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Cross-membranes orchestrate
compartmentalization and
morphogenesis in Streptomyces
Katherine Celler1,*, Roman I. Koning2,*, Joost Willemse1, Abraham J. Koster2 & Gilles P. van Wezel1

Far from being simple unicellular entities, bacteria have complex social behaviour and

organization, living in large populations, and some even as coherent, multicellular entities.

The filamentous streptomycetes epitomize such multicellularity, growing as a syncytial

mycelium with physiologically distinct hyphal compartments separated by infrequent

cross-walls. The viability of mutants devoid of cell division, which can be propagated

from fragments, suggests the presence of a different form of compartmentalization in the

mycelium. Here we show that complex membranes, visualized by cryo-correlative light

microscopy and electron tomography, fulfil this role. Membranes form small assemblies

between the cell wall and cytoplasmic membrane, or, as evidenced by FRAP experiments,

large protein-impermeable cross-membrane structures, which compartmentalize the

multinucleoid mycelium. All areas containing cross-membrane structures are nucleoid-

restricted zones, suggesting that the membrane assemblies may also act to protect nucleoids

from cell-wall restructuring events. Our work reveals a novel mechanism of controlling

compartmentalization and development in multicellular bacteria.
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B
acteria have a complex organization on both a unicellular
and multicellular level, with many species demonstrating
multicellular traits or behaviours analogous to those seen in

eukaryotic systems1. This multicellularity can manifest itself
in different ways, from intercellular communication between
individual cells in a population, to a lifecycle spent as a coherent
group of cells, such as in biofilms, fruiting bodies, filaments or
mycelia2,3. A case in point are the streptomycetes, filamentous
bacteria, which grow forming highly structured multicellular
colonies composed of physiologically distinct hyphae4,5.

The streptomycetes are soil-dwelling saprophytes, well-known
for their complex secondary metabolism and ability to produce an
abundance of natural products including antibiotics, anticancer
agents and immunosuppressants6. After a spore has germinated, a
complex network is formed as the hyphae grow by tip extension
and branching into a syncytial vegetative mycelium separated by
occasional peptidoglycan-based septa, with a spacing of some
5–10 mm (ref. 7). Upon nutrient depletion, the streptomycetes
undergo extensive chemical and physiological differentiation,
with the coordinated production of aerial hyphae and
antibiotics8,9. At this stage in the life cycle, programmed cell
death (PCD) occurs in certain parts of the vegetative mycelium
and not others, which may be interpreted as a strategy to provide
nutrients to the developing aerial mycelium10. The aerial hyphae
eventually metamorphose into chains of unigenomic spores.

Though cell division is the hallmark of life, in Streptomyces it is
non-essential and the gene encoding the cell division scaffold
protein FtsZ can be deleted11. Surprisingly, although it no longer
undergoes reproductive cell division and fails to form the cross-
walls that are needed to compartmentalize vegetative hyphae, the
ftsZ-deletion mutant can be propagated from fragments obtained
by mechanical maceration of a large syncytial mycelium11,12. It is
a mystery why in the absence of any physical barrier the hyphae
do not ‘bleed’ to death from open hyphal ends. This strongly
suggests that a yet unknown form of compartmentalization of the
hyphae exists13. Compartmentalization is also implied by the
infrequent nature of cross-wall division in the vegetative hyphae,
yet prevalence of short live and dead portions of hyphae
undergoing differentiation and PCD14.

The streptomycetes grow by hyphal extension at apical sites,
with highly dynamic cell wall construction and remodelling15,16.
In the absence of a clear mid-cell reference point, growth and
division in these multicellular bacteria pose an interesting
problem: how can these processes take place without damaging
the many chromosomes in the multinucleoid hyphae? In
addition, during sporulation-specific cell division up to a
hundred septa are formed in the sporogenic aerial hyphae,
visualized as spectacular Z ladders over nucleoids that have not
yet segregated17–19. The canonical DNA-damage control systems
such as the SOS response or nucleoid occlusion, which mediate
division control in cells with a planktonic lifestyle20–22, have not
been identified in Streptomyces. An alternative system must
therefore exist to prevent lethal DNA damage by the cell-wall
synthetic machineries.

In this work, we demonstrate the presence of a membrane
system in the vegetative hyphae of Streptomyces, existing apart
from the peptidoglycan-based cell compartmentalization
mediated by the FtsZ-guided cell division machinery. These so-
called ‘cross-membranes’ form protein impermeable barriers
between hyphal segments and effectively compartmentalize the
multinucleoid hyphae.

Results
Intracellular membranes exist in Streptomyces vegetative hyphae.
To investigate membrane remodelling in the Streptomyces vegetative
mycelium, anionic phospholipids including phosphatidylglycerol

(PGL), were stained with the membrane dye FM5–95, cross-walls
stained with FITC-WGA (FITC-wheat germ agglutinin, or alter-
natively, BODIPY-vancomycin, which binds to the terminal d-Ala
within the wall peptide of peptidoglycan23) and their localization
studied with fluorescence light microscopy (fLM). This not only
revealed membrane structures associated with peptidoglycan cross-
walls (Fig. 1a), but also in surprisingly large assemblies, several
micrometres in length, spanning the width of vegetative hyphae
(Fig. 1b). Lipid assemblies were present within hyphae in differing
amounts, with some hyphae being devoid of membranes and others
containing multiple formations, from small blebs to large structures.
Quantification experiments indicated that of 218 membrane
localizations counted, 75.3% localized in large or small apparently
non-septal assemblies. The remaining 24.7% were at septal
locations—either clearly co-localizing with BODIPY-vancomycin
or in the absence of BODIPY-vancomycin—still appearing in thin,
cross-wall-like form (Supplementary Table 1 and Supplementary
Figs 5–8).

We applied cryo-correlative light and electron microscopy
(cryo-CLEM), combining cryo-fLM with cryo-electron
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Figure 1 | Membrane assemblies in vegetative hyphae. (a) In vegetative

hyphae of S. coelicolor M145 stained with the membrane dye FM5–95 (red)

and the cell wall dye FITC-WGA (green), cross-walls are evident

(arrowheads). (b) Large membrane structures/agglomerates are also found

within hyphae, which do not co-localize with WGA-stained cross-walls

(arrowheads). (c–f) To investigate their ultrastructure, membranes in

S. albus were fluorescently labelled with FM5–95 and imaged with

cryo-CLEM. Positions with extended lipids were observed (d–f).

Cross-membrane assemblies within hyphae (d,e) and at tips (e,f) consisted

of extended tubular membrane structures. A light region, devoid of

ribosomes and other macromolecular complexes, can be seen forming a

faint ribbon behind a membrane-filled tip (arrows, f; for tomogram see

Supplementary Movie 1). Scale bars, 5 mm (a–c), 500 nm (d–f).
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tomography (cryo-ET), to study the fine structural detail of
the membrane assemblies in three dimensions at nanometre
resolution. Cryo-CLEM enables direct fluorescent labelling and
targeting of molecules or molecular assemblies (such as
intracellular membranes, DNA or cyto-structural elements) in
the same cryo-immobilized samples that are then visualized by
cryo-ET, avoiding the possible artefacts of chemical fixation,
plastic embedding and/or metal staining. In this manner,
sites of interest can be quickly located without imposing
cryogenic samples to extended electron beam damage. We used
Streptomyces albus in our cryo-CLEM experiments as this strain
is morphologically very similar to model organism S. coelicolor on
agar plates, with abundant sporulation, yet has thinner hyphae in
submerged cultures and therefore allows for high-resolution
three-dimensional imaging by whole-cell cryo-ET. By performing
cryo-CLEM on S. albus hyphae stained with FM5–95, we were
able to readily target membrane assemblies within hyphae
(Fig. 1c). In young vegetative hyphae (12 h after inoculation),
membranes could be seen forming bundles of tube-like structures
varying from small assemblies along the cell wall to large
structures completely delimiting the hyphae (Fig. 1d and
Supplementary Fig. 1). The membranes were also identified at
apical sites (Fig. 1e,f and Supplementary Movie 1), as seen in fLM
of S. coelicolor24. Similar membrane assemblies were also found
in S. coelicolor when examined by cryo-CLEM (Supplementary
Fig. 2).

Cryo-ET and data segmentation enabled visualization and
analysis of the membrane formations in three dimensions, and
demonstrated that the assemblies form in the space between the
cytoplasmic membrane and cell wall (Fig. 2). Membranes were
observed to vary from several small tubes to larger structures,
which appeared to be constricting, decreasing the connection
between hyphal compartments, likely in an intermediate stage of
membrane closure (Fig. 2c). Evidence of septum synthesis could
also be seen associated with cross-membranes, and mostly with
full cross-membrane structures, which spanned the entire hyphae
(Fig. 2d). Tomograms and full 3D surface renderings can be
found in Supplementary Movies 2–5.

Cross-membranes create a chromosome-free area. Excited by
the novel visualization of cross-membranes that cryo-ET afforded
and to specifically determine the spatial localization of the
membranes relative to chromosomes, we combined membrane
staining by FM5–95 with chromosome visualization using 40,
6-diamidino-2-phenylindole (DAPI; Fig. 3a–c). It was previously
demonstrated that nucleoids are absent from areas enriched in
anionic phospholipids24. We observed that all areas that showed a
distinct gap in DAPI fluorescence in cryo-fLM, and therefore
were devoid of DNA, correlated to large hyphae-spanning
membrane assemblies (red arrows, Fig. 3a,d) or vesicle
structures (blue arrows, Fig. 3b,d). Again, we observed evidence
of septum synthesis within full cross-membrane structures, which
spanned the entire hyphae (Fig. 3e–h). This correlation, as well as
the frequent presence of membranes at hyphal tips, suggested that
in Streptomyces vegetative hyphae membrane assemblies may act
to occlude chromosomal DNA from sites of active cell wall
restructuring, either for septum synthesis (Fig. 3f–h), tip growth
or branching.

Membranes form independent of cell wall remodelling. To
investigate the relationship between membrane formation and
cell wall remodelling, we stained samples for cryo-CLEM with
BODIPY-vancomycin and looked for membrane assemblies at
locations of BODIPY-vancomycin staining. Experiments revealed
numerous examples of BODIPY-vancomycin staining present at

septa (Fig. 4a), and to a lesser extent at growing tips (Fig. 4b),
and new branch points (Fig. 4c). High-resolution transmission
electron micrographs confirmed that some regions stained with
BODIPY-vancomycin also contained cross-membranes (Fig. 4d).
A statistical analysis on fLM images co-stained with BODIPY-
vancomycin and FM5–95 indicated that of a total of 335 locations
measured (containing FM5–95 staining, BODIPY-vancomycin
staining or both), 117 (34.9%) demonstrated only BODIPY-
vancomycin staining (and no FM5–95 staining) at septa or points
of cell wall remodelling. Of the remaining locations, 153 (45.6%)
demonstrated only FM5–95 staining, and 65 (19.4%) demon-
strated both (Supplementary Table 1 and Supplementary
Figs 5–8). This result suggests that membranes are either not
essential for new cell wall formation, or that if membranes do
co-localize with newly forming cell wall, the co-localization is
transient. To obtain insight into the dynamics of co-localization
during peptidoglycan synthesis, we therefore performed live
imaging experiments. These experiments, however, repeatedly
failed due to the toxicity of the immunofluorescence stains to
young vegetative hyphae.

Streptomyces grow by hyphal tip extension, with polar growth
and branching depending on DivIVA25. As we observed many
membrane-filled tips during cryo-CLEM experiments, we were
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Figure 2 | Electron tomography and data segmentation of membrane

formations in three dimensions. Cryo-ET slices (top row), surface

renderings of the tomograms (middle row) and 2D model (bottom rows,

side view and top view) of intracellular membranes in vegetative hyphae of

Streptomyces. When no membranes are observed, hyphae appear as in a. An

example of small patches, or blebs, of densely packed lipid tubes between

the cytoplasmic membrane and cell wall is given in b. White arrowheads

denote lighter areas, devoid of ribosomes. In c, lipid tubes can be seen

increasingly constricting the cytoplasm, whereas in d, full cross-membranes

are evident, forming a plug across the hypha. In the 2D model, cell wall

(red), DNA (dark blue), cytoplasm (light blue), cytoplasmic membrane

(black), membrane tubes and vesicles (green) are schematically depicted

from orthogonal (third row) and parallel views (fourth row).
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interested to see if these membranes mark the location of
DivIVA. We performed fLM studies to quantify the co-
localization of this morphoprotein with membranes and found
that 27.0% of DivIVA foci co-localize with membrane assemblies
(Supplementary Table 2 and Supplementary Fig. 9).

Given the incomplete spatio-temporal co-localization of
membranes with newly forming cell wall at cross-walls or hyphal
tips, we wondered whether cross-membranes form independent
of septum synthesis. We therefore quantified membrane and cell
wall formation in the S. coelicolor ftsZ deletion strain, which
grows without forming septa11. fLM experiments staining the
hyphae with FM5–95 for membranes and WGA for newly

forming cell wall demonstrated that in 77 hyphae, with a total
length of roughly 2,635 mm, 368 cross-membranes were present
and no cross-walls (Fig. 5). This amounts to one cross-membrane
per 7.16±0.66 mm. In wild type, the number of cross-membranes
is much higher at one cross-membrane per 2.86±0.50 mm
(N¼ 313 membranes counted), whereas the number of cross-
walls formed is one per 9.03±0.46 mm (N¼ 99 cross-walls
counted). Cryo-electron microscopy (EM) experiments
confirmed that the cross-membranes in the ftrsZ deletion strain
appear indistinguishable to those in wild-type S. coelicolor
(Supplementary Fig. 3). The complete absence of cross-walls
and abundance of cross-membranes in the ftsZ deletion strain
indicates that septum synthesis is not required for the formation
of—and that septa are not necessarily present in—cross-
membranes.

Cross-membranes compartmentalize hyphae. Staining of
Streptomyces mycelium with propidium iodide and SYTO 9
demonstrates alternating live and dead compartments in young
vegetative mycelium, suggesting that the PCD linked to devel-
opment already occurs in very young hyphae26. We wondered if
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Figure 3 | DNA and cross-membranes are mutually exclusive in

vegetative hyphae. Vegetative hyphae of S. albus fluorescently labelled with

FM5–95 for membranes (a) and DAPI for DNA (b) were imaged by

cryo-CLEM (c) and cryo-ET (d). All areas that contained membrane

assemblies (red arrowheads, a,d) were devoid of DNA. Vesicularization

could be seen near a completed cross-wall in an area devoid of DNA

(blue arrowheads, b,d). In a second example, fluorescent labelling of

vegetative hyphae of S. albus with DAPI (e) again revealed positions devoid

of DNA (white rectangle denoted f) and filled with membranes and vesicles

as shown by cryo-EM. Cell wall formation can be seen within the

membranes (black arrowheads, f). In g,h, other examples of newly forming

cell wall within membranes are shown. Scale bars, 500nm a–d; e, 5 mm;

f–h, 200 nm.
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Figure 4 | Vancomycin-BODIPY staining shows positions of cell wall

restructuring. Cryo-CLEM on vegetative hyphae of S. albus that were

fluorescently labelled with vancomycin-BODIPY showed that restructuring

of cell wall mainly occurs at sites of septa (a), but also at tips (b), branch

points (c) and cross-membranes (d).
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the large cross-membrane structures we observe (and not septa)
form the cytosol impermeable barrier that enables this type of
differentiation. We therefore applied fluorescence recovery after
photobleaching (FRAP) on a S. coelicolor strain constitutively
expressing enhanced green fluorescent protein (eGFP) and
stained with FM5–95 for membranes, bleaching an entire
compartment on one side of a cross-membrane to establish
whether green fluorescent protein (GFP) molecules from
the adjacent compartment can restore fluorescence. FRAP
experiments (N¼ 91) were performed on regions in close
proximity to membranes. These experiments demonstrated that
in 71% of cases cross-membranes are cytosol permeable (Fig. 6a
and Supplementary Movie 6) and in 29% of cases impermeable
(Fig. 6b and Supplementary Movie 7), preventing fluorescent GFP
migration into the adjacent compartment. Additional FRAP
experiments were performed to distinguish cross-membranes
containing cross-walls from those that do not contain any cell
wall material. In these experiments, the S. coelicolor strain
constitutively expressing eGFP was stained with both FM5–95 for
membranes and far-red dye WGA-Alexa 633 to stain cross-walls.
Membranes with no cell wall present were targeted to start. In
these cases, cross-membranes were found to be permeable in 23%
of cases (green arrows, Supplementary Fig. 4, Supplementary
Movie 8) or impermeable in 77% of cases (red arrows,
Supplementary Fig. 4, Supplementary Movie 8), revealing that
cross-membranes alone can block diffusion within hyphae. Next,
membranes with cell-wall material present were targeted. For
these cross-membranes, the permeable fraction was 71%, whereas
large membrane assemblies near a cross-wall completely blocked
diffusion. This increased permeability of cross-membranes
with cell-wall material present can be explained by the fact that
cross-walls are likely permeable13; once cross-membranes
disassemble, transport can occur over cross-walls. Taken
together, our experiments show that in the absence of
cross-walls, cross-membranes can act as impermeable physical
barriers between adjacent compartments.

Discussion
In this work, we discovered the presence of a vast internal
membrane system in Streptomyces species that can be found

within and throughout vegetative hyphae, forming bundles of
tubular structures between the cytoplasmic membrane and cell
wall. Using cryo-CLEM, we observed membrane formations in
small blebs along the cell wall or at hyphal tips, or as large
assemblies and hyphae-delimiting structures we termed
cross-membranes. Similar structures were observed in the 1960s
(refs 27,28), although their function was unknown. Our present
investigation of these membranes resolves several intriguing
questions surrounding their role in the Streptomyces lifecycle.
Although the production of antibiotics and other clinically
important secondary metabolites by the streptomycetes has been
linked to PCD in the vegetative mycelium, to date, little was
known about how the hyphae separate into live and ‘dead’
segments.

Peptidoglycan-based septa, or cross-walls, are infrequent in the
vegetative hyphae. As beautifully illustrated by live imaging
experiments, during hyphal growth of S. coelicolor cross-walls
(that is, vegetative septa) are produced seemingly randomly at
sites distal from the growing tips, delimiting the hyphae into
compartments of 5–10 mm (ref. 29). However, the compartments
can be up to 40 mm for some other streptomycetes30, and these
compartments contain approximately one chromosome per
micrometre, or tens of copies of the genome per compartment.
Cross-walls do not form in the ftsZ deletion strain, which raises
the question as to how a colony can ensure its survival during
PCD or following physical damage to the mycelium. It is now
clear that membranes play an important role, offering a less
energy-intensive compartmentalization solution than cross-wall
formation.

Interestingly, although compartmentalization is rare in
bacteria, it does exist in a variety of species31–33. Recently,
a protein-mediated diffusion barrier was also discovered in the
polar stalk of Caulobacter crescentus, acting to prevent exchange
of membrane and soluble proteins between the stalk and cell
body34. The cross-membranes in Streptomyces similarly delimit
and prevent diffusion of soluble proteins between diverse hyphal
segments, as evidenced by FRAP experiments on the diffusion of
molecules of GFP.

Our FRAP experiments revealed that 29% of cross-membranes
are impermeable. Although unlikely, it is conceivable that laser-
mediated damage to the cross-membranes may have contributed
to leakage of GFP from adjacent compartments, increasing the
number of permeable membranes we counted. The percentage of
impermeable cross-membrane barriers may therefore be higher
than what we observed. Molecules smaller than GFP may also
be able to pass the cross-membranes. The high percentage of
permeable membrane assemblies we observed are likely mem-
brane structures that are not yet fully closed, that is, in an earlier
stage of cross-membrane formation, or perhaps these membranes
serve a different purpose during the Streptomyces lifecycle.

Indeed, the abundance of lipid structures localizing in small
blebs adjacent to the cell wall, in addition to the full cross-
membranes delimiting hyphae, could indicate that smaller
membrane assemblies may be involved in cellular functions
other than compartmentalization. At locations along the hyphae,
small blebs are likely mainly precursors for cross-membranes.
However, membrane assemblies are also frequently observed at
hyphal tips, which suggests that they may be involved in tip
growth. It follows that some of the membrane blebs along the
hyphae may not be precursors for cross-membranes, but rather
the future sites of branching. At growing tips and new branches, it
is likely that the assemblies observed have a function in creating a
nucleoid-free zone in a region of high activity.

In the Streptomyces growing apex, a highly dynamic
tip-organizing complex (the so-called TIPOC) exists, consisting
of many components—including various cytoskeletal elements—
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and ensuring that DNA replication takes place at some distance
behind the tip16,35,36. Extensive statistics using cryo-ET are
not feasible considering the high-resolution nature of these
experiments, so instead we performed static fLM experiments on
vegetative hyphae stained with FM5–95 and peptidoglycan
marker BODIPY-vancomycin and tip growth protein DivIVA
to determine the degree of membrane co-localization with new
cell wall synthesis. These experiments (see Supplementary
Tables 1 and 2 for details) did not indicate complete spatio-
temporal co-localization. It should be noted, however, that
studying dynamic events with static experiments is notoriously

difficult. Further experiments using other cell division or
morphoproteins can perhaps provide more insight into the role
of the membranes in providing a suitable environment for protein
localization. In addition, use of an integrated system for live light
microscopy and cryo-fixation (for example, the Rapid Transfer
System37 or the MAVIS38) could enable the targeting of actively
growing tips or cross-walls at different stages of formation, and
elucidating the role of membranes therein.

Finally, although we demonstrated that cross-membranes form
independent of septum synthesis, during our experiments,
we frequently observed cross-membranes containing emerging
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cross-walls (Fig. 3f–h). In the multicellular streptomycetes,
hyphal compartments are multigenomic; it is likely that
some form of subcellular organization exists that serves to
separate the chromosomes. One obvious reason for such
compartmentalization would be to allow cross-walls to form in
a chromosome-free area.

In conclusion, we show here that cross-membranes exist in the
hyphae of the streptomycetes, acting to compartmentalize
the hyphae. These membranes can be cytosol permeable or
impermeable, and provide a plausible answer to the question
why hyphae of the ftsZ null mutant do not ‘bleed’ to death
but rather can be fragmented and propagated. Further, the
cross-membranes create DNA-free zones and offer a solution to
the long-standing problem of how cell wall remodelling can
take place without DNA damage in the multinucleoid hyphae.
Future technological advances in correlative microscopy,
in which fluorescently tagged proteins can be superimposed on
high-resolution images of cytostructural elements in tomograms,
should provide further insights into the exciting cell biology of the
streptomycetes.

Methods
Bacterial strains and constructs. S. coelicolor and S. albus strains were grown on
R2YE agar or soya flour mannitol agar. Liquid cultures were grown in 2YT medium
supplemented with 10% sucrose. All of the growth medium recipes used are those
mentioned in the ref. 39. For fluorescence microscopy, samples from liquid cultures
were spotted onto a glass microscope slide before microscopy analysis. Images of
vegetative hyphae from solid growth samples were collected from samples that had
been inoculated at the acute-angle junction of coverslips inserted at a 45� angle in
soya flour mannitol agar plates. Strains used in this study include S. coelicolorM145
(ref. 39), obtained from the John Innes Centre strain collection, its derivative K202
containing plasmid KF41 that expresses FtsZ-GFP17, S. albus subspecies albus G.
ATCC 25426 and, for FRAP, a S. coelicolor strain constitutively expressing GFP.
This strain was created by transforming S. coelicolor M145 with pGreen, a pIJ8630
derivative harbouring the constitutive gap1 promoter of S. coelicolor A3(2) M145
cloned upstream of the eGFP gene (B. Zacchetti and D. Claessen, unpublished
observations).

Microscopy. Fluorescence microscopy. Fluorescence and corresponding light
micrographs were obtained with a Zeiss Axioscope A1 upright fluorescence
microscope (with an Axiocam Mrc5 camera at a resolution of 37.5 nm per pixel),
with, for the green channel, 470- to 490-nm excitation and 515 long-pass detection;
and for the red channel, 530- to 550-nm excitation and 590 long-pass detection.
For cryo-stage imaging, the green fluorescent images were created using 470/40-nm
band-pass excitation and 525/50 band-pass detection; for the red channel,
550/25-nm band-pass excitation and 605/70 band-pass detection were used.
For staining of the cell wall (peptidoglycan), we used FITC-WGA; for membrane
staining, we used FM5–95 (both obtained from Molecular Probes). FRAP
experiments were carried out on a Zeiss Imager system, using 488 nm excitation for
eGFP with 505–530 detection and 543 nm excitation for FM5 (refs 27,28) 5–95
with LP 560 detection. Bleaching was performed with 25% laser intensity for 8 s.
Images were recorded every 17 s and post-bleaching was monitored for 5min. All
images were background-corrected, setting the signal outside the hyphae to 0 to
obtain a sufficiently dark background. These corrections were made using Adobe
Photoshop CS5. Triple coloured FRAP experiments were performed with 488 nm
excitation, which does not excite WGA-Alexa 633 and therefore the same
band-passes were used for signal detection: for example, for eGFP, band-pass
filter 525/50; for FM5–95, long-pass 560. WGA-Alexa 633 was imaged with
633 excitation and long-pass 650 detection.

Sample preparation for electron microscopy. A small drop (3 ml) of Streptomyces
liquid culture was applied to EM grids and vitrified by plunging into a liquid
ethane/propane mixture using a vitrobot Mark IV (FEI Company) operated at
22 �C and 100% humidity using 1–2 s blotting. Plunge-frozen grids were stored in
liquid nitrogen until further use. For cryo-electron tomography, 15 nm colloidal
gold particles coupled to protein A (CMC) were added to samples as fiducial
markers. For correlative light and microscopy work, holey carbon grids were used
and samples were stained with FM5–95 and/or DAPI directly before sample
application to the grid and subsequent plunge freezing.

Electron microscopy. Cryo-electron tomography was performed on a Tecnai 20
FEG operated at 200 kV and a Titan Krios operated at 300 keV (FEI Company).
Images were recorded using Explore 3D software on a 2� 2 k2 camera mounted
behind a GIF energy filter (Gatan) operated at a slit width of 20 eV. Over 100
cryo-electron tomograms of streptomycetes were recorded with 2� tilt steps
between � 60� and þ 60� at a defocus of � 15 mm, at magnifications between
� 1,850 (6.6 nm pixels size) and � 8,000 (1.64 nm pixel size).

Cryo-correlative light and electron microscopy. Plunge-frozen EM grids
containing fluorescently labelled Streptomyces were imaged using a fluorescence
microscope equipped with a THMS600 or CMS196 cryo-light microscope stage
(Linkam), in conjunction with a Leitz DMRB (Leica), with a � 100 dry objective
with a working distance of 4.7mm and a numerical aperture of 0.75. Digital images
were recorded with a Leica DFC350FX CCD camera. Following cryo-fLM imaging,
sample grids were stored in liquid nitrogen until they were used for cryo-EM.
Over 50 cryo-CLEM images were recorded.

Image analysis and visualization. Tomographic tilt series were processed using
IMOD version 4.5 (ref. 40). Projection images were pre-processed by hot pixel
removal and rough alignment by cross-correlation. Final alignment was done using
fiducial gold markers. The tomograms were obtained using a weighted back-
projection or a simultaneous iterative reconstruction technique. Cryo-electron
tomograms were Fourier filtered and denoized with a nonlinear anisotropic
diffusion41 to enhance the visibility of structures. For 3D surface rendering, the
tomographic volumes were imported into AMIRA (FEI) for further processing and
representation. Cryo-CLEM overlays were produced by manual overlay (Adobe
Photoshop) of different magnification TEM and fLM images using grid bars,
streptomycetes, holey carbon support film and fiducial gold markers for alignment.

Data availability. The data that support the findings of this study are available
within the article or from the corresponding author upon request.
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9. Flärdh, K. & Buttner, M. J. Streptomyces morphogenetics: dissecting
differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49 (2009).

10. Chater, K. F. in Streptomyces: Molecular Biology and Biotechnology
(ed. Dyson, P.) 43–86 (Caister Academic, 2011).

11. McCormick, J. R., Su, E. P., Driks, A. & Losick, R. Growth and viability of
Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol. Microbiol.
14, 243–254 (1994).

12. McCormick, J. R. Cell division is dispensable but not irrelevant in Streptomyces.
Curr. Opin. Biotechnol. 12, 689–698 (2009).

13. Jakimowicz, D. & van Wezel, G. P. Cell division and DNA segregation in
Streptomyces: how to build a septum in the middle of nowhere? Mol. Microbiol.
85, 393–404 (2012).

14. Manteca, A., Alvarez, R., Salazar, N., Yague, P. & Sanchez, J. Mycelium
differentiation and antibiotic production in submerged cultures of Streptomyces
coelicolor. Appl. Environ. Microbiol. 74, 3877–3886 (2008).
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