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Abstract

Person re-identification (Re-ID) is an importan-
t task in video surveillance which automatically
searches and identifies people across different cam-
eras. Despite the extensive Re-ID progress in RG-
B cameras, few works have studied the Re-ID be-
tween infrared and RGB images, which is essen-
tially a cross-modality problem and widely encoun-
tered in real-world scenarios. The key challenge
lies in two folds, i.e., the lack of discriminative in-
formation to re-identify the same person between
RGB and infrared modalities, and the difficulty to
learn a robust metric for such a large-scale cross-
modality retrieval. In this paper, we tackle the
above two challenges by proposing a novel cross-
modality generative adversarial network (termed
cmGAN). To handle the lack of insufficient dis-
criminative information, we design a cutting-edge
generative adversarial training based discriminator
to learn discriminative feature representation from
different modalities. To handle the issue of large-
scale cross-modality metric learning, we integrate
both identification loss and cross-modality triplet
loss, which minimize inter-class ambiguity while
maximizing cross-modality similarity among in-
stances. The entire cmGAN can be trained in an
end-to-end manner by using standard deep neural
network framework. We have quantized the per-
formance of our work in the newly-released SYSU
RGB-IR Re-ID benchmark, and have reported su-
perior performance, i.e., Cumulative Match Char-
acteristic curve (CMC) and Mean Average Preci-
sion (MAP), over the state-of-the-art works [Wu et
al., 2017], at least 12.17% and 11.85% respectively.

1 Introduction

Person re-identification (Re-ID) has received ever-increasing
research focus recently, which aims to match pedestrian im-
ages across different cameras. The key challenge lies in that
different cameras usually suffer from significant changes in
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Figure 1: Examples of RGB images and infrared (IR) images in
SYSU RGB-IR Re-ID dataset. The 1

st,2nd,4th,5throws are RGB
images, while 3

rd,6th rows are IR images.

different views, human body poses, illumination and back-
grounds. To this end, the existing works can be roughtly
categorized into either metric learning methods or feature
learning methods. The former targets at learning a distance
metric to handle the above robust matching problem [Zheng
et al., 2011; Köstinger et al., 2012; Wang et al., 2013;
Li et al., 2013; Xiong et al., 2014; Liao et al., 2015; Paisitkri-
angkrai et al., 2015; Liao and Li, 2015; Wang et al., 2016;
Subramaniam et al., 2016]. The latter is to learn invariant fea-
ture directly, upon which efficient L2 or Cosine distance can
be applied [Farenzena et al., 2010; Kviatkovsky et al., 2013;
Zhao et al., 2013; Yang et al., 2014; Liao et al., 2015;
Matsukawa et al., 2016; Ma et al., 2017].

However, very few works have paid attention to the Re-
ID between RGB cameras and infrared cameras, which, in
our consideration, is essentially a cross-modality problem and
widely encountered in real-world scenarios. In many applica-
tions, the surveillance cameras could be heterogeneous, such
as near-infrared(IR), thermal and depth cameras. Especial-
ly, many new-generation surveillance cameras nowadays sup-
port automatic switching between RGB and infrared modali-
ties, which facilitates such cameras to work at night. The key
challenges lies in two folds, i.e., the lack of discriminative in-
formation to re-identify the same person between RGB and
infrared modalities, and the difficulty to learn a robust metric
towards for such a large-scale cross-modality retrieval. Very
recently, the work in [Wu et al., 2017] introduces a cross-
modality RGB-IR dataset named SYSU RGB-IR Re-ID, as
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shown in Fig.1. The proposed method analysizes three differ-
ent network structures and uses deep zero padding for evolv-
ing domain-specific structure in one-stream network, which is
suitable for RGB-IR Re-ID. However, two serious challeng-
ing problems in person Re-ID remain open. First, learning
a distance metric is difficult, especially in large-scale cross-
modality retrieval. The second challenge is the unbalanced
data from different modalities which indicates inconsisten-
t distribution and representation of different modalities and
heterogeneous gap.

In this paper, we tackle the above two challenges by
proposing a novel cross-modality generative adversarial net-
work (termed cmGAN). To handle the issue of insufficient
discriminative information, we leverage the cutting-edge gen-
erative adversarial training theory to design our own discrim-
inator to learn discriminative feature representation from dif-
ferent modalities. To handle the issue of the unbalanced data
from different modalities, we proposed a novel hybrid loss
that integrates identification loss and cross-modality triplet
loss, which minimize inter-class ambiguity while maximiz-
ing cross-modality similarity among instances . In particular,
the proposed cmGAN consists of a deep convolutional neu-
ral network as generator to generate modality-invariant rep-
resentation for RGB and IR images in a common subspace,
as well as a modality classifier as discriminator that discrim-
inates between different modalities. The generator is super-
vised and optimized by identification loss and cross-modality
triplet loss, by which identification loss can separate inter-
class embedding while cross-modality triplet loss minimizes
the gap among RGB and infrared representations. The dis-
criminator is a modality classifier that tries to discriminate
RGB-IR image representations between different modalities.
In the proposed framework, the generator and discriminator
beat each other as a minimax game to learn discriminative
common representation. Through the joint exploitation of the
above, heterogeneous data can be directly compared by such
a robust distance metric for cross-modality person Re-ID. The
main contributions of this paper are three-fold:

• We explore the problem of cross-modality RGB-IR per-
son Re-ID by exploiting the cross-modality representa-
tion learning from the perspective of generative adver-
sarial training. To the best of our knowledge, it is the first
effort towards GAN based cross-modality person Re-ID.

• We design a loss function for cross-modality generative
adversarial network (cmGAN) to learn discriminative
common representations. With this loss function, the
generator and discriminator in cmGAN beat each other
with minimax game to learn cross-modality representa-
tions.

• Extensive experiments on challenging RGB-IR re-
identification dataset demonstrate the advantages of
our proposal over state-of-the-art methods of CMC by
12.17% in terms of mAP by 11.85%.

The rest of paper is organized as follows. Sec.2 outlines
related works on person Re-ID, cross modality retrieval and
generative adversarial networks. Sec.3 describes the pro-
posed framework for learning discriminative representations

for RGB-IR person Re-ID. Experimental results of our ap-
proach are demonstrated in Sec.4. Finally we conclude this
paper in Sec.5.

2 Related Work

2.1 Person Re-ID

There are two fundamental components in Person Re-ID: dis-
tance metric learning and feature representation. For the for-
mer group of works, metric learning is to formalize the prob-
lem as a supervised metric learning where a projection matrix
is sought out. Subsequently, metrics like Mahalanobis metric
are well exploited. [Köstinger et al., 2012] proposed a large-
scale metric learning from equivalence constraint (KISSME),
which essentially models a log likelihood ratio test between
two Gaussian distributions. [Ding et al., 2015] proposed a
deep image representation based on relative distance compar-
ison for person Re-ID. Another group is to learn discrimi-
native features that can be efficiently combined by existing
L2 or Cosine distances. In particular, several deep learning
schemes are exploited. [Yi et al., 2014] constructed a Siamese
neural network to learn pairwise similarity and used pedes-
trian body parts to train their CNN model. [Ahmed et al.,
2015] proposed a new patch matching layer that compares
the activation of two images in neighboring pixels. Howev-
er, the aforementioned works only address the person Re-ID
problem from the same modality. They cannot handle multi-
modal data with consistent distribution, which cannot bridge
the heterogeneous gap.

2.2 Cross Modality Retrieval

Cross-modality retrieval [Peng et al., 2017a]targets at search
instances across different modality data, such as searching
text in image database related to it semantically. Search be-
tween image and document is a representative cross modali-
ty retrieval, which has attracted extensive research focus in
the past decade. Representative methods include, but not
limited to, traditional statistical correlation analysis, DNN-
based methods [Zhang et al., 2014], cross-media graph reg-
ularization methods, metric learning methods, and dictionary
learning methods. The widely-used cross-modality retrieval
datasets include Wikipedia, XMedia, NUS-WIDE and Pas-
cal VOC 2007. Among all the methods, the implementa-
tion of deep neural network has a significant influence on
retrieval performance because of its effectiveness and effi-
ciency. And the recent endeavors also facilitate the learn-
ing of cross-modality binary codes, such as [Srivastava and
Salakhutdinov, 2014]. A deep semantic hashing with gener-
ative adversarial networks is proposed by [Qiu et al., 2017],
which explores semi-supervised GAN to generate synthetic
training data for hashing. Note that, our scenario is related
to the above works, which however differs in person Re-ID.
Therefore such works cannot be directly applied.

2.3 Generative Adversarial Network

After first proposed by [Goodfellow et al., 2014], GAN has
received ever-increasing research focus in computer vision
and artificial intelligence research [Arjovsky et al., 2017;
Isola et al., 2017; Ledig et al., 2017]. The GAN consists
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Figure 2: The proposed cmGAN framework. It consists of the two components. A deep convolutional neural network as generator with
identification loss and cross-modality triplet loss to generate modality-invariant representation for RGB and IR images in common subspace,
as well as a modality classifier as discriminator that discriminates between different modalities. The generator and discriminator beat each
other as a minimax game to learn discriminative common representation for person Re-ID.

of a generator and a discriminator, the former is to capture
the distribution of real data, while the latter reveals whether a
sample is fake or real.

To the best of our knowledge, the existing GAN method-
s typically handle intra-modality sample generation. As a-
mong few pioneering works, [Zhao et al., 2017] propose a
deep modal that turns cross-view image hashing into single-
view GAN for cross modality image retrieval. [Peng et al.,
2017b] proposed a method to effectively correlate large-scale
heterogeneous data by GAN. [Wang et al., 2017] presented an
adversarial cross-modal retrieval method to seek an effective
common subspace based on adversarial learning.

3 The Proposed cmGAN

3.1 Problem Formulation

Formally speaking, let V be the RGB images and I be the IR
images or thermal images. The multi-modal dataset is repre-
sented as D = {Dtr, Dte}, where Dtr = {Vtr, Itr} denotes
the training data and Dte denotes the testing data , in which
Dte = {Vte, Ite}. Here, vj ∈ R

d is the feature vector extract-

ed from the RGB image and ij ∈ R
d is the feature extracted

from the IR image, where d is the feature dimension. Assume
Dtr contains a set of n training images with the correspond-
ing identity labels as Y = {yi}

n
1 .

3.2 The Proposed Model

Fig.2 shows the framework of the proposed cmGAN mod-
el, which contains generator and discriminator components.
Features V and I extracted from RGB and IR modalities re-
spectively are fed into the fully-connected layers to generate
a 2,048 dimension feature. Then, the generator is trained with
both the identification loss and cross-modality triplet loss (de-
tailed in Generator). Finally, the modality classifier plays
a role as a discriminator to discriminate between different
modalities (detailed in Discriminator). The model compo-
nents are introduced in details as below:

Generator We construct the generative model with two
kinds of loss functions i.e., the intra-class feature embedding
loss and the inter-modality loss. The first loss is to ensure the
intra-modal discrimination. In order to project feature repre-
sentation for each modality in the common subspace, several
fully-connected layers are built with the identification loss.
The feed-forward network is activated by softmax and added
after the global average pooling, which outputs a probabili-
ty distribution of person identifications. This intra-class fea-
ture embedding loss by uses the following probability distri-
butions as:

ℓide(θide) = −
1

M

M∑

j=1

(yi · (logpj(vj) + logpi(ij)). (1)

Here, θide denotes the parameters of the feed-forward net-
work and pj is the probability distribution of each ID. The
second loss, i.e. the cross-modality loss is to impose triplet
constraints to minimize the gap among features of identical
persons from different modalities. Formally speaking, let
Di = {va, ip, in} or Di = {ia, vp, vn} be the input fea-
ture of different modalities. Such Di forms the i-th triple,
where (va, ip) and (ia, vp) are from the same person in differ-
ent modalities, while in and vn have different identification
labels respectively. We then compute the inter-modality loss
respectively:

ℓtripletV(θV ) =
∑

(a,p,n)

[D2
a,p −D2

a,n + ξ]+, (2)

ℓtripletI(θI) =
∑

(a,p,n)

[D2
a,p −D2

a,n + ξ]+. (3)

Here, [z]+ = max(z, 0), the threshold ξ is a margin that
is enforced between positive and negative pairs. The overall
cross-modality triplet loss can be formulated as a combina-
tion of ℓtripletV(θV ) and ℓtripletI(θI).

ℓtriplet(θV , θI) = ℓtripletV(θV ) + ℓtripletI(θI). (4)
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Figure 3: Performance of cmGAN with different values of margin ξ
in triplet loss funciton.

By combining the intra class embedding loss with the inter-
modality loss, we come up with the final objective function
as:

ℓgen(θV , θI , θide) = α · ℓtriplet + β · ℓide, (5)

where α and β are hyper-parameters.
Discriminator We construct a modality classifier D with

parameters θD to act as discriminator. This modality clas-
sifier is to learn to judge whether a learned vector of repre-
sentation is within the same modality or between different
modalities, which acts as an adversary. The modality clas-
sifier is consisted of a 3-layer feed-forward neural network,
upon which the discriminator (adversarial) loss is defined by
the cross-entropy loss of the modality classifier as follows:

ℓdis(θD) = −
1

M

M∑

j=1

(mi · (logD(vj ; θD) + logD(ij ; θD))),

(6)
where mi is the modality label, and D(·; θD) is the modality
probability of each input image.

3.3 The Training Algorithm

The model learning is conducted end-to-end by jointly mini-
maxing generator and the discriminator losses , which is sim-
ilar to [Peng et al., 2017b] and [Wang et al., 2017]. Since the
generator and the discriminator run as a minimax game that
targets at beating each other, the optimization carries out two
sub-processes:

θ̂V , θ̂I , θ̂ide = argmin
θV ,θI ,θide

(ℓgen(θV , θI , θide)− γ ∗ ℓdis(θ̂D)),

(7)

θ̂D = argmax
θD

(ℓgen(θ̂V , θ̂I , θ̂ide)− γ ∗ ℓdis(θD)). (8)

Here, γ is a hyper-parameter. The generative model is trained
for K steps in each iteration in the training stage. The overall
training procedure is shown in Algorithm.1.

4 Experiments

In this section, we conduct extensive experiments to evalu-
ate the efficacy of the proposed method. In the experiments
reported blow, we compare our proposed cmGAN method

Algorithm 1 The Learning of the Proposed cmGAN model

Require:
Training dataset {x1,y1,s1},{x2,y2,s2},...
(x is raw image, y is Id label, s is domain label),
A per-trained CNN model v = f(x; θ1) as generator,
A CNN model p = d(v; θ2) as discriminator,
parameter: α, β, γ, η, K, ξ.

Repeat until convergence:
1: for each i ∈ labels do
2: randomly create the pairs:({xa,yi,s},{xb,yi,s})
3: end for

Calculate the generator loss
4: V = f(X ; θ1)
5: ℓtriplet =

∑
a,p,n[D

2
a,p −D2

a,n + ξ]+
(ya = yp, ya 6= yn, sa 6= sp, sa 6= sn)

6: ℓide = CrossEntropy Loss(V,Y)
7: ℓgen = α ∗ ℓtriplet + β ∗ ℓide

Calculate the discriminator loss
8: P = d(V; θ2)
9: ℓdis = CrossEntropy Loss(P,S)

Train the parameters θ1 and θ2
10: if e % K 6= 0 then
11: ℓTotal = ℓgen − γ ∗ ℓdis;
12: else
13: ℓTotal = η ∗ (γ ∗ ℓdis − ℓgen);
14: end if
15: Update ℓTotal

16: return learned representation in common space f(x; θ1)

with the state-of-the-art methods on SYSU RGB-IR Re-ID
dataset [Wu et al., 2017] to verify its effectiveness. Then
we conduct further analysis to investigate the performance of
cmGAN in more details.

4.1 Datasets and Settings

The SYSU RGB-IR Re-ID dataset1 is the first benchmark for
cross-modality (RGB-IR) Re-ID, which is captured by 6 cam-
eras, including two IR cameras and four RGB ones. This
dataset contains 491 persons with total 287,628 RGB images
and 15,792 IR images from four RGB cameras and two IR
cameras. The dataset is separated into the training set and the
test set, where images of the same person can only appear in
either set. And the training set consists of total 32,451 images
including 19,659 RGB images and 12,792 IR images. It is a
very challenging dataset due to the great differences between
two modalities.

4.2 Evaluation Protocol

Our experiments follow the evaluation protocol in [Wu et al.,
2017]. When we evaluate our model, we set RGB images for
gallery images, and those IR images are for probe set. There
are two modes, all-search mode and indoor-search mode. For
all-search mode, RGB cameras 1, 2, 4 and 5 are for gallery set
and IR cameras 3 and 6 are for probe set. For indoor-search
mode, RGB cameras 1 and 2 (excluding outdoor cameras 4
and 5) are for gallery set and IR cameras 3 and 6 are for probe

1http://isee.sysu.edu.cn/project/RGBIRReID.htm
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Method

All-search Indoor-search

Single-shot Multi-shot Single-shot Multi-shot

r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP

HOG+Euclidean 2.76 18.25 31.91 4.24 3.82 22.77 37.63 2.16 3.22 24.68 44.52 7.25 4.75 29.06 49.38 3.51

HOG+CRAFT 2.59 17.93 31.50 4.24 3.58 22.90 38.59 2.06 3.03 24.07 42.89 7.07 4.16 27.75 47.16 3.17

HOG+CCA 2.74 18.91 32.51 4.28 3.25 21.82 36.51 2.04 4.38 29.96 50.43 8.70 4.62 34.22 56.28 3.87

HOG+LFDA 2.33 18.58 33.38 4.35 3.82 20.48 35.84 2.20 2.44 24.13 45.50 6.87 3.42 25.27 45.11 3.19

LOMO+CCA 2.42 18.22 32.45 4.19 2.63 19.68 34.82 2.15 4.11 30.60 52.54 8.83 4.86 34.40 57.30 4.47

LOMO+CRAFT 2.34 18.70 32.93 4.22 3.03 21.70 37.05 2.13 3.89 27.55 48.16 8.37 2.45 20.20 38.15 2.69

LOMO+CDFE 3.64 23.18 37.28 4.53 4.70 28.23 43.05 2.28 5.75 34.35 54.90 10.19 7.36 40.38 60.33 5.64

LOMO+LFDA 2.98 21.11 35.36 4.81 3.86 24.01 40.54 2.61 4.81 32.16 52.50 9.56 6.27 36.29 58.11 5.15

Asymmetric FC layer network [Wu et al., 2017] 9.30 43.26 60.38 10.82 13.06 52.11 69.52 6.68 14.59 57.94 78.68 20.33 20.09 69.37 85.08 13.04

Two-stream network [Wu et al., 2017] 11.65 47.99 65.50 12.85 16.33 58.35 74.46 8.03 15.60 61.18 81.02 21.49 22.49 72.22 88.61 13.92

One-stream network [Wu et al., 2017] 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 16.94 63.55 82.10 22.95 22.62 71.74 87.82 15.04

One-stream network (zero-padding) [Wu et al., 2017] 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64

cmGAN (proposed) (only with triplet loss) 18.37 64.12 80.96 22.04 19.52 73.33 89.93 31.38 22.29 69.63 84.80 15.56 25.29 77.57 91.72 22.49

cmGAN (proposed) (only with ID predictions) 11.52 41.72 56.54 13.03 17.23 52.77 68.14 25.46 13.23 44.87 59.65 8.65 21.40 58.59 71.42 17.00

cmGAN (proposed) 26.97 67.51 80.56 27.80 31.49 72.74 85.01 22.27 31.63 77.23 89.18 42.19 37.00 80.94 92.11 32.76

Table 1: Performance under all-search and indoor-search mode. r1, r10, r 20 denote rank-1, 10, 20 accuracies (%)

set which is easier than former. For both modes, single-shot
and multi-shot settings are used. we randomly choose one
image and ten images of the identity to form the gallery set
for single-shot and multi-shot setting in RGB images respec-
tively. Given a probe image from camera 3 or 6, we compute
similarities between the probe image and gallery images. It is
important to note the probe image and gallery image are from
different locations, that is, camera 2 and camera 3 are in the
same location, so probe images of camera 3 skip the gallery
images of camera 2. After computing similarities, we can get
a ranking list according to descending order of similarities.

4.3 Implementation Details

We use NVIDIA GeForce 1080Ti graphics cards for our en-
tire experiments. And we extract 2,048d features for RG-
B and IR images from the global average pooling layer in
ResNet-50. Three fully-connected layers are used in the
modality classifier. Furthermore, We stick to the two fully-
connected layers for ID predictions.

The batch size is set to 20. Empirically after testing sev-
eral groups of parameter combinations, the generative model
training step K is set to be 5. The adaptive parameter γ con-
trols the weight of the discriminator loss and is fixed to be
0.05. We set margin ξ in cross-modality triplet loss in the
range [0.7, 0.9, 1.2, 1.4, 1.5, 1.6] and conduct experiments by
fixing other hyper-parameters to evaluate our model. The im-
pact of the ξ is shown in Fig.3. We observe that our method
achieves better performance when the margin ξ raising. The
best performance reported result of our method are obtained
when ξ is set to be 1.4.

Considering the different convergence rate of generator and
discriminator, the learning rate (lr) of them are set being dif-
ferent respectively. We set the learning rate of generator range
in [0.0001, 0.001, 0.01] and discriminator learning rate also
range in [0.0001,0.001,0.01]. After testing several groups of
parameter combinations empirically, We get the best result
when generator lr is set to be 0.0001 with discriminator lr is
set to be 0.001 respectively. Therefore, we set the training
epoch to 2000 and more than it.

Empirically, we set α and β by 1:1 proportion because we
consider cross-modality triplet loss has an equal effect on the
retrieval results as well as identification loss.

Figure 4: Our observation of generative loss and discriminative loss
during the training process.

4.4 Quantitative Evaluations

We shows the comparative results of cmGAN against 12 ex-
isting methods [Dalal and Triggs, 2005; Liao et al., 2015;
Wu et al., 2017] on SYSU RGB-IR Re-ID in Tab.1, including
the rank-1, 10, 20 accuracies of Cumulative Match Charac-
teristic curve (CMC) and mean average precision(mAP).

From Tab.1, it is clear that our cmGAN method signif-
icantly outperforms all existing methods in all categories,
which is in terms of all search and indoor search mode or
one-shot and multi-shot settings. Specifically, the proposed
cmGAN method outperforms the 2nd best method of [Wu et
al., 2017] by using one-stream network (deep zero-padding)
on all search and indoor search tasks in terms of the rank-
1 metric by 12.17% (26.97-14.80) and 11.05% (31.63-20.58)
under one-shot respectively.

In Tab.1, the results of three rows on the bottom show the
performance of cmGAN and its two variations. It is shown
that both the cross-modality triplet loss constraint and iden-
tification loss terms contribute to the final retrieval results,
which demonstrates that to optimize the proposed model with
two loss function together is better than only one of them. We
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Figure 5: The trend of total loss and total loss without discriminator
loss during the training process.

can also find that the triplet loss constraint contributes more to
the performance than the identification term. That means the
identification loss do not include cross-modality information,
so the cross-modality triplet loss can do a better job in pro-
jecting two different modalities features into the same feature
subspace.

4.5 Further Analysis on cmGAN

In the proposed cmGAN, we target at optimizing the pro-
posed method with the generative loss and discriminative loss
in adversarial training process. We investigate the values of
the generative loss and the discriminative loss from epoch 1
to 2,500, as shown in Fig.4. The figure demonstrates that
the generative loss decreases almost monotonously and con-
verges smoothly, when the discriminative loss changes sud-
denly at first and then stabilizes at about 0.7.

The results in Fig.5 demonstrate that the mAP score keeps
increasing and holds until the generative loss converges. We
can see the loss of cmGAN with the discriminator decreases
more slowly than without the discriminator. It means that the
generator and the discriminator form an adversary training
process to project the feature representations from different
modalities into common subspace. We set a small learning
rate in order to achieve better performance with the triplet
loss convergence. When the triplet loss is lower than 0.1,
we consider that triplet loss has converged. Correspondingly,
we increase the learning rate to speed up the convergence of
the identification loss. Depending on the discriminator, the
cmGAN has a more smooth convergence process. The results
in Fig.5 also validate that the discriminative loss affects the
cmGAN as a directional guide during the feature embedding
into the cross-modality common subspace.

As the results shown in Fig.6, we randomly select some IR
images as queries to search from RGB images. The images in
the first column are the query images. The retrieved images
are sorted from left to right according to descending order of
the similarity score. The first two rows are results under all-
search mode and the last row are under indoor-search mode.
The correct matches are in the green rectangles, and the false

Figure 6: Some examples of retrieval results on SYSU RGB-IR Re-
ID using the proposed method.

matching images are in the red rectangles. We can see our
method gets great shots under most situations.

5 Conclusions

In this paper, we propose a novel cross-modality generative
adversarial network (termed cmGAN) to learn discriminative
common representations for RGB-IR person re-identification
problem, which is formulated as cross-modality problem. In
our approach, the cross-modality generative adversarial net-
works consist of a deep convolutional neural network as gen-
erator for learning image representations and a modality clas-
sifier as discriminator which tries to discriminate between
RGB and infrared image modalities. We use identification
loss and cross-modality triplet loss together for generator in
our cmGAN to handle the large-scale cross-modality metric
learning problem. Specifically, The identification loss can
separate inter-class embedding meanwhile the cross-modality
triplet constraints minimize the gap among the representation
from different modality. Both generator and discriminator
beat each other with a minimax game and the discriminative
common representation is generated by the adversarial learn-
ing process for person re-identification. Comprehensive ex-
perimental results on the challenging cross-modality person
re-identification dataset, SYSU RGB-IR Re-ID, have demon-
strated our approach outperforms state-of-the-art methods.
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