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Abstract. In this paper, we show how to use audio to supervise the
learning of active speaker detection in video. Voice Activity Detection
(VAD) guides the learning of the vision-based classifier in a weakly super-
vised manner. The classifier uses spatio-temporal features to encode
upper body motion - facial expressions and gesticulations associated
with speaking. We further improve a generic model for active speaker
detection by learning person specific models. Finally, we demonstrate
the online adaptation of generic models learnt on one dataset, to previ-
ously unseen people in a new dataset, again using audio (VAD) for weak
supervision. The use of temporal continuity overcomes the lack of clean
training data. We are the first to present an active speaker detection sys-
tem that learns on one audio-visual dataset and automatically adapts to
speakers in a new dataset. This work can be seen as an example of how
the availability of multi-modal data allows us to learn a model without
the need for supervision, by transferring knowledge from one modality
to another.

Keywords: Active speaker detection · Cross-modal supervision ·
Weakly supervised learning · Online learning

1 Introduction

The problem of detecting active speakers in video is a central one to several appli-
cations. In video conferencing, knowing the active speaker allows the application
to focus on and transmit the video of one amongst several people at a table. In
a Human-Computer-Interaction (HCI) setting, a robot/computer can use active
speaker information to address the correct interlocuter. Active speaker detection
is also a part of the pipeline in video diarization, the automatic annotation of
speakers, their speech and actions in video. Video diarization is useful for movie
sub-titling, multimedia retrieval and for video understanding in general.

Traditionally, visual active speaker detection has been done using lip motion
detection [1–4]. However, facial expressions and gestures from the upper body,
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movement of the hands, etc., are all cues that can be utilized to assist with this
task, as shown in [5], where better detection results are achieved using spatio-
temporal features extracted from the entire upper body, compared with just lip
motion detection.

Another powerful idea we borrow from [5], is to use audio to supervise
the training of a video based active speaker detection system. In that work,
a microphone array is used to get directional sound information (assumed to be
speech sounds), and based on this input, upper body tracks are associated with
speak/non-speak labels. These labels are then used to train an active speaker
classifier using video only.

Fig. 1. Audio-based Voice Activity Detection (VAD) is used to weakly supervise the
training of a video-based active speaker classifier. VAD tells us that someone in the
frame is speaking, but not who. The problem is one of associating the voice activity
with one of the people (solid red upper body bounding box) in the frame, and training
the classifier at the same time. We use structured output learning to train a latent SVM
classifier in the presence of partially observed (latent) inputs. (Color figure online)

However, the presence of reverberation and background noise prevents perfect
active speaker identification using directional audio alone, which subsequently
affects the training of the video-based classifier. Additionally, in the vast majority
of videos, such as the millions of Youtube videos available online, in videos from
films and TV series, only a single channel of sound is available, with no directional
information. Even in those cases where 2 channels of audio are available, the
relative position of the camera and the microphones varies, and no calibration
information is available, making it impossible to apply the method of [5].

In the absence of directional information, we propose to use Voice Activity
Detection (VAD) [6] to tell us when there is someone speaking in a frame. If
there is only one person in the frame, then this can be used to train the video-
based classifier directly. However, when this is not the case, the problem becomes
one of simultaneously associating the voice activity with one of the people in the
frame, and learning the classifier (Fig. 1). That’s the challenge we address in this
work.



Cross-Modal Supervision for Learning Active Speaker Detection in Video 287

Moreover, there’s an additional challenge. Investigating our trained classifier,
we find that it has some bias: it works better for some speakers, compared to
others. We identify two reasons for this. First, the way people gesticulate while
speaking varies a lot from person to person. Indeed, a person-specific model typ-
ically outperforms the generic model. Second, there is the domain shift problem:
the change of data distribution between training and test data. We address both
by extending our previous scheme to an online learning setting that, starting
from a generic classifier, gradually adapts to a specific person. To this end, we
retrain the model with an incrementally increasing number of training samples
coming from a new video of a previously unseen person at each iteration. The
online training is also weakly supervised by VAD from audio. The generic classi-
fier is used to label and pick the training samples for each speaker and temporal
continuity constraints allow the classification performance to improve in spite of
imperfectly labelled training data from the generic classifier.

Our method is completely unsupervised, in the sense that there is no human

supervision/labelling. We use audio to supervise the learning. This supervision
comes “for free” with the video, but is only partial - VAD tells us that one
of the persons in the frame is speaking, but not who. As opposed to [5], who
use full supervision from directional audio, we use weak supervision from VAD.
This work can be seen as an example of how the availability of multi-modal
data allows us to learn a model without the need for supervision, by transferring
knowledge from one modality to another.

The remainder of the paper is organized as follows. We discuss prior work in
this area in Sect. 2. We discuss the use of audio for active speaker detection in
Sect. 3, with Subsects. 3.1, 3.2 and 3.3 discussing the weakly supervised learning
with Latent SVMs, speaker specific classification and online learning, respec-
tively. Experimental results are discussed in Sect. 4 and concluding remarks and
potential for future work in Sect. 5.

2 Related Work

Weakly supervised and multimodal learning. The learning of a classifier in the
presence of weak supervision, or partially labelled data, has been studied mostly
in the context of object recognition, where labels are available for images, but
localization information - bounding boxes around the objects to be classified,
are missing [7–11]. Best results in this context are obtained with Structured
Output Learning [12], i.e. by learning a classifier that outputs not only the
class labels, but also the bounding box coordinates or index. We use the same
approach for training a classifier for active speaker detection with only VAD-
based supervision, which gives us labels for the images, but not for individual
bounding boxes. Audio weakly supervises the training of video. The work of
Bojanowski et al. [13] is another example of one mode of information weakly
supervising another. They use scripts to weakly supervise the learning of actors
and actions in movies. However, scripts are not always available for video data,
while audio is.
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Dealing with domain shift. In our work, we find that an active speaker classifier
trained on a first set of speakers performs less well on previously unseen speakers,
while best results are obtained with person-specific classifiers. This is because of
the mismatch between the distributions of different speakers. On the one hand,
training a generic classifier means that it has seen a larger number of training
samples, is less prone to overfitting compared to a person specific classifier, and
should generalize well for unseen speakers. However, the generic classifier still
suffers from person-specific biases, and gives better classification results for some
people over others. The same problem exists for object recognition - a classifier
trained on one dataset typically has lower performance when applied to images
from another dataset. This is known as the dataset bias problem, and there
have been some efforts at reducing this for object recognition [14,15]. One way
to deal with person or dataset specific biases is to adapt the source classifier
to the target classifier, and this is called Domain Adaptation [16,17]. Transfer
Learning [18–20], a related problem, is about using the information available
from the source data to aid the learning of the target classifier utilizing only a
small number of target training samples. For instance, Aytar et al. [18] use an
Adaptive SVM (ASVM) that incrementally adapts an SVM learnt on source data
(e.g. motorbike class) to target data (e.g. bicycle class) in the context of object
recognition. The source classifier acts as a regularizer for the target classifier
in the adaptive SVM framework, and they demonstrate successful adaptation
based on a relatively small number of training samples of the target class. This
work lies at the basis of our online adaptation to previously unseen persons.

Person-specific models. There has been some work on person specific facial
expression recognition and transferring generic to specific models for improving
classification performance [21–23]. Chen et al. [21] show that facial expression
recognition results improve when using person specific classifiers. They use an
Inductive Transfer Learning (ITL) approach, where they learn a source classifier,
which is a collection of weak learners in a boosting framework. Subsequently a
subset of these are used for training the target classifier with a small number of
labeled target samples.

Chu et al. [22] propose a Selective Transfer Machine (STM) approach to re-
weight the source samples so that they are closer to the target samples. The
algorithm simultaneously learns the parameters of the classifier and the source
sample weights that minimize the error between the source and target distribu-
tions. They thus personalize a generic classifier to individual, with the resulting
personalized classifier improving on the generic classifier on facial action unit
detection tasks. However, STM requires the storage of all source samples, with
a higher memory requirement than storing just the source classifier, which could
be the weights of an SVM.

Zen et al. [23] demonstrate unsupervised adaptation of a generic classifier
to a target classifier on single frame expression datasets. They learn a regres-
sion function between the “shape” or sample distribution of each user in the
labelled source dataset and his/her classifier (source weight vector wi in the
SVM). Applying this function on the unlabelled sample distribution of the target
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user then gives them the target classifier (target weight vector wt). They do not
require to keep in memory all the samples from the source dataset and outper-
form the STM method of [22]. However, their approach requires that the relative
distribution of positive and negative samples in every user’s data is relatively
constant and can be learnt using the source users. However, this is not the case
in our data. Additionally, we learn the generic source classifier using unlabelled
data as well - so our process requires no human supervision from beginning to
end.

Online learning is the incremental learning of a classifier with an increasing
number of training samples as and when they become available. In our context,
we adapt the generic source classifier to the person-specific target classifier with
an increasing number of samples from the speaker. This is somewhat similar
to the problem of Active Learning, where a new classifier is to be learnt with
the minimum budget in terms of time spent in labelling training samples, and
the task is one of selecting the most relevant samples to be used for training.
Gavves et al. [24] demonstrate Active Transfer Learning, in that the selection
of relevant training samples is done with the help of previously learnt classifiers
on other datasets. Both [23,24] use the source classifiers as zero-shot priors,
giving a baseline performance using only the target classifier, with classification
performance gradually increasing with an increasing number of samples from the
target dataset. We use this as our inspiration for our online learning problem,
except again, our learning is without any manual supervision.

3 Audio Supervised Training

In the original experiment of [5], a 2-mic array was used to associate upper bod-
ies detected in the video, with sound directions. They used a technique proposed
by [25] for estimating the number and direction of sound sources. A non-linear
function of the Generalized Cross Correlation Phase Transform (GCC-PHAT)
between the audio signals is calculated over all the angles of arrival with respect
to the microphone array baseline. This is done over short time intervals corre-
sponding to the Time Frequency cells of a Short Term Fourier Transform. This
gives an angle of arrival spectrum at each point in time that can be associated
with the people detected in the image. In each frame, the sound direction is
associated with a speaker’s upper body bounding box, and features within that
bounding box are used to train the classifier. We use the same data as [5], avail-
able on request from the authors, and consider the case when directional informa-
tion is absent. We simulate the output of VAD by removing the speak/non-speak
bounding box labels. We assign a label of speak to the frame if any of the bound-
ing boxes in it are tagged as speaking and non-speak if none of the bounding
boxes is speaking. Our problem is one of associating one of the bounding boxes
in the image with the sound and training a classifier at the same time. We treat
this as a structured output prediction problem [26].
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3.1 Classifier Training Under Weak Audio Supervision Using

Structured Output Learning

In the absence of information about which upper body bounding box is asso-
ciated with the active speaker in each frame, the problem can be posed as a
structured training problem [7–9,12], in the presence of partially observed train-
ing data. In the context of object recognition, there are databases with images
labelled with the presence of one or more objects in the scene, but no localiza-
tion (bounding box) information for the object in the image. [7–9] deal with this
by using a Latent SVM formulation, which alternates between the guessing of
object bounding boxes, and training a classifier for the object inside the bound-
ing box. They use object proposals [27] to narrow down the search for objects
in the image.

Here, we adapt [7–9] to our setting. Our object proposals are the upper body
bounding boxes. We know that one of the bounding boxes is an active speaker,
but not which one - the speak/non-speak label for the individual bounding boxes
are our latent variables. Using structured output prediction, we jointly learn
which of the bounding boxes in the image is associated with the active speaker,
together with learning the active speaker classifier. Given an image x and upper
body bounding box h, let φ(x, h) denote an image description computed over
bounding box h. Given all upper body bounding boxes h1, ...hn, the algorithm
then needs to select the bounding box that contains the active speaker. The
labels of the images, speaking/non-speaking, y = ±1, are obtained from the
sound using VAD or, in our experiment, by removing the directional information
from the training data. Once the classifier is trained, the best bounding box h

is found by
h∗ = argmax

h

〈w, φ(x, h)〉 (1)

where w is the weights vector of the SVM. We define Φ(x, y, h) = φ(x, h) if
y = 1, and 0 otherwise. The learning task is to optimize the following:

ŵ = argmin
w

N∑

i=1

l(w, xi, yi) +
C

2
‖w‖2 (2)

where l(w, xi, yi) is the per example loss, C
2 ‖w‖2 is the regularizer and N is the

total number of training data. The max-margin loss function is defined as

lmm(w, xi, yi) = max
y,h

(〈w,Φ(xi, y, h)〉 + ∆(yi, y)) − max
h

(〈w,Φ(xi, yi, h)〉) (3)

where ∆(yi, y) is the zero-one error, which is 0 if yi = y and 1 otherwise.
This loss function tries to maximize the margin between the score of the

selected active speaker’s bounding box and the non-speaking bounding boxes.
Following the work of [8,9], we replace the max-margin loss with a soft-max loss
function:
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lsm(w, xi, yi) =
1

β
log

∑

y,h

exp(β〈w,Φ(xi, y, h)〉 + β∆(yi, y))

−
1

β
log

∑

h

exp(β〈w,Φ(xi, yi, h)〉) (4)

where β controls the sharpness of the distribution. It can be shown that as
β → ∞, the loss function limits to the standard structured SVM formulation.
The softmax loss function allows for multiple active speakers in the same frame.
It also makes the optimization function smoother and less prone to local minima.
We use the LBFGS solver from minFunc1 to optimize our cost function and train
our classifier.

3.2 Speaker Specific Models

Using the motion of the face and upper body over time assists with active speaker
detection. At the same time, it maybe has the disadvantage of making the detec-
tor more speaker specific, as different people are likely to have different man-
nerisms while speaking. We explore this hypothesis by training several person
specific Active Speaker classifiers. We do this in two settings: one using the
directional audio (i.e., supervised), as a baseline, and subsequently, in the VAD
setting, where the learning is weakly supervised by audio, as detailed in the
previous section.

In the first case, the learning is straightforward: we have a separate track for
each person in the video, and knowledge of the frames in which that track is
speaking (from the directional audio).

In the second case, the audio does not tell us which track/person is speaking
at any given time, just that one among the multiple tracks in the frame is
speaking. For this, we do the training in two steps. We first learn a generic
classifier in the weakly supervised case, as detailed previously. Subsequently, we
use the generic (source) classifier to guide the selection of the positive samples
for the person specific (target) classifier. We run the generic classifier on each
“speaking” frame’s bounding boxes to get an idea of which track/bounding box
is speaking. However, the generic classifier does not always give the highest score
to the active speaker in the frame. This is because of the dataset bias and domain
shift problem discussed earlier - the generic classifier performs better for some
speakers compared to others. So we bring in another cue: temporal continuity.

So far, we have discussed active speaker detection on each frame in isolation.
However, people’s speech tends to be for periods longer than a single frame. If a
person is speaking in one frame, it is more likely than not, that they will be speak-
ing in the next frame as well. We use temporal continuity to reduce the effect
of mis-classifications of the generic classifier and guide the sample selection for
the speaker specific classifier. The highest scoring sample at each VAD-positive
frame is taken to be the positive sample for the associated speaker, and all other
samples are selected as negative samples for the other speakers. Both positive

1 http://people.cs.ubc.ca/∼schmidtm/Software/minFunc.html.

http://people.cs.ubc.ca/~schmidtm/Software/minFunc.html
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and negative samples are weighted according to temporal continuity, measured
as the number of contiguous neighbouring frames with consistent labels. We use
a weighted logistic loss function lwll

lwll(w,Φ(x, y, h∗), α) = α · log{1 + exp(−〈w,Φ(x, y, h∗)〉)} (5)

where Φ(x, y, h∗) is the feature vector from the best scoring bounding box, w

is the weights vector of the speaker-specific SVM and α is the temporal continuity
weight of the sample.

Note how this integration of temporal continuity directly in the weakly super-
vised learning framework (as opposed to keeping it as a postprocessing step, as is
usually done) reflects again one of the core ideas behind our work, that combin-
ing multiple, independent sources of information - be it multiple modalities, or
temporal vs. spatial information - allows learning models with less supervision.

3.3 Online Learning

In this section, we deal with the problem of learning the specific model in an
online fashion for a speaker who has not been seen earlier during training. This
can be the case during a live setting, where we don’t have the entire data available
to us at any given time, just what we have seen so far. To this end, we use a
model inspired by the Tabula Rasa Transfer Learning model of Aytar et al. [18].

The idea is that the generic model is used as a zero-shot prior, and already
gives a baseline performance, that can be improved as a new speaker specific
model is trained incrementally with every additional batch of samples that trickle
in from the new speaker. This allows us to have a model that performs better
than the prior, generic model in an iterative fashion, without needing to see all
the target samples. The process of online learning of speaker-specific classifiers
is again weakly supervised by audio: it assumes that VAD is available for the
target speaker data as well.

As in the offline case for training speaker specific models (Subsect. 3.2), we
use VAD to detect the frames in which human speech is present. Subsequently,
the generic (source) classifier is used to guide the selection of the positive samples
for each new speaker (target). We select the highest scoring bounding box in each
VAD-positive frame as the positive sample for the speaker associated with it,
and the remaining bounding boxes are selected as negative samples for the other
speakers. Temporal continuity is used to weigh both the positive and negative
samples (Eq. 5). Motivated by [24], we use the prior (source) model, not just for
the selection of the target speaker’s positive training samples, but also for target
prediction. During prediction, the generic model scores are added to the target
model scores so that the prediction score from online learning, at each iteration
is given as:

f t(φ(x, h)) = 〈wgen, φ(x, h)〉 + 〈wt, φ(x, h)〉 (6)

Each time step t has an increasing number of training samples to train the
classifier wt at that iteration. wgen remains constant during online learning. This
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results in the person-specific target classifier being at least as good as the generic
source classifier, and getting progressively better with an increasing number of
training samples.

4 Experiments

We use the audio-visual dataset made available by the authors of [5]. It consists
of 7 recordings of masters student thesis presentations to a jury of examin-
ers. Each student presents for 25 min, followed by 5 min of questioning by the
jury. The microphone array, with its directional sound information in a cone of
180 degrees in front of it is associated with upper body tracks of the jury. We
will call this the Masters student dataset in the rest of the paper. An example
frame of this data is shown in Fig. 1. [5] used the directional sound information
from the microphone array, associated with the bounding boxes of persons in
the frame to train their video-based active speaker classifier. We simulate VAD
by removing this directional information from the data, leaving only a label of
speak/non-speak per frame. Like [5], we only use the 3 people from the jury in the
front row of the audience, as others behind them are obscured. The people in all
the experiments are the same, and do not change positions. We train the active
speaker detection classifier in a Leave-One-Out-Cross-Validation (LOOCV) fash-
ion, where the data from 6 presentations are used for training, and tested on the
7th presentation. This is repeated 7 times.

Fig. 2. Experimental setup

Finally, we test the model learnt on the Masters dataset on an entirely new
dataset that we present - the Columbia dataset. It is an 87-minute-long video of
a panel discussion at Columbia university, available from YouTube2. There are
7 speakers on the panel, and the camera focusses on smaller groups of speakers
at a time. We only focus on the parts of the video where there is more than

2 https://youtu.be/6GzxbrO0DHM.

https://youtu.be/6GzxbrO0DHM


294 P. Chakravarty and T. Tuytelaars

one person in the frame, and ignore people on the margins of the video who
are not detected by the upper body detector. This gives us sections of video for
5 speakers, with 2–3 speakers visible at any one time. We have annotated the
upper body bounding boxes of each speaker with speak/non-speak labels, about
35 min of video in all, which are available at http://www.jaychakravarty.com/?
page id=432. We update the generic classifier learnt on the Masters dataset
online, in a completely unsupervised fashion, with the generic classifier adapting
to each new speaker in the Columbia dataset, with subsequent improvement in
performance.

4.1 Implementation Details

We use the same improved trajectory features (ITF) [28] recommended by [5], for
training our active speaker detection classifier. ITF are spatio-temporal features
used for state of the art action recognition, and comprise of a concatenation of
Histogram of Oriented Gradients (HOG), Histogram of Flow (HoF) and Motion
Boundary Histogram (MBH) features. HoG, HoF and MBH features are cal-
culated in the immediate neighbourhood of each point on the grid. We use 15
consecutive frames for calculating the ITF - this corresponds to about 7 s of
video in the Masters dataset. The HoG, HoF and MBH features are indepen-
dently reduced to half their original dimensions using PCA, and feature vectors
from within an upper body track are pooled using Fisher vectors (FV) [29]. We
apply intra-class L2 normalization, power and a final L2 normalization of the
whole FV before classification using a linear SVM. We use a codebook size of
256 for the FV encoding. The FV encoding is done independently for HOG, HoF
and MBH, before they are concatenated to a single, 101,376 dimensional vector.
Intra-class L2 normalization - normalization within each block of the FV related
to a single codeword, is used to balance weights of the different codewords in
the FV, and reduces the “burstiness” in the FVs (often resulting from features
belonging to the background). Training a linear SVM with a non-linear feature
map (obtained using the power normalization) has the advantage of approximat-
ing a non-linear SVM at lower computational complexity [30]. These techniques,
recommended as best practice in [31], have been to shown to considerably boost
performance of FVs.

Table 1. Average AUC (with standard deviations) for active speaker detection fully
supervised by directional audio [5], and weakly supervised by VAD, over all experi-
mental folds (Masters dataset).

Directional audio VAD

Avg. AUC 0.69±0.07 0.71±0.05

For upper body detection, we use a detector trained using the Deformable
Parts Model from [32]. The tracking is relatively straight-forward, because peo-
ple don’t change positions and there are no crossing tracks. ITF are grouped

http://www.jaychakravarty.com/?page_id=432
http://www.jaychakravarty.com/?page_id=432
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by their start frame (calculated from the following 15 frames), and a FV is cal-
culated for all the improved trajectories within a bounding box (person) track
starting from that frame. A training sample is thus one FV pooling all ITFs from
within an upper body track starting in a given frame, with each ITF covering
15 consecutive frames (about 7 s of video at 2 fps). The active speaker classifier
is sensitive to the frame-rate of the dataset on which it is trained. To have the
classifier transfer between datasets, we subsample the Columbia dataset so that
its frame-rate matches the frame-rate of the Masters dataset (2 fps). A pipeline
of the system is shown in Fig. 2.

4.2 Weak Supervision Using Audio

VAD results in frames with speak/non-speak labels. There are no speak/non-
speak labels for individual bounding boxes and the FVs extracted from them.
Section 3.1 details the Structured Output SVM classifier that is used for train-
ing the active speaker detection classifier in the absence of training labels for
individual bounding boxes. Table 1 displays the results of our experiments with
the active speaker detection classifier trained using VAD. The results with weak
supervision (structured output learning) are comparable with the results from
fully supervised learning from directional sound. This shows that the structured
output formulation and the soft-max loss function for optimization transfers well
from the object localization application of [8,9], to our task of active speaker
localization in the absence of bounding box labels for training.

4.3 Speaker Specific Models

Section 3.2 makes the hypothesis that training person specific active speaker
detection models will give better results than training a generic model for all
speakers. To validate this hypothesis, we perform three experiments:

1. Full directional audio (giving speak/non-speak labels for all bounding boxes
in the frame) for training the person specific classifier.

2. VAD audio (speak/non-speak label for the frame, but without information
about individual bounding boxes) for training the person-specific classifier.
This highest scoring sample using the generic classifier is used to get positive
training samples for each person in a VAD-positive frame.

3. Experiment 2, with samples weighted according to temporal continuity (see
Eq. 5).

When full directional audio supervision is available (expt. 1), the speaker
specific models show better results, a 10 % improvement over the generic classifier
of Table 1.

When using VAD for weak supervision with a hard-max posterior (expt.
2), the person-specific classifier performs worse (16 % worse mean average AUC)
than the person-specific classifier with full audio supervision (expt. 1), and worse
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Table 2. Mean Avg AUC (with standard deviations) for person-specific active speaker
detection using (1) directional audio, (2) VAD - no temporal weighting & (3) VAD
with temporally weighted samples (All expts. on Masters dataset).

Expt. Speaker 1 Speaker 2 Speaker 3 Mean Avg. AUC

1 0.79 ±0.08 0.76 ±0.03 0.88 ±0.05 0.81 ±0.07

2 0.60 ±0.10 0.59 ±0.07 0.75 ±0.03 0.65 ±0.10

3 0.79 ±0.10 0.80 ±0.03 0.88 ±0.04 0.82 ±0.07

even than the generic classifier. This confirms the dataset bias problem we dis-
cussed in Sect. 2. The generic classifier might be more biased towards one speaker
compared to the others and occasionally score the true positive speaker lower
than another non-speaker in the same VAD-positive frame. This leads to the use
of mis-classified samples for the training of the person-specific classifiers in the
weakly supervised case, and their subsequent poor performance.

In experiment 3, a temporal weight is added to each sample - the number of
contiguous neighbouring frames in which it has been consistently labelled (see
Eq. 5). We use a temporal window of 3 s. This results in a mean average AUC
of 0.82, comparable to the fully supervised case (expt. 1). This shows that the
temporal weighting of samples correctly guides the sample selection. Thus, it acts
as another weak supervisor (apart from the VAD) for the training of the speaker
specific classifer. Table 2 presents results for all 3 speaker-specific experiments
in the Masters dataset. It should be noted here that for all experiments in this
sub-section, the evaluations are performed on individual frames and temporal
continuity is exploited as an extra cue during training, not as a postprocessing
step to correct results afterwards.

(a) (b)

Fig. 3. (a) Online Learning: Mean AUC over all speakers in the new Columbia dataset
with an increasing number of training samples in each iteration. (b) Temporal smooth-
ing: F-scores for all speakers at the end of online learning, after thresholding and
temporal smoothing, with increasing size of temporal window in the Columbia datset.
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4.4 Online Learning

Here, we report results of experiments that demonstrate how a generic classifier
trained on speakers in the Masters dataset, can be modified online, to specific
speakers in the Columbia dataset. We only select sections of video in which there
are 2 or more people in the frame at the same time. This is to demonstrate the
unsupervised selection of training samples from one among many speakers. The
selection of training samples when only 1 speaker is present in the frame is trivial
(VAD can be used to detect positive and negative samples for the speaker), and
is not considered in this experiment.

The prior classifier is run on each VAD-positive frame in the new dataset
and the highest scoring bounding box is taken to be the positive sample for
that speaker in the frame, and the remaining bounding boxes are taken to be
the negative samples for the other speakers. This assumes that there is only
one person speaking at a time in the video, which is actually the case in most
target applications. The samples are weighted according to their temporal con-
tinuity - a positive sample with a higher number of contiguous positive samples
around it gets a higher weight, as was done in number 3 of the speaker specific
experiments (Subsect. 4.3). The experiment begins by using the prior classifier
to detect active speakers in the new data. Then, with each iteration of online
learning, a balanced selection of positive and negative samples are selected from
each speaker, and used for training the person-specific classifier. The number
of training samples increases with each iteration. Figure 3a displays the mean
average AUC results for experiments conducted per speaker over the training
iterations. We see that the performance of the iteratively trained person specific
target classifier starts out at the performance of the generic source classifier, and
gradually improves with increasing number of target training samples. There is
an initial dip in the performance of the classifier learnt online for 3 of the 5
people, when there is a small number of training samples. If some of these sam-
ples are wrongly selected by the prior classifier, then the classifier’s performance
will decrease to a level below the generic classifier performance. But, as the
speaker speaks for longer, and more correct samples weighted by their tempo-
ral continuity are picked, the online learning adapts to the target distribution.
We use a maximum of 10 s of video per person for the online learning in the
Columbia dataset in our experiments, and see an improvement of about 5–15%
over the performance of the prior classifier. Thus, our method of selecting sam-
ples weighted by their temporal continuity is resilient against the selection of
some wrong samples, and very quickly - within a few seconds - adapts to each
new speaker. We use temporal continuity to further improve the performance
of the online-learnt classifier during inference as well. The scores from the clas-
sifier learnt during the last iteration of online learning are thresholded (at the
intersection of the ROC curve with the diagonal) and smoothed over increasing
lengths of time (from 0 to about 3 s). Figure 3b shows that the f-scores for all the
speakers improve with increasing amounts of temporal smoothing, with plateau-
ing of results at around 3 s. A potential downside of too much smoothing is that
if a person speaks for short durations (single, yes/no utterances for example),
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Fig. 4. Normalized raw scores (blue) with the online-learnt classifier and thresholded
and temporally smoothed speak/non-speak values for speakers Sick (red) and Long
(green), along with Ground Truth (GT, solid colour = speak), in minutes 27:00 to
40:00 in the Columbia dataset. (Color figure online)

then these are not going to be registered. The amount of temporal smoothing
applied would depend on the application. For video conferencing, it might not
be appropriate to switch focus between speakers for such short utterances, and
a smoothing of 3 s (the maximum smoothing applied in our experiments during
inference), would probably be adequate.

Figure 4 shows a timeline for Active Speaker Detection in the Columbia
dataset, for speakers Sick and Long, during minutes 27:00 to 40:00 in the video.
The classifiers for these speakers are learnt online earlier in the video, and the
raw scores for these speakers over time are shown in blue. The scores are thresh-
olded and temporally smoothed to obtain speak/non-speak values, shown in red
and green for Sick and Long respectively. Ground truth speak/non-speak values
for these speakers are also given. It can be seen that the parts of the video where
the algorithm apparently makes a mistake can be explained by camera shake, or
where a non-active speaker actually nods and mouths yes in response to another
active speaker (ground truth does not mark this as speech), or when an active
speaker pauses mid-sentence.

5 Conclusions

This paper demonstrates the use of audio for cross-modal supervision of the
training of a video-based active speaker detector. The problem is posed in terms
of a structured output prediction problem - given information about the presence
of an active speaker in a frame from audio-based Voice Activity Detection, find
out which particular person is speaking, among the people in the frame, and
at the same time, learn the video-based classifier for active speaker detection.
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Person-specific classifiers are shown to perform better than generic classifiers,
and the learning of the specific classifiers is again weakly supervised by audio.
The prior classifier adapts to the specific speaker using samples from just a
few seconds of video, with additional improvement in results using temporal
smoothing. This shows that the system has the potential to be used in a video
conferencing application, and quickly learn the characteristics of new speakers.

In future work, we will close the loop between audio and video. In cur-
rent work, audio supervises the learning of a video-based person-specific active
speaker detector. The learnt video classifier will in turn supervise the learning
of person-specific voice models and those voice models will be fed back into the
video to further improve active speaker detection. This is expected to be par-
ticularly useful in the more challenging data encountered in video diarization:
movies and TV series with non-frontal views of people, where the video-only
classifier is expected to perform worse than in frontal-view video.
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