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Cross-modal Visuo-Tactile Object Recognition Using Robotic Active

Exploration

Pietro Falco1, Shuang Lu1, Andrea Cirillo2, Ciro Natale2, Salvatore Pirozzi2, and Dongheui Lee1

Abstract— In this work, we propose a framework to deal
with cross-modal visuo-tactile object recognition. By cross-
modal visuo-tactile object recognition, we mean that the object
recognition algorithm is trained only with visual data and is
able to recognize objects leveraging only tactile perception.
The proposed cross-modal framework is constituted by three
main elements. The first is a unified representation of visual
and tactile data, which is suitable for cross-modal perception.
The second is a set of features able to encode the chosen
representation for classification applications. The third is a
supervised learning algorithm, which takes advantage of the
chosen descriptor. In order to show the results of our approach,
we performed experiments with 15 objects common in domestic
and industrial environments. Moreover, we compare the per-
formance of the proposed framework with the performance of
10 humans in a simple cross-modal recognition task.

I. INTRODUCTION

In order for robots to execute tasks in unstructured envi-

ronments, multimodal perception plays a key role. Computer

vision technologies have become essential for an effective

analysis of the scene, for path planning, and observing the

behavior of humans in the robot workspace. However, vision

alone is often not enough to achieve sufficient perception

capabilities of robotic systems in unstructured environments,

due to variable light conditions, occlusions in cluttered

scenes, and requirement on contact information between

robot and environment. Tactile perception is of fundamental

importance for robots that physically interact with the exter-

nal environment. Wisely leveraging tactile information pro-

vides robots with enhanced perceptive capabilities. For these

reasons, in the robotic community tactile perception and,

in general, multimodal perception are becoming important

research directions to support visual perception. Even though

tactile and visuo-tactile multimodal perception have gained

a great deal of interest, the field of cross-modal perception

has not been profusely explored in robotics. A robotic system

with cross-modal perception capability is able to leverage a-

priori knowledge acquired with a sensing modality and to use

it with a completely different sensorial modality at execution

time. A practical example of the cross-modal perception is

visuo-tactile cross-modal object recognition, which we deal

with in this work. In neuroscience and psychology, cross-

modal (or intermodal) object recognition is defined as the

name for the ability to recognize an object, previously in-

spected with one modality like vision, via a second modality

1 Chair of Automatic Control Engineering, Technical University of
Munich, Germany pietro.falco@tum.de

2Department of Industrial and Information Engineering, Università degli
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Fig. 1: Cross-modal recognition concept: training pipeline

(top) and execution pipeline (bottom)

like touch [1], without prior training in the second modality

[2]. In our robotic application, the robot observes only visual

data in the training step. At execution time, exploiting the

knowledge previously acquired by visual perception, the

robot has the capability to recognize objects only with tactile

perception, even if it did not touch any objects before. In

a real world scenario, in fact, it can be very common that

for the unstructured nature of the environment, a perception

source can become unavailable at a given unexpected time.

We investigate, then, if we can reuse the knowledge gained

with the first perception source (vision) even if we have a

different perception source active (tactile). As depicted in

Fig. 1, we investigate in this work if it is possible to exploit

tactile exploration to recognize the object with a classifier

trained only with visual data.

In this work, the following questions will be discussed:

1) What is a good representation for both visual and

tactile data, which can be used in a compatible, in-

terchangeable, and transparent fashion?

2) Given a visuo-tactile representation, can we use exist-

ing descriptors proposed by the computer vision com-

munity to deal with cross-modal recognition problems?

3) What classification algorithm should we adopt to rec-

ognize the objects?

We respond supporting our proposed choices with a large

set of experiments. The rest of the paper is organized as

follows. In Sec. II the related work is reported. Section

III describes the proposed unified representation and the

proposed descriptor. Both visual and tactile sensing setup are

described in Sec. IV. Section V presents diverse experiments

in order to show the performance of the proposed cross-

modal classifier. Conclusions are reported in Sec. VI.



II. RELATED WORK

In the robotic literature, diverse works exist related to

monomodal and multimodal object recognition. Cross-modal

object recognition has been studied especially in neuro-

science and psychology.

Monomodal Recognition: in monomodal recognition, the

classifier is trained with one sensing modality, usually visual

or tactile, and it is used at execution time with the same

modality to recognize objects. Visual object recognition has

become a rather mature field and several works can be found

in the literature. Due to the diffusion of low-cost RGB-

D cameras, object recognition from 3D point clouds has

gained a great deal of interest within vision and robotics

communities. For this reason, several descriptors have been

proposed in the last years, which exploit visual 3D point

clouds. Example are Persistent Feature Histograms (PFH)

[3], Fast PFH (FPFH) [4], Unique Signatures of Histograms

(SHOT) [5], and Ensemble of Shape Functions (ESF) [6],

and Spin Images (SI) [7].

In addition to computer vision, tactile perception has

become of crucial importance for object recognition [8],

material features detection [9], and slipping avoidance in

grasping tasks [10]. In [11], a descriptor to recognize objects

is presented with tactile data collected by a robotic hand.

The work presented in [12] uses a bag-of-words approach,

which recognizes object from low-resolution tactile images,

obtained by grasping the object with a sensorized gripper.

A bag-of-features framework in presented in [13]. It uses

diverse tactile image descriptors to estimate a probability

distribution over object identity as an object is explored,

while [14] exploits texture properties to discriminate objects.

Multimodal Recognition: in the multimodal perception

case, the training procedure is carried out by using both

visual and tactile data in order to improve the accuracy. In

[15], a deep learning method based on Convolutional Neural

Networks (CNNs) is proposed, which achieves an enhanced

accuracy in recognizing properties of materials through the

fusion of tactile and visual data. The approach presented in

[16] integrates visual and range data to recognize objects.

In [17], visual features are combined with tactile glances to

refine object models, obtaining more accurate information

about surfaces. The work in [18] reconstructs 3-D models of

unknown objects by fusion of visual and tactile information

while objects are grasped.

Cross-modal Recognition: Cross-modal perception has

been studied with great interest in the communities of

psychology and neuroscience. Recent studies carried out on

animals are reported in [19], [2]. In [20], a specific chapter is

dedicated to cross-modal recognition. A classical study con-

cerning intermodal matching on infants is reported in [21],

while, in [22], visuo-tactile cross-modal perception in apes

is investigated. To the best of our knowledge, robotic cross-

modal visuo-tactical recognition has not been investigated.

III. CROSS-MODAL OBJECT RECOGNITION

In this section, the three elements of our cross-modal

visuo-tactile framework are described, i.e., unified represen-

Tactile
Data

Visual
Data

Unified
Representation

Fig. 2: A representation for cross-modal perception considers

common information between the modalities

tation, features definition, and learning algorithm.

A. Representation and Preprocessing

The first point we address is how to represent visual and

tactile data to allow an effective cross-modal perception.

RGB-D cameras allow us to represent an object O as a set of

points P = {p
0
,p

1
, ..., pn}, defined hereafter as point cloud

of O. Each vector p = (px, py, pz) denotes the 3D position

coordinates of the point p. With the symbols Pv and pv

we indicate that the point cloud P and the point p ∈ P is

captured with visual perception. In order to derive a unified,

compatible representation, we represent tactile raw data as

point clouds, meaning by raw data the contact points between

the object and the sensor. Even though representations based

on tactile point clouds were used for shape reconstruction

[23] and creation of object bounding boxes [24], this choice

may appear naive for object recognition applications. In

fact, modern tactile sensors can provide richer information

than a point cloud, such as contact forces, textures, pressure

maps, and friction coefficients. However, as graphically

shown in Fig. 2, in order to achieve cross-modal capabil-

ities, a representation is required that contains information

common to both visual and tactile perception. The tactile

point cloud representation of the object O is denoted as

Pt = {pt
0
,pt

1
, ...,pt

m}, where the symbol t denotes a point

cloud acquired with a tactile perception system. In this work,

we avoid the need of a registration step [25] between visual

and tactile point clouds by choosing feature descriptors that

are invariant to rotation and translation. Tactile and visual

point clouds present significant differences in point density,

in partiality of data, and in the characteristics of noise that

affects the measurements. To derive a more effective unified

representation, we equalize Pv and Pt in order to reduce the

difference in point density and in partiality. Data partiality

consists in missing points in visual and tactile clouds. Even

when the position and orientation of the objects are the

same in both tactile and visual exploration, the tactile and

visual point clouds have different missing points. Besides

partiality, visual and tactile point clouds present also different

point densities. In order to alleviate these differences, we

preprocess both tactile and visual point clouds through two

main steps: equalizing partiality of the data and uniforming

point density.

Equalizing Partiality: The method we adopt to handle data

partiality is the Moving Least Squares (MLS) surface recon-



struction [26]. This step allows us to filter the measurement

noise and to recreate the missing parts of the surface. The

core of the MLS approach is composed by three basic steps.

First of all, we assume that points of each 3D tactile or

visual point cloud P belong to a two-dimensional surface S.

However, measurement noise corrupts the observed position

of each point. As a consequence, the points of P will be

”near” S but do not belong to S. Given each point p ∈ P ,

the first step consists in finding a plane H that approximates

locally the surface S in a region I of center p and radius r,

called ”search radius”. The plane H is computed by using

Principal Component Analysis (PCA). The points of the set I

are projected onto H and upsampled with a step of 0.3mm.

With these operation we transform the set I into the set Ĩ .

The second step consists in fitting with a polynomial of order

pd the height of the points projected on H . We choose pd = 2
and r = 6 cm. Setting r = 6 cm confers rather strong filtering

behavior and we can lose information in proximity of sharp

edges. Typical values in monomodal visual perception are

r ∈ [1.5, 3] cm. However, in cross-modal perception, a strong

filter is able to equalize cross-modal noise and in our case

study allowed enhanced performance. A more detailed and

formal description of the procedure can be found in [26].

In this work, the parameters are chosen with a grid search

approach, maximizing the recognition accuracy.

Uniforming Density: The second step of the equalization

procedure consists in applying a voxel grid filter [27] to

downsample and ensure a more uniform point density. We

apply the voxel filtering approach implemented in PCL. In

this approach, the space is divided in 3D cubes (called vox-

els). All the points contained in each 3D box are substituted

with their centroids. Following this procedure, the number

of points will be equal to the number of voxels. Selecting

appropriately the dimension of the voxels, the similarity

of point density between tactile and visual data can be

improved. In this work, we have empirically chosen cubic

voxel with edge length l = 5mm.

The procedure is summarized in Algorithm 1. An example

of visual and tactile point clouds before and after preprocess-

ing is shown in Fig. 3. The equalization step plays a key role

in order to improve the performance (see Sec. V).

B. A Suitable Descriptor

After defining a unified representation based on point

clouds, it is important to choose a suitable feature de-

scriptor that allows cross-modal recognition. The choice

of the feature descriptors strongly depends on the chosen

representation of raw data. Since our unified representation

is based on point clouds, we orient our research towards

Algorithm 1 Equalization

1: function P=equalize(PointCloud P∗)

2: P̄ =MLS(P∗, us = 0.3mm, r = 6 cm , pd = 2)
3: P =voxelGridFilter(l = 5mm)

4: return(P)

(a) Visual point cloud before pre-
processing

(b) Tactile point cloud before pre-
processing

(c) Visual point cloud after pre-
processing

(d) Tactile point cloud after pre-
processing

Fig. 3: Visual and tactile point clouds

3D point cloud descriptors. From the results reported in the

computer vision literature [5] [6], we expect that SHOT and

ESF are promising candidates for our problem. However, we

obtained rather poor results with respect to the monomodal

classification, since the data in the training and test set

come from radically different sensing modalities. Even after

the preprocessing, the differences in noise, resolution and

partiality of the data found in the training and test set

cannot be equalized perfectly. Therefore, the need of a new

descriptor suitable for cross-modality. Following a strategy

commonly adopted in communication engineering, we pro-

pose to increase the redundancy of the information associated

to the descriptors. A straightforward way to increase the

redundancy is finding a smart combination of different de-

scriptors. In our case we expect benefit by combining SHOT

and ESF, since they encode information with two different

approaches. SHOT encodes point clouds with histograms of

normal vectors [5], while ESF does not compute normals

and encodes information based on shape functions [6]. The

ESF descriptor is an ensemble of 10 concatenated histograms

of shape functions consisting of angle, point distance, and

area functions. Each histogram has 64 bin, for a total of 640

elements [6]. The SHOT computes a local reference frame

Σc using the eigenvalue decomposition around an input point

c, in our case c is the centroid of the point cloud P . Given

the frame Σc, a sphere Sc of center c and radius rc is defined.

Sc is then split into 32 divisions and for each division a 11-

bin histogram is computed. Each histogram contains angles

that describe the directions of the normal vectors to each

point p ∈ P in the frame Σc. The descriptor concatenates

the histograms into the final signature, obtaining a vector of

352 elements. We compute a single SHOT feature for each

object and use it as a global feature.

Let dSHOT be the SHOT descriptor associated to the point

cloud P and dESF the ESF descriptor associated to the



same point cloud. Both descriptors are column vectors. The

first possible way to improve the performance is to simply

concatenate dSHOT and dESF so that:

dc = [dT
SHOT d

T
ESF ]

T , (1)

where dc is the concatenated descriptor. Even if the concate-

nated descriptor dc contains more information than dESF ,

the improvement in accuracy was not significant. This can

happen because the dimension of dc is much higher than both

SHOT and ESF. As a consequence, the classification problem

is affected by the curse of dimensionality. Moreover, the high

increase in dimension can be a limitation also in terms of

training time and classification time, especially when scaling

to very large databases. Therefore, we decided to exploit a

data compression method. To compress the descriptor dc, we

organize the vectors dSHOT and dESF in the matrix:

D̂ = [dSHOT d̃ESF ], (2)

where d̃ESF = [dESF 0̄] and 0̄ is a 0-vector of dimension

1×(640−352). We want to compress the information carried

from the matrix D̂ ∈ R
640×2 into a vector dr ∈ R

640. We

leverage the data compression capability of Singular Value

Decomposition (SVD) [28]. First, we center the matrix D̂,

so that all columns are zero-mean. Let D be such a mean-

centered matrix. The SVD of the matrix D is

D = UΣV T, (3)

where U = [u1,u2, ....u640] ∈ R
640×640, V = [v1,v2] ∈

R
2×2, and Σ ∈ R

640×2 is the matrix that contains the

singular values σ1 and σ2. We choose the compressed SVD

descriptor dr as

dr = u1σ1. (4)

This descriptor has dimension 640 and is a linear combi-

nation of the columns of the matrix D. The best rank-

1 approximation of the matrix D is given by the matrix

D1 = u1σ1v1. As a consequence, drv1 is the 1-rank matrix

that minimizes the norm ‖D −D1‖.
Using dr as a descriptor we obtain significantly better

performance than using the dc. The descriptor dr, in fact,

carries more information than both ESF and SHOT, but

is less affected by the curse of dimensionality than the

concatenated descriptor dc. We call the descriptor derived in

Eq. (4) Cross-Modal ESF (CMESF). The CMESF descriptor

consists in the basic ESF enriched with the information

carried by SHOT.

C. Learning Algorithm

We compare k-Nearest Neighbor (k-NN), with different

values of k and radial basis function kernel Support Vector

Machines (SVM). Both k-NN and SVM are simple and

widely-used algorithms for classification problems. We apply

such learning algorithms to several state-of-the-art visual

descriptors and with the one proposed in this work. We found

that a suitable choice in the proposed framework is k-NN.

In more detail, to deal with the cross-modal recognition

problem, we perform two steps. The first step consists in

Algorithm 2 Cross-modal Recognition

1: function l=recognize(PointCloud Pt
o,ModelMv)

2: P̄t
o = equalize(Pt

o)

3: dSHOT =computeSHOT(P̄t
o)

4: dESF =computeESF(P̄t
o)

5: D̂ = [dSHOT dESF ]
6: D = center(D̂)
7: [U ,Σ,V ] = svd(D)
8: dCMESF = U(:, 1)Σ(1,1)
9: l = k-NN(dCMESF ,M

v)
10: return(l)

building a model Mv , which embeds a-priori knowledge

derived from visual perception. The second step is to exploit

a-priori knowledge embedded in Mv with data from a

different sensing modality.

Building the model: We use visual point clouds of 15
objects and for each object we collect 40 examples. Each

example i consists in a point cloud Pi. For each point cloud

Pi, we compute the CMESF descriptor di, which is the

representation of the point cloud in the feature space. Let

V be the set of the CMESF descriptors associated to all the

examples, i.e., V = (d1,d2, ...dl), with l = 600 in our case.

We derive the model Mv using the set V . When using k-

NN, the model Mv simply consists in the elements of V .

In case of SVM and other methods that require an explicit

training step, we use V as training set and the model Mv is

the trained classifier. The sensing system and the procedure

to collect visual data is described in Sec. IV-A.

Exploiting the model for cross-modal recognition: We

exploit the knowledge accumulated with visual perception

in order to interpret tactile data at execution time. To test

the performance of cross-modal recognition, we classify the

outcome of 5 tactile explorations per object. The tactile

sensing system and the exploration procedure are described

in Sec. IV-B. After the acquisition of the tactile point cloud,

we derive the descriptor d with the procedure described in

Sec. III-B. To recognize the object through visual a-priori

knowledge, we provide d as an input to the classifier which

embeds the modelMv . The output of such a classifier is the

estimated class of the object.

The entire process of visuo-tactile recognition that adopts

the CMESF descriptor is summarized in Algorithm 2. The

inputs of the algorithm are the modelMv , derived by visual

data a-priori known and the point cloud observed by tactile

sensors Pt
O at execution time. The output is the label l of

the explored object O.

IV. SENSING SYSTEM

In order to implement the cross-modal object recognition

and to show the validity of the design choices reported in

Sec. III, we prepared an experimental setup, constituted by

a visual perception system and a tactile perception system.



A. Visual Perception

The visual perception system is shown in Fig. 4. The visual

point clouds are collected with a Kinect RGB-D camera. The

objects and the camera are placed as depicted in Fig. 4. The

collected point cloud of an object O is separated from the

rest of the scene by an Euclidean cluster extraction (ECE)

algorithm in the PCL libraries. The ECE algorithm removes

the planes from the scene and clusters the remaining points

with a kd-tree approach.

B. Tactile Perception

Tactile Sensing Setup: In the experiments, the SAPHARI

tactile skin [29] is mounted on the end effector of a KUKA

light weight robot, as shown in Fig 5. The tactile technology,

originally presented in [30], exploits optoelectronic devices

to detect the local deformation, generated by an external

contact force applied to a deformable layer that covers the

optoelectronic layer. The tactile skin consists in a grid of 6×6
sensor modules with a size of 5 × 5 cm as a whole. Every

sensing module, shown in Fig 5, has a unique spatial rep-

resentation in the robotic base frame and provides the three

component of the force applied on it. When the intensity

of the contact force ‖F i‖ for the module i is larger than a

threshold θ, the contact point pi is extracted. In this work, we

have empirically chosen θ = 0.8N. The tactile readings for

each object are then represented as three-dimensional point

clouds, as described in Sec. III. The experimental setup for

tactile exploration is illustrated in Fig. 5.

Exploration Strategy: Tactile exploration is a core part of

tactile object representation and recognition. An appropriate

exploration strategy ensures a good quality of the tactile point

clouds. In this work, we explore the object by pressing along

the z axis as depicted in Fig. 5. We take the robot base frame

as the unified world reference frame, all tactile point clouds

are represented in this frame. When a module of the tactile

skin is in contact with the object, the point of contact between

the tactile skin and the object is included in the point cloud

Pt relative to the object O. The tactile readings are described

as a six dimensional vector, encoding the pose and force

(a) Visual Setup

(b) Exploration grid

(c) Visual Point Cloud

Fig. 4: Visual Sensing System

y
x

z

(a) Robot Arm and Tactile Skin (b) Tactile Skin

(c) Tactile Skin Readings (d) Tactile Skin Readings

Fig. 5: Experimental setup for tactile perception

information. During the exploration, Cartesian impedance

controller is used, which allows the robot to interact with

the object in a compliant manner. The robot is compliant

along z, so that it is able to explore without damaging any

objects. As depicted in Fig. 4b, the end effector is controlled

to move to each vertex of the grid and, after reaching a

vertex, press the object. Each contact point between the skin

and the object is represented as a point p = (px, py, pz)
and it is expressed in the robot base frame. In this work,

the tactile frame Σt is the robot base frame. However, the

feature selection is frame-independent. All the objects are

fixed on the table. The points of the table are removed with

the planar filter algorithm implemented in PCL. We adopt

a simple exploration strategy, which is particularly suitable

for planar objects. The exploration procedure is described in

Algorithm 3.

Algorithm 3 Exploration Strategy

1: Traj1 = (v1,v2, ....,vn) ⊲ grid vertices in Fig. 4b

2: for vj ∈ Traj1 do

3: moveTo(vj) ⊲ it brings robot from vertex to vertex

4: press on vertex vj

5: for each sensor module i do

6: read(F i)

7: if ‖F i‖ ≥ 0.8N then

8: pi ← (px, py, pz)
9: P = P ∪ {pi}

10: end if

11: end for

12: end for

V. EXPERIMENTS

A. Description of the Dataset

We selected 15 objects, depicted in Fig. 6, which are typi-

cal of domestic and industrial environments. For each object,

the tactile exploration procedure, described in Algorithm 3

has been repeated 5 times. Then, 40 samples from each object



(a) cup mat (b) mat (c) tweezers (d) spanner

(e) socket wr. (f) wrench (g) allen key (h) ruler

(i) shaver (j) hairpin (k) pincers (l) holder

(m) small tape (n) tape (o) mouse

Fig. 6: Objects used for experiments, each one close to a

1-euro coin

have been collected with the visual system in Fig. 4. After the

data acquisition procedure, we have 40 visual and 5 tactile

point clouds for each object. The visual point clouds are used

to build the a-priori knowledge. In this case study, a-priori

knowledge is constituted by the classifier trained with visual

data, denoted in our work with the symbol Mv . The tactile

exploration data are then classified exploiting the a priori

knowledge Mv . It is important to emphasize that, with the

proposed approach, the robot can classify objects using the

sense of touch even the object has never been touched before,

but it has been only seen by vision.

Feature descriptor 1-NN 3-NN 5-NN SVM

PFH 15.20% 8.44% 8.44% 8.44%

FPFH 10.06% 10.06% 10.06% 13.34%

SI 21.33% 22.67% 21.33% 32.00%

SHOT 32.63% 32.63% 31.25% 35.79%

ESF 45.26% 45.26% 42.11% 32.63%

dc 45.26% 45.26% 42.11% 26.32%

CMESF 55.79% 57.89% 53.68% 33.68%

TABLE I: Recognition result without preprocessing

B. Classification results

In order to show the performance of the framework, we

evaluate, in terms of accuracy, the proposed combination

of (1) unified representation, (2) unified descriptor, and (3)

suitable learning algorithm. We compare different state-of-

the-art descriptors with the proposed CMESF, as shown in

Table II. In order to show how strongly the preprocessing

step impacts on the performance of cross-modal object recog-

nition, we indicate in Table I and Table II the classification

accuracy without and with preprocessing, respectively. In the

light of the results mentioned above, the preprocessing allows

an improvement up to 20% in the recognition accuracy
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Fig. 7: Cross-modal recognition result on 10 observations
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Fig. 8: Cross-modal recognition result on 30 examples

and the importance of this step is crucial when dealing

with visuo-tactile cross-modality. We compare k-NN and

radial basis function kernel SVM, since they are simple and

have recognized effectiveness in classification problems. The

best performance is achieved by 5-NN combined with the

CMESF descriptor. The accuracy is evaluated by classifying

5 tactile explorations per object using the visual knowledge

embedded in the model Mv , obtained through the different

classification methods reported in Table II. We can observe

that the descriptors using estimated normal vectors, i.e., PFH,

FPFH, SI and SHOT, perform worse than ESF. CMESF

is particularly suitable for cross-modal recognition, as the

improvement with respect to basic ESF is, in our case

study, almost 15% and the dimension remains the same.

In Table III, the confusion matrix is reported for a more

detailed analysis. We can notice the recognition performance

is between 80% and 100% for all the objects except for

4: (j) the hairpin presents 20% accuracy, (n) the tape 40%

accuracy, (e) the socket wrench 60% accuracy, (h) the ruler

60% accuracy.

Feature Descriptor 1-NN 3-NN 5-NN SVM

PFH 5.33% 12.00% 12.00% 10.67%

FPFH 9.33% 12.00% 14.67% 16.00%

SI 22.67% 28.00% 28.00% 40.00%

SHOT 37.33% 36.00% 34.67% 32.00%

ESF 60.00% 65.33% 65.33% 49.33%

dc 62.67% 68.00% 66.67% 30.67%

CMESF 72.00% 73.33% 77.33% 40.00%

TABLE II: Cross-modal Recognition Result



a 1.0 0 0 0 0 0 0 0.2 0 0 0 0.2 0 0 0
b 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 0 0 1.0 0 0.4 0 0 0 0 0 0 0 0 0 0
d 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0
e 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0.8 0 0 0 0 0 0 0.2 0 0
g 0 0 0 0 0 0.2 1.0 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0.2 1.0 0 0 0 0 0.6 0
j 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0
k 0 0 0 0 0 0 0 0 0 0.8 1.0 0 0 0 0
l 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0 0
m 0 0 0 0 0 0 0 0 0 0 0 0 0.8 0 0
n 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

a b c d e f g h i j k l m n o

TABLE III: Confusion matrix of visual-tactile object recog-

nition
.

a 0.95 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 0.05 0 0.75 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0.05 0.75 0.1 0 0 0 0 0.1 0 0 0 0 0
e 0 0 0 0.15 0.9 0.1 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0.95 0 0 0 0 0 0 0 0
h 0 0 0.1 0 0 0 0.05 0.8 0.2 0 0 0 0 0 0
i 0 0 0.1 0 0 0 0 0.2 0.8 0 0 0 0 0 0
j 0 0 0 0 0 0 0 0 0 0.75 0 0 0 0 0
k 0 0 0 0.1 0 0 0 0 0 0.15 1.0 0 0 0 0
l 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0
m 0 0 0 0 0 0 0 0 0 0 0 0 0.95 0.05 0
n 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.95 0
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

a b c d e f g h i j k l m n o

TABLE IV: Confusion matrix of human object recognition.

C. Number of examples

In order to understand how the performance changes when

the cardinality of the training set decreases, we define 60
reduced training sets divided in 3 classes. The first class of

training sets is obtained by random sampling 30 observa-

tions from the complete training set. The random sampling

procedure is carried out 20 times. We denote the first class

as C30 = {T 30

1
, T 30

2
, .., T 30

20
}. The second class is obtained

by random-sampling 20 examples from the complete training

set. According to the notation adopted above, we denote the

second class of training sets as C20 = {T 20

1
, T 20

2
, .., T 20

20
}.

Also in this case the sampling procedure is carried out

20 times. The third class is obtained by random sampling

20 times 10 observations out of 40 and it is denoted as

C10 = {T 10

1
, T 10

2
, .., T 10

20
}. Figures 8 and 7 show the accuracy

of cross-modal recognition using the classes C30 and C10,

respectively. In the figures we report the minimum (in green),

the maximum (in red), and the average result emphasized by

the histogram in blue. For each class, we define average,

minimum and maximum values because we evaluate 20 ran-

domly extracted reduced training sets per class. This part of

our analysis is important to understand how the performance

degrades when the number of examples decreases. The

classifiers show an average recognition accuracy around 70%
both with 30 observations (Fig. 8) and 20 observations.The

result on 10 observations in the training set decreased to

around 65% (Fig. 7). As expected, we can conclude that

the recognition accuracy on larger training sets is higher.

However, the accuracy does not decrease dramatically even

in case of only 20 observations, i.e., half training set. With

half the examples, the average accuracy decreases of 7%.

D. Comparison with human cross-modal object recognition

In order to have an ideal reference for assessing the per-

formance of artificial cross-modal recognition, and because

in the literature it is hard to find a cross-modal recognition

algorithm, we compare the performance of our framework

with a ”golden standard”, which is represented by the per-

formance of humans. We arranged then a simple experiment,

described in Algorithm 4, to have a first estimation of human

performance in visuo-tactile cross-modal object recognition

tasks. In this experiment, 10 participants, ranging in age from

20 to 30 years, were invited to look at the set of objects

shown in Figure 6 for 2 minutes. Afterwards, each participant

was blindfolded and invited to explore each object with one

hand. Since human skin can sense also the temperature of

the object, the participants wear a thin glove to maintain the

tactile perception capability, but to reduce the perception of

the temperature. The objects are placed on the table. The

participants explore by touching each object for 10 s without

seeing the objects. After that, the participants are invited

to say which object was explored. Algorithm 4 describes

the adopted protocol step by step. A picture of human

tactile exploration is shown in Fig. 9. The average accuracy

achieved is 89.7% and in Table IV the confusion matrix is

reported. The accuracy of humans in this experiment is 12%
better than the performance of the proposed method based

on processed tactile point clouds and the CMESF descriptor.

Comparing Tables III and IV we can notice that for most

objects the performance of our framework are close to human

performance in this case study.

Feature Descriptor Visual Tactile

FPFH 66.33% 91.67%

SI 98.00% 93.30%

SHOT 97.17% 92.00%

ESF 97.33% 94.67%

dc 98.50% 93.33%

CMESF 98.67% 94.67%

TABLE V: 1-NN Monomodal Recognition Result

E. Comparison with monomodal object recognition

The results of the cross-modal visuo-tactile object recog-

nition framework are also compared with the monomodal

visual recognition case. The results of the visual and tactile

monomodal cases are reported in Table V. In this case study,

the classifier is trained and tested with the same modality.

The accuracy has been evaluated with a 10-fold cross-

validation method. From Table V it is possible to see that

both visual and tactile monomodal problems are, as expected,

less challenging than the cross-modal case, since training

set and test set are generated from the same perception

mode. Most state-of-the-art descriptors achieve more than

90% accuracy in the monomodal case with 1-NN.

VI. CONCLUSION AND FUTURE WORK

In this work, we deal with cross-modal visuo-tactile object

recognition. We train a classifier by using visual data from

a Kinect camera and we recognize objects at execution



Fig. 9: Tactile exploration performed by a human

Algorithm 4 Protocol for the experiment with humans

1: The subject is invited to see all the objects for 2 minutes

2: The subject is invited to wear a thin glove that prevents

from sensing the temperature of objects

3: The subject is blinded with a blind fold

4: The objects are put in a bag, one object is picked out

and put on a table

5: The subject explores the object with the hand for 10 s

6: The subject tells the name of the explored object

7: Go to step 3 until every object has been picked out

time only with tactile data, without any a-priori tactile

information. Through this case study, we aim at answering

the three questions introduced in Sec. I. Answering to the

first question, we propose in Sec. III-A the visuo-tactile point

cloud representation combined with the procedure of equal-

ization in resolution and partiality. As an answer to Question

2, we found that using descriptors from the computer vision

community, as they are, is not the best option since we

obtain only around 50% accuracy. However, combining two

different descriptors, i.e., SHOT and ESF, with a SVD-

based compression revealed a feasible strategy.Concerning

Question 3, our experiments show that a suitable learning

algorithm for the proposed descriptor is k-NN.

Future work will consist in implementing more complex

exploration strategies, in investigating novel visuo-tactile

descriptors, and in investigating deep learning methods to

train a model from a huge amount of visual data.
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