
controlled by the amount of dose used and is an energy 
efficient and cleaner process with no unwanted residuals in 
the products. 
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