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Brouwer GJ, Heeger DJ. Cross-orientation suppression in human
visual cortex. J Neurophysiol 106: 2108–2119, 2011. First published
July 20, 2011; doi:10.1152/jn.00540.2011.—Cross-orientation sup-
pression was measured in human primary visual cortex (V1) to test the
normalization model. Subjects viewed vertical target gratings (of
varying contrasts) with or without a superimposed horizontal mask
grating (fixed contrast). We used functional magnetic resonance
imaging (fMRI) to measure the activity in each of several hypothetical
channels (corresponding to subpopulations of neurons) with different
orientation tunings and fit these orientation-selective responses with
the normalization model. For the V1 channel maximally tuned to the
target orientation, responses increased with target contrast but were
suppressed when the horizontal mask was added, evident as a shift in
the contrast gain of this channel’s responses. For the channel maxi-
mally tuned to the mask orientation, a constant baseline response was
evoked for all target contrasts when the mask was absent; responses
decreased with increasing target contrast when the mask was present.
The normalization model provided a good fit to the contrast-response
functions with and without the mask. In a control experiment, the tar-
get and mask presentations were temporally interleaved, and we found
no shift in contrast gain, i.e., no evidence for suppression. We con-
clude that the normalization model can explain cross-orientation sup-
pression in human visual cortex. The approach adopted here can be
applied broadly to infer, simultaneously, the responses of several
subpopulations of neurons in the human brain that span particular
stimulus or feature spaces, and characterize their interactions. In
addition, it allows us to investigate how stimuli are represented by the
inferred activity of entire neural populations.

functional magnetic resonance imaging; vision; contrast suppression;
forward model; primary visual cortex

NEURONS IN PRIMARY VISUAL CORTEX (V1) exhibit cross-orienta-
tion suppression: a grating orthogonal to a neuron’s preferred
orientation (mask) suppresses the response to a simultaneously
presented grating at the neuron’s preferred orientation (target)
(Carandini et al. 1997; DeAngelis et al. 1992; Geisler and
Albrecht 1992; Morrone et al. 1982). Psychophysically, this
leads to impairment in the detection of the target grating, a
phenomenon known as cross-orientation masking (Foley
1994). The suppression in neural activity is best characterized
as a shift in the contrast gain of the neuron’s response and can
be accurately captured by a model based on contrast normal-
ization. This normalization model (Heeger 1992) encompasses
a linear receptive field, soft-thresholding, and divisive suppres-
sion. The divisive signal increases with the overall contrast in
the stimulus across all orientations and suppresses (or normal-
izes) the activity produced by the grating of the neuron’s
preferred orientation. The normalization model has been pro-
posed to explain stimulus-evoked responses in various cortical
areas including V1 (Carandini and Heeger 1994; Carandini et

al. 1997; Heeger 1992), MT (Rust et al. 2006; Simoncelli and
Heeger 1998), and inferotemporal cortex (Zoccolan et al.
2009), multisensory integration in MST (Ohshiro et al. 2011),
the representation of value in LIP (Louie and Glimcher 2010),
olfactory processing in Drosophila antennal lobe (Olsen et al.
2010), and modulatory effects of attention on visual cortical
neurons (Reynolds and Chelazzi 2004; Reynolds and Heeger
2009). Similarly, the normalization model accurately predicts
the activity of large populations of neurons in cat primary
visual cortex (measured with electrode arrays) and visually
evoked potentials in human subjects (Busse et al. 2009).

Measuring the responses of distinct subpopulations of neu-
rons (e.g., different orientation-selective channels) in the hu-
man brain poses a serious challenge. Even though functional
magnetic resonance imaging (fMRI) allows us to noninva-
sively measure human brain activity, each voxel in visual
cortex contains a large number of orientation-selective neu-
rons, most likely encompassing the full range of possible
orientations, and the voxel’s response amplitudes reflect the
pooled activity of all these neurons. Consequently, it has been
difficult to test the normalization model in humans with fMRI,
although some progress has been made (Busse et al. 2009;
Moradi and Heeger 2009).

In the present study, we employed a forward modeling
technique (Brouwer and Heeger 2009; Kay et al. 2008) to
transform voxel responses to orientation-selective channel re-
sponses. The analysis relied on the well-established finding
that there are slight biases in orientation preferences across
voxels (Freeman et al. 2011; Haynes and Rees 2005a; Kami-
tani and Tong 2005). This allowed us to measure cross-
orientation suppression and demonstrate the validity of the
normalization model in human visual cortex.

MATERIALS AND METHODS

Observers and scanning sessions. Four healthy observers between
the ages of 24 and 35 yr participated in this study. Observers provided
written informed consent. Experimental procedures were in compli-
ance with the safety guidelines for MRI research and were approved
by the University Committee on Activities Involving Human Subjects
at New York University. Observers had normal or corrected-to-
normal vision.

Each observer participated in one or two experimental sessions of
the weight estimation experiment (see below), consisting of 8–10 runs
each, one or two experimental sessions of the main cross-orientation
experiment, and one or two experimental sessions of the control
experiment (see below), with sessions of each experiment consisting
of 8 runs each. Observers also participated in a retinotopic mapping
session and a session in which a high-resolution anatomical volume
was acquired.

The weight estimation experiment, the main contrast suppression
experiment, and the control experiment were performed in separate
sessions. We would have preferred to acquire all the data in one
scanning session, but the combined number of different conditions
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between experiments (26) was too high to robustly estimate response

amplitudes for all of these conditions at once. Therefore, we opted to

dedicate each session to one experiment only, so that the response
amplitudes could be estimated robustly. This does require coregistra-
tion of the data acquired in different sessions to align the same voxels
from session to session. However, imperfections in the registration
across scanning sessions were not problematic. The orientation biases
in each voxel reflect a coarse-scale bias for radial orientation across
the retinotopic map, not the fine-scale columnar architecture for
orientation (Freeman et al. 2011). Consequently, neighboring voxels
have a very similar orientation bias, i.e., very similar channel
weightings.

Visual stimulus presentation. Visual stimuli were presented with an
LCD projector (Eiki LC-XG100; Eiki, Rancho Santa Margarita, CA)
with a pixel resolution of 1,024 ! 768 and a 60-Hz refresh rate.
Subjects viewed the image from the LCD projector on a rear projec-
tion screen placed inside the bore of the magnet at a distance of 57 cm,
yielding a field of view of 32 ! 20°. The monitor was calibrated by
using a spectroradiometer (SpectraColorimeter PR650; Photo Re-
search, Chatsworth, CA) to achieve a linear gamma.

MRI acquisition. MRI data were acquired with a 3-T, head-only
MRI scanner (Allegra; Siemens, Erlangen, Germany) using a head
coil (NM-011; NOVA Medical, Wakefield, MA) for transmitting and
an eight-channel phased-array surface coil (NMSC-071; NOVA Med-
ical) for receiving. Functional scans were acquired with gradient-
recalled echo-planar imaging to measure blood oxygen level-depen-
dent (BOLD) changes in image intensity (Ogawa et al. 1990). Func-
tional imaging was conducted with 24 slices oriented perpendicular to
the calcarine sulcus and positioned with the most posterior slice at the
occipital pole (repetition time, 1.5 s; echo time, 30 ms; flip angle, 75°;
2 ! 2 ! 2.5 mm; 64 ! 64 grid size). A T1-weighted magnetization-
prepared rapid gradient echo (MPRAGE, 1 ! 1 ! 2.5 mm) anatom-
ical volume was acquired in each scanning session with the same slice
prescriptions as the functional images. This anatomical volume was
aligned with a robust image registration algorithm (Nestares and
Heeger 2000) to a high-resolution anatomical volume. The high-
resolution anatomical volume, acquired in a separate session, was the
average of several MPRAGE scans (1 ! 1 ! 1 mm) that were aligned
and averaged and was used not only for registration across scanning
sessions but also for gray matter segmentation and cortical flattening
(see below).

Defining visual cortical areas. Primary visual cortex was defined
by standard retinotopic mapping methods (Engel et al. 1994, 1997;
Larsson and Heeger 2006; Sereno et al. 1995). Visual area boundaries
were drawn by hand on the flat maps, following published conven-
tions (Larsson and Heeger 2006), and the corresponding gray matter
coordinates were recorded.

Stimuli and experimental protocols. Stimuli were contrast-revers-
ing sinusoidal gratings (spatial frequency: 1 cycle/° of visual angle;
temporal frequency: 1.33 cycles/s), within an annular aperture (inner
radius: 0.5° of visual angle; outer radius: 8° of visual angle) at
different orientations (weight estimation experiment) and/or different
contrasts (cross-orientation suppression and control experiments). The
mean luminance of the stimulus and background was 526 cd/m2. At
maximum contrast, the minimum luminance of the stimulus was 31
cd/m2 and the maximum luminance 1,083 cd/m2. In the weight
estimation experiment (Fig. 1A), we presented stimuli at maximum
contrast, with six different possible orientations (0°, 30°, 60°, 90°,
120°, and 150°). In the cross-orientation suppression experiment (Fig.
1B), we presented a vertical (0°) target grating at five different
contrasts (1.56%, 3.125%, 6.25%, 12.5%, and 50%) either in isolation
(target-only condition) or superimposed with a horizontal (90°) mask
grating of a constant contrast of 50% (target " mask condition). Size,
extent, and spatial and temporal frequencies of the stimuli were
identical to those in the weight estimation experiment. In the control
experiment, we used identical gratings; however, the target and mask
were temporally interleaved: the target grating modulated from zero

contrast to the maximum contrast and back to zero contrast, followed
by the mask grating, which modulated from zero contrast to the
maximum contrast and back to zero contrast. Two of these cycles
made up each stimulus presentation. In addition, we doubled the
contrasts of the target stimuli (3.125%, 6.25%, 25%, and 100%) and
the mask stimulus (100%) to compensate for the 50% reduction in
duty cycle compared with the cross-orientation suppression experi-
ment.

Stimuli were presented for 1.5 s in randomized order, interleaved
with interstimulus intervals (ISIs) that ranged from 3 to 6 s, in steps
of 1.5 s. In the weight estimation runs, all six possible orientations
were presented eight times in each run, along with eight blank trials.
This created a total of 56 trials per run (including blank trials), with
one run lasting 5 min and 42 s. In the cross-orientation suppression
and control experiments, all 10 different stimuli (5 different contrasts,
target-only/target " mask condition) were presented 6 times in each
run, along with 6 blank trials. This created a total of 66 trials per run
(including blank trials), with one run lasting 6 min and 42 s.

Observers performed a two-back detection task continuously
throughout each run to maintain a consistent behavioral state and to
encourage stable fixation. A sequence of digits (0 to 9) was displayed
at fixation (each appearing for 400 ms). The observer’s task was to
indicate, by means of a button press, whether the current digit
matched that from two steps earlier. We have used this or a similar
protocol in previous fMRI experiments and have found that the
measured fMRI responses are more reliable under these conditions,
even though the subjects’ attention is diverted away from the target
stimuli in the periphery. Without any attentional control, or if subjects
are attending the peripheral/parafoveal target stimuli, we (and others)

Fig. 1. Stimulus and experimental protocol. Stimuli were contrast-reversing
sinusoidal gratings, within a annular aperture. A: in the weight estimation
experiment, stimuli were full-contrast gratings, with 6 different orientations.
ISI, interstimulus interval. B: in the cross-orientation suppression experiment,
stimuli were vertical target gratings with different contrasts either in isolation
(target-only condition) or superimposed with a high-contrast, horizontal, mask
grating (target " mask condition). In the control experiment (not shown) we
used identical gratings, but the target and mask were temporally interleaved
and doubled in contrast.
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have reported large and highly variable (trial to trial) attentional

effects in visual cortex (Gandhi et al. 1999). Diverting attention away

from the target stimuli yields a measure of the stimulus-evoked
responses that is not confounded with such attentional modulation.
Moreover, the single-unit and multiunit electrophysiological measure-
ments of cross-orientation suppression and normalization have mostly
been performed with anesthetized animals, i.e., without attending the
target stimuli. Diverting attention to fixation allowed us to compare
our results with these above-mentioned studies.

Response time courses and response amplitudes. fMRI data were
preprocessed with standard procedures. The first four images of each
run were discarded to allow the longitudinal magnetization to reach
steady state. We compensated for head movements within and across
runs with a robust motion estimation algorithm (Nestares and Heeger
2000), divided the time series of each voxel by its mean image
intensity to convert to percentage signal change and compensate for
distance from the RF coil, and linearly detrended and high-pass
filtered the resulting time series with a cutoff frequency of 0.01 Hz to
remove low-frequency drift. A V1 region of interest (ROI) was
defined, separately for each observer, with retinotopic mapping pro-
cedures (see above). The aperture for the stimuli in the experiments
reported in this study was identical to the aperture of the checkerboard
stimuli used during retinotopic mapping, ensuring that the V1 ROI
contained only voxels to which the stimulus was visible. The hemo-
dynamic impulse response function (HIRF) for the V1 ROI was
estimated with deconvolution (Dale 1999) using the same procedure
that we have described in detail previously (Brouwer and Heeger
2009).

The response amplitudes for each trial type (contrast-orientation
combination) were computed separately for each voxel in the V1 ROI
and separately for each run by linear regression. A regression matrix
was constructed for the ROI by convolving the ROI-specific HIRF
and its numerical derivative with binary time courses corresponding to
the onsets of each trial type (with 1s at each stimulus onset and 0s
elsewhere). For the weight estimation experiment, this resulted in a
regression matrix with 12 columns: 6 columns for the HIRF con-
volved with each of the 6 stimulus onsets and 6 columns for the
HIRF-derivative convolved with each of the 6 stimulus onsets. For the
cross-orientation suppression and control experiments, the regression
matrix had 20 columns: 10 columns for the HIRF convolved with each
of the 10 stimulus onsets (5 contrasts, with or without the mask) and
10 columns for the HIRF-derivative convolved with each of the 10
stimulus onsets. Each column of the regression matrix was linearly
detrended and high-pass filtered, identically to the preprocessing of
the fMRI measurements. Response amplitudes were estimated by
multiplying the pseudoinverse of this regression matrix with the
measured (and preprocessed) fMRI response time courses. The values
(beta weights) obtained for the derivative regressors were discarded
after response amplitudes were estimated (Brouwer and Heeger 2009).
We included the HIRF-derivative in the regression, even though the
associated beta weights were discarded, because the HIRF of an
individual voxel may have differed from the mean HIRF of the V1
ROI. The HIRF and its derivative are not mutually orthogonal, so
including the derivative in the regression accounted for some of the
variance in the measured response time courses and affected the res-
ponse amplitudes associated with the HIRF. The variance of the
estimated response amplitudes across runs was indeed smaller with
the derivative included than without it. We thus obtained, for each
voxel and each run, one response amplitude measurement for each of
the different trial types (6 orientations or 10 combinations of contrast !

condition).
Voxel selection. To maximize the signal-to-noise ratio in the

cross-orientation suppression and control experiments, we selected
voxels that showed the highest differential responses between orien-
tations (Fig. 2A). Specifically, we computed the ANOVA F-statistic of
response amplitudes in the weight estimation experiment across ori-
entations for each voxel. Voxels were included whose F-statistic was

above the median F-statistic of all voxels in the V1 ROI, selecting
50% of the original voxels for the subsequent analysis of the re-
sponses in the cross-orientation suppression and control experiments.
The median split was arbitrary and was used solely to remove noisy
voxels. A range of F-statistic thresholds (25th—75th percentile)
yielded similar results and supported the same conclusions.

Baseline removal. Before the channel responses were computed, a
baseline was removed from each voxel’s response, separately for each
run, in each scanning session. Specifically, let v be the number of
voxels and c the number of conditions (e.g., orientations/contrasts),
giving us, for each run, a matrix of estimated response amplitudes B
of size v ! c. For each B, we computed the mean voxel responses
across all stimulus conditions, yielding a vector m of mean response
amplitudes of length v (1 per voxel). This vector was normalized to a
unit vector and removed by linear projection from the responses to each

Fig. 2. A: voxel selection. Distribution of F-statistic values taken from V1 of 1
representative subject. The F-statistic quantifies how well a single voxel differen-
tiates between stimulus orientations: a voxel with a low F-statistic (left) shows no
significant bias for orientation, while a voxel with a high F-statistic (right) shows
a clear (and significant) tuning, centered on 60°. fMRI, functional magnetic
resonance imaging. B: orientation decoding with the forward model. The accuracy
of orientation decoding using the forward model is plotted against the accuracy
using a conventional classifier. Each data point represents a scanning session. The
forward model reduced the high-dimensional (no. of voxels) voxel space to a
low-dimensional (no. of channels # 6) channel space. This dimensionality reduc-
tion did not result in a considerable loss of information. The decoding accuracies
were nearly the same, but the conventional classifier utilized all the information in
the full, high-dimensional voxel space. Classification was performed with a 8-way
maximum likelihood classifier, implemented by the Matlab (Mathworks) function
‘classify’ with the option ‘diaglinear’.
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stimulus condition: B # B $ m(mTB). The baseline removal was done
as an additional preprocessing step before transforming the voxel re-
sponses to the channel responses (described next); this analysis step was
not performed when computing the mean responses across voxels.

Forward model. Following our previous work on color vision
(Brouwer and Heeger 2009), we used a forward model of orientation
tuning to separate the voxel responses into a smaller number of
channel responses, each tuned to a different orientation. The forward
model assumed that each voxel contained a large number of orienta-
tion-selective neurons, each tuned to a different orientation. We
characterized the orientation selectivity of each neuron as a weighted
sum of six hypothetical channels, each with an idealized orientation
tuning curve (or basis function) such that the transformation from
orientation to channel outputs was one-to-one and invertible. The
shape of the tuning curves was selected (as described below) so that
the response tuning of any one neuron could be expressed as a
weighted sum of the six basis functions and these basis functions
would closely resemble measured neural tuning curves. We further
assumed that the response of a voxel was proportional to the summed
responses of all the neurons in that voxel. This assumption is justified
by the observation that the residual hemodynamic responses have
been shown to be tightly linked with spiking activity, after removing
the baseline response component (see DISCUSSION). The underlying
orientation tuning curve of each neuron was presumed to be a property
of that neuron, such that it did not depend on the stimulus (the neuron’s
response was presumed to depend on the stimulus, but the under-
lying tuning curve was presumed to be independent of the stimulus).
Hence, the weights on each voxel likewise were presumed to be
independent of the stimulus.

Each basis function was a sinusoid raised to the fifth power.
Raising to the fifth power made the tuning curves narrower and
thereby comparable to physiological findings. A tuning curve with any
possible orientation preference (i.e., intermediate to the 6 basis func-
tions) can be expressed exactly as a weighted sum of the six basis
functions (Freeman and Adelson 1991). We evenly spaced the six
basis functions along the orientation axis, so that one channel re-
sponded maximally to the vertical target stimulus and another channel
responded maximally to the horizontal mask stimulus.

In the first stage of the analysis, we used the data from the weight
estimation experiment to estimate the weights on the six hypothetical
channels separately for each voxel. With these weights in hand, the
second stage of analysis computed the channel outputs associated with
the spatially distributed pattern of activity across voxels evoked by the
stimuli in the cross-orientation suppression and control experiments.
This allowed us to transform the voxel responses to the channel
responses, each tuned to a different orientation. Let k be the number
of channels, m the number of voxels, and n the number of repeated
measurements (i.e., 6 orientations times the number of runs for the
weight estimation experiment). The matrix of estimated response
amplitudes in the weight estimation experiment (Bw, m ! n) was
related to the matrix of hypothetical channel outputs (Cw, k ! n) by
a weight matrix (W, m ! k):

Bw ! WCw (1)

The least-squares estimate of the weights was computed with linear
regression:

Ŵ ! BwCw
T!CwCw

T""1 (2)

The channel responses (Cc) associated with the cross-orientation
suppression and control experiment responses (Bc) were estimated by

using the weights (Ŵ):

Ĉc ! !Ŵ TŴ""1
Ŵ TBc (3)

For these matrices to be invertible, the number of voxels must be
greater than the number of channels, and there must be an uneven

weighting of the orientation channels in at least a subset of the voxels
so that the voxels exhibit sufficiently different responses to the
different orientations (specifically, the space spanned by the voxel
responses must be at least as large as the number of channels). These
requirements posed no difficulty for our analysis. First, the average
size of V1 across subjects, at our scanning resolution, was %800
voxels, much larger than the number of channels. Second, there are
stable biases in the responses of voxels to different orientations,
exhibiting a robust, coarse-scale, radial organization (Freeman et al.
2011). We combined the intermediate channels (not tuned to either
horizontal or vertical) such that responses from the two channels
closest to the horizontal channel were estimated separately but later
averaged together to form one single intermediate channel and re-
sponses from the two channels closest to the vertical channel were
estimated separately but later averaged into another intermediate
channel. For each main experimental session, the estimated channel
responses were then averaged across runs, separately for each stimu-
lus condition, within that session. Finally, we computed the mean and
SE of the channel responses across subjects, separately for each
stimulus condition and separately for the cross-orientation suppres-
sion and the control experiment.

Weight estimation stability and forward model fit. The forward

model provided a good fit to the orientation biases in the voxel
responses. We evaluated this in several ways. First, the average r2

value (explained variance of the fit) for the weight estimation exper-
iment was 0.76 across the subjects. This was much larger than
expected by chance (P & 0.001). Second, we used decoding accuracy
to assess the model fit. Within-session accuracy for decoding orien-
tation from the voxel responses was around 68%, well above the
chance level of 16% (P & 0.001). Decoding accuracies obtained with
the forward model were highly correlated to those obtained with a
conventional classifier (Fig. 2B). This demonstrates that there was
little or no information lost by replacing the voxel responses with the
channel responses, i.e., by reducing the high-dimensional voxel data
with the lower-dimensional space of six channels. Third, we found
that the best-fit weights were stable across scanning sessions on
different days (Fig. 3A). We used data from one weight estimation
session to calculate the weights and then applied those weights to
measure how well they fit the data from a second weight estimation
session. This revealed r2 values (mean 0.54) that were still signifi-
cantly larger than expected by chance (P & 0.001). In addition,
orientation decoding (using the forward model and estimated weights)
was also stable across sessions (Fig. 3B). We used data from one
weight estimation session to calculate the weights and then applied
these weights to decode orientation from a second weight estimation
session. Session-to-session decoding accuracies were %50% on aver-
age, much larger than expected by chance (P & 0.001). Finally, the
“preferred orientations” (determined using the best-fit weights) of
voxels were stable from session to session (Fig. 3C). We computed
the preferred orientation for each voxel as follows. The six channels
were tuned for six different orientations. This provided us with six
unit vectors, of unit length, each pointing to the preferred orientation
of one orientation channel in the forward model. We multiplied each
of these vectors with each of the six corresponding estimated weights
and computed the vector sum of the resulting six vectors. The angle
of the resulting vector sum was taken to be the “preferred orientation”
of that voxel. This calculation was repeated for each voxel in two
separate sessions. Preferred orientations were highly correlated across
sessions, for all subjects, significantly higher than what would be
expected by chance (P & 0.01).

Main experiment forward model fit. After estimating the weights,
how well did the forward model fit the voxel responses from the main
experiment and the control experiment? If there was no neuronal
interaction (i.e., suppression) between the vertical and horizontal
gratings, a plaid would evoke channel responses that are the sum of
the channel responses evoked by the vertical and horizontal gratings
in isolation. Such a scenario would have allowed us to determine the
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fit between channel responses computed from the voxel responses and
predicted channel responses. This was not possible, however, because
of suppression. We therefore used a different approach to determine
the quality of the forward model fit in the main experiment. The
channel responses were computed by multiplying the voxel responses
with the inverse of the weight matrix (from the weight estimation
experiment). We then computed a set of predicted voxel responses by
multiplying the channel responses with the weights and compared
them with the measured voxel responses. Specifically, we determined
the proportion of the variance in the voxel responses that was
accounted for by the forward model (i.e., r2). The resulting r2 values
were then compared with a null distribution of r2 values computed by
randomly shuffling the weights between the voxels. We found that the
r2 values for both the main and control experiments (in all subjects)
were modest (mean r2

# 0.33) but significantly above the 99th
percentile of the null distribution.

Normalization model and fitting procedures. The normalization
model (Heeger 1992) was used to fit the channel responses from the
cross-orientation suppression experiment and the control experiment.
The model for the cross-orientation suppression experiment included
cross-orientation suppression terms. The response of each channel ri

as a function of target and mask contrast was modeled as:

ri ! rmax# ct
nvi!#t" $ cm

n vi!#m"
!$!ct

2
$ cm

2 "n
$ %

n% $ b (4)

where ct is the target contrast, cm is the mask contrast, vi is the tuning
curve of the ith channel, #t is the orientation of the target grating, and
#m is the orientation of the mask grating. For the channel tuned to the
target orientation, vi(#t) # 1 and vi(#m) # 0 (the channel did not
respond to gratings orthogonal to its preferred orientation). In the
channel tuned to the orientation of the mask grating, vi(#t) # 0 and
vi(#m) # 1. The intermediate channels are associated with intermedi-
ate values for vi(#t) and vi(#t). The model had four parameters, %, n,
rmax, and b, determining, respectively, the gain, slope, saturation, and
baseline of the resulting contrast-response functions. For the channel
responses during the control experiment, we used a modified version
of the model without cross-orientation suppression:

ri ! rmax# ct
nvi!#t"

ct
n

$ %
n

$
cm

n vi!#m"
cm

n
$ %

n % $ b (5)

Thus in this modified version we weighted the normalizing signal

originating from each grating by the contrast energy of that grating,

while in the cross-orientation suppression experiment we normalized

the channel activity by the summed contrast energy of all gratings,

regardless of the channel’s sensitivity to those gratings. We fitted the

channel responses simultaneously from both the cross-orientation

suppression and control experiments to all contrasts and both condi-

tions (target only, target " mask). We used a single n, rmax, and b, but

allowed % to vary between the two experiments. Thus there were five

free parameters (% main, % control, n, rmax, and b). In addition, we

fitted the models to each experimental data set separately, to deter-

mine which version (with or without cross-orientation suppression)

was more appropriate for the data from each experiment.

Statistical significance of the model fits was determined with

cross-validation. We divided the data from each experiment in half.

Both models were fitted to the first half of the data. Using the resulting

parameters, we created predicted channel responses and computed the

amount of variance in the remaining half of the data explained by the

predicted channel responses (r2). Repeating this procedure a large

number of times with different (random) subdivisions of the data

generated distributions of r2 values, one distribution for each version

of the model (with and without cross-orientation suppression). Taking

the ratio between these two distributions generated a new distribution

for which we determined the median and 5th and 95th percentiles. If
the r2 values were not statistically different, the distribution of their
ratios would have been centered on 1, with the 5th percentile being
smaller and the 95th percentile being larger than 1. If, for the
distribution of ratios for model A over model B, we found that the 5th
percentile was larger than 1, we concluded that model A provided a
statistically better fit to the data than model B. If, on the other hand,
the distribution of ratios for model A over model B yielded a 95th
percentile smaller than 1, we concluded that model B provided a
statistically better fit to the data than model A.

Fig. 3. Stability of weight estimation across sessions. A: estimating the weights in one session and then applying these weights to fit the data of a second
session revealed r2 values significantly higher than chance: the mean r2 value was 0.54, many standard deviations away from the null distribution of r2

values. The null distribution was obtained by shuffling the weights between the voxels. B: accuracy of the forward model in decoding orientation in one
session, using weights estimated from a different session. Decoding accuracy was significantly higher than expected by chance: the mean accuracy of 0.56
was in the 99.75th percentile of the null distribution. The null distribution was obtained by shuffling the weights between the voxels. C: session-to-session
comparison of the preferred orientation. Each data point represents a voxel. The preferred orientation (a continuous measure) of each voxel was computed
by using the response amplitudes to each stimulus orientation in the weight estimation experiment. Points cluster around the diagonal, indicating that the
preferred orientations of most voxels were stable between sessions. The size of each point represents r2, the proportion of the variance in the voxel’s
response time course that was accounted for by the regression model (i.e., the regression matrix and hemodynamic impulse response function that was
used to estimate the response amplitudes). Voxels with a robust responses to the stimuli (higher r2 values) tended to have stable weights across sessions
(closer to the diagonal).
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Contrast gain fit. To test and measure the shift in gain between the
target-only and the target " mask conditions, we fitted a simplified
version of normalization model to the responses in the target channel:

ri ! rmax# cn

cn
$ %

n% $ b (6)

For these fits, we fixed all parameters to the values obtained in the
simultaneous fit (described above), with the exception of % (the
parameter determining the gain of the function). By fitting the target-
only and target " mask conditions separately, we thus obtained a
value of % for each condition. If cross-orientation suppression indeed
led to an increase in gain, the % parameter for the target " mask
condition should have been larger than the % in the target-only
condition. For the control experiment, % values should have been
similar, as there was no suppression of the mask on the target. The
statistical significance of any difference in % values was determined
by means of bootstrapping. We randomly resampled the data, with
replacement. The model was then fitted to the resampled data set.
Repeating this procedure a large number of times provided a distri-
bution of % parameter values that was statistically compared between
conditions and experiments, using the ratio method described above.

Mean responses fit. The normalization model was also fit to the
responses averaged across all voxels in the V1 ROI. The goal of this
analysis was to determine whether the mean responses reflected the
underlying cross-orientation suppression observed in the channel
responses. The data from both experiments (cross-orientation suppres-
sion and control experiment) were fit with two versions of the
normalization model, one including cross-orientation suppression:

r ! rmax# ct
n

$ cm
n

$!ct
2

$ cm
2 "n

$ %
n% $ b (7)

and one without suppression:

r ! rmax# ct
n

ct
n

$ %
n

$
cm

n

cm
n

$ %
n% $ b (8)

These equations specifically modeled the average responses to the
gratings, rather than the responses of separate channels. The fits to the
data from both experiments were compared with the same cross-
validation procedure described above (see Normalization model and
fitting procedures).

Psychophysics. We measured the strength of cross-orientation
masking in a separate experiment (outside the scanner). Mimicking
the stimuli used in the fMRI experiment, we presented subjects with
1) a vertical target grating presented in isolation for 375 ms (target-
only condition), 2) the vertical target superimposed with the horizon-
tal mask stimulus (target " mask condition), and 3) the vertical target
temporally interleaved with a horizontal mask stimulus (100% con-
trast) appearing for 375 ms before and after the target grating (control
condition). In two additional conditions, we presented subjects the
vertical target superimposed with a horizontal mask stimulus with a
spatial frequency 4 or 0.25 times the spatial frequency of the vertical
target. Orientation-discrimination thresholds were measured sepa-
rately for each of these conditions, in separate blocks. Cross-orienta-
tion masking should be observed only in condition 2, in which the
vertical target and horizontal mask are spatially and temporally
superimposed and have the same spatial frequency.

The strength of cross-orientation masking was measured as the
orientation-discrimination threshold at a fixed target (3.125%) and
mask (50%) contrast. In a two-interval forced choice task (2IFC),
subjects were presented with two stimuli, one in which the target was
rotated slightly clockwise relative to vertical and the other in which it
was rotated slightly counterclockwise of vertical. The 75% correct
threshold was determined by running four interleaved staircases for
each of the five conditions, one 2-up-1-down staircase and one
3-up-1-down staircase starting at zero orientation difference and one

2-up-1-down staircase and one 3-up-1-down staircase starting at an
easily detected orientation difference (which varied slightly depend-
ing on the subject). The subjects’ responses were converted to percent
correct at each orientation difference, and the resulting data points
were fitted to a cumulative normal distribution with two free param-
eters: mean and variance. From these fits, we computed the 75%
correct orientation difference thresholds for each subject and
condition.

RESULTS

Psychophysical results. The effectiveness of our stimuli
(Fig. 1) to induce cross-orientation suppression was deter-
mined psychophysically by measuring cross-orientation mask-
ing. We determined subjects’ orientation discrimination thresh-
olds at a fixed target (3.125%) and mask (50%) contrast, using
a 2IFC orientation-discrimination task. Orientation-discrimina-
tion thresholds (75% correct responses) were low for the
target-only condition: very small orientation differences were
easily detected by all subjects (Fig. 4). Thresholds were con-
siderably and statistically significantly higher when the target
was presented with the mask superimposed, indicative of

A

B

Fig. 4. Psychophysical results. A: psychometric functions (see MATERIALS AND

METHODS) for 1 representative subject. Symbol size is proportional to number
of trials, which differed because of the staircase procedure (see MATERIALS AND

METHODS). SF, spatial frequency. B: orientation-discrimination thresholds
(75% correct), averaged across subjects. Error bars, SE across subjects. Colors
indicate the different conditions as described in A.
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cross-orientation masking. When the mask stimulus was tem-
porally interleaved with the target, thresholds were similar to
those obtained for the target-only condition. Superimposing the
vertical target with a horizontal mask of higher (4!) or lower
(0.25!) spatial frequency also resulted in thresholds compa-
rable to the target-only condition, demonstrating that the
strength of suppression between orientations was selective for
spatial frequency. The threshold for the target " mask condi-
tion was found to be significantly higher than those for the
other conditions, while the thresholds in other conditions did
not differ significantly from each other (F4,19 # 5.02, P #

0.009). Together, these results provide psychophysical evi-
dence of suppression during our main fMRI cross-orientation
suppression experiment as well as the expected lack of sup-
pression during our control fMRI experiment.

Cross-orientation suppression experiment. A forward model
was used to estimate the stimulus-evoked responses in several
orientation-selective channels (see MATERIALS AND METHODS for
details). In brief, measured responses to full-contrast gratings
of six different orientations (0°, 30°, 60°, 90°, 120°, and 150°)
were used to estimate a matrix of weights characterizing the
contribution of each orientation channel to each voxel (e.g., the
relative number of neurons in each voxel tuned for vertical vs.
other orientations). Then the main experiment measured corti-
cal activity as a function of contrast for vertical test gratings
(presented at 1.56%, 3.13%, 6.25%, 12.5%, or 50% contrast)
and for “plaids” in which vertical test gratings were superim-
posed with a horizontal mask grating with a fixed contrast of
50% (Fig. 1). The previously estimated weight matrix was used
to extract the channel responses from the voxel responses.
Each panel of Fig. 5 corresponds to a different channel, i.e., a
different subpopulation of neurons with a different orientation
preference, with one channel tuned for vertical (Fig. 5A), one
tuned for horizontal (Fig. 5D), a pair tuned for '30° from
vertical (Fig. 5B), and a pair tuned for '60° from vertical (Fig.
5C). The responses of these channels were measured simulta-
neously to the same set of visual stimuli.

The channel responses showed clear evidence of cross-
orientation suppression. For the channel preferring vertical,
responses increased with contrast of the (vertical) test grating,
saturating at high contrasts (Fig. 5A, open symbols). This
contrast-response function shifted rightward on the log-con-
trast axis in the presence of the (horizontal) mask grating (Fig.
5A, filled symbols). The channel preferring horizontal re-
sponded at baseline to test gratings (Fig. 5D, open symbols)
and responded strongly when the mask grating was presented
in the absence of a test grating, and its responses to the mask
grating decreased with increased test contrast (Fig. 5D, filled
symbols). The other channels exhibited intermediate effects
(Fig. 5, B and C). We confirmed a similar pattern of results for
each subject individually (see Fig. 7A).

Control experiment. To determine whether the observed
channel responses indeed reflected cross-orientation suppres-
sion, we performed a control experiment in which we tempo-
rally interleaved the mask and target (and doubled the contrasts
of both mask and target). Interleaving the mask and target over
time kept the net stimulation approximately the same as in the
cross-orientation suppression experiment. However, the target
and mask stimulus were never presented simultaneously.

There was no evidence for cross-orientation suppression
under these stimulus conditions. First, there was no evidence

for psychophysical cross-orientation masking (Fig. 4). Second,

the fMRI contrast-response function of the channel tuned to the

target grating did not shift when the mask grating was super-

imposed (Fig. 6A). Likewise, the channel tuned to the mask
grating showed a constant baseline response to the target-only
condition and a larger but constant response level to the target "

mask condition (Fig. 6D). Similar to the cross-orientation
suppression experiment channel responses, the intermediate
channels (Fig. 6, B and C) showed intermediate effects.

Normalization model fit. To test whether the normalization
model could capture these findings, we fitted the data from all
channels, both conditions (target only, target " mask), and
both the cross-orientation suppression and control experiment
simultaneously. For the cross-orientation suppression experi-
ment, the model included cross-orientation suppression terms:
the activity in any channel was normalized by the activity
across all channels. On the other hand, for the control experi-
ment, the model did not include the cross-orientation suppres-
sion terms: the activity of any channel was normalized only by
the activity in that channel, ignoring the activity of the other
channels, tuned to different orientations. Both models had four
free parameters, %, n, rmax, and b, that determined the contrast
gain, slope, saturation, and baseline of the contrast-response

Fig. 5. Cross-orientation suppression in human V1. Each panel plots responses
of orientation-selective channels. Solid (target only) and dashed (target "

mask) curves depict the best fit of the normalization model. A: channel tuned
to target orientation. B: average of the 2 channels adjacent to the target channel
('30°). C: average of the 2 channels adjacent to the mask channel ('60°).
D: channel tuned to the orientation of the mask. Error bars: SE across subjects.
r.m.s, root mean square.
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functions, respectively. We used a single n, rmax, and b param-

eter for each experiments but allowed % to differ between

experiments. The dashed and solid lines in Figs. 5 and 6

represent the best fits.

The normalization model provided a good approximation

of the channel responses for both the cross-orientation sup-

pression and control experiments. The fitted values for the

contrast gain parameters were cross-orientation suppression

% # 0.06 and control % # 0.34. These values were similar

to values usually obtained with single-unit experiments (see

DISCUSSION).

We also fitted both variants of the model to each experimen-
tal data set separately, determining which version (suppression
vs. no suppression terms) was the more appropriate model for
that particular data set. For the cross-orientation suppression
experiment, the cross-orientation suppression model (Eq. 4)
outperformed the suppression-absent model (Eq. 5). Cross-
validation (see MATERIALS AND METHODS) revealed that the for-
mer model was a better fit than the latter (cross-orientation
suppression model mean r2

# 0.44, suppression-absent model
mean r2

# 0.26; P & 0.001). For the control experiment, the
suppression-absent model outperformed the cross-orientation
suppression model (cross-orientation suppression model mean
r2

# 0.09, suppression-absent model mean r2
# 0.27; P &

0.001). Thus we found clear evidence for cross-orientation
suppression for appropriate stimuli but no evidence for such
suppression with stimuli that were identical in extent, orienta-

tion, spatial frequency, and duty cycle but had target and mask
gratings temporally interleaved to avoid cross-orientation sup-
pression (Fig. 4).

The suppression in the target channel during the cross-
orientation suppression experiment was due to a change in
contrast gain (change in %). We fitted the responses in this
channel to each condition (target only vs. target " mask)
separately, using a simplified version of the normalization
model (see MATERIALS AND METHODS), allowing % to differ
between conditions (Eq. 6). We found that the change in the
target channel response from the target-only to the target "

mask condition was associated with a significant increase in the
% parameter (target-only % # 0.07, target " mask % # 0.50;
statistical significance of the difference in % values, P &

0.001). For the control experiment, we expected no change in
the % parameter, because of the lack of cross-orientation
suppression. Indeed, the curves for the target channel in Fig.
6A appeared to largely overlap and were of a very similar
shape. We fitted the responses in this channel to each condition
(target only vs. target " mask) separately, identically to the
procedure used for the cross-orientation suppression experi-
ment. Cross-validating these fits, we did not find a significant
difference in the % parameter between the target-only and
target " mask conditions: (target-only % # 0.29, target "

mask % # 0.28; P ( 0.50). Fitting the data from each subject
individually yielded similar results (Fig. 7B).

Population response amplitudes. Following previous work
with electrode array recordings (Busse et al. 2009), we replot-
ted the data in terms of population responses (Fig. 8), to see
how each stimulus combination and strength was encoded by
the population of orientation-selective channels. In both the
main cross-orientation suppression experiment (Fig. 8A) and
the control experiment (Fig. 8B), an isolated target of increas-
ing contrast (left column) increased the responses in the sub-
population tuned to the target while evoking only a constant
baseline response in the remaining population. When a mask
was added, we observed bimodal responses of the population
to both the target and mask. However, in the main cross-
orientation suppression experiment, lower target contrasts
evoked less activity than the control experiment, indicating
cross-orientation suppression from the high-contrast mask. The
normalization model captured the behavior of population re-
sponses (Fig. 8). Note that we would have been unable to
observe these effects by measuring the responses of a single
neuron, as typically reported in a neurophysiological experi-
ment. Nor would we have been able to observe these results in
individual voxel responses or in the average responses across
many voxels, the conventional univariate approaches to ana-
lyzing fMRI measurements. Nor would we have been able to
observe these results in the decoding accuracy of a classifica-
tion analysis, the typical approach to multivoxel pattern anal-
ysis with fMRI data.

Mean response amplitudes. The suppression of the re-
sponses of the target stimulus were not evident in the mean
response amplitudes (averaged across all V1 voxels), without
extracting the channel responses. For the cross-orientation
suppression experiment, V1 responses increased monotoni-
cally with the contrast of the target, both with and without the
mask grating (Fig. 9A). In these averaged responses, the main
effect of adding a mask (of constant contrast) was a constant
shift (increase) in the response amplitudes for all target con-

Fig. 6. No cross-orientation suppression for the control experiment. Same
format as Fig. 5.
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trasts. There was little, if any, interaction between conditions,
such that the presence of the mask did not lead to an observable
suppression of the mean responses to the target. If it had, the
two contrast-response functions should have converged at high
contrasts. To test this formally, we fitted the mean responses of
the main cross-orientation suppression experiment and the
control experiment to the normalization model with (Eq. 7) and
without (Eq. 8) suppression. Both models used the % and n
parameters obtained in fitting the channels separately, allowing
only rmax and b to vary. For the cross-orientation suppression
experiment, the model without cross-orientation suppression
provided a better fit to the mean responses (mean r2

# 0.84)

than the model with cross-orientation suppression (mean r2
#

0.71); cross-validation of the fits confirmed that this difference

was statistically significant (P & 0.01). This is in agreement

with the observation that there appears to be little interaction

between the conditions, as shown in Fig. 9A. A small but

significant (P & 0.05) difference was found for the fits to the

mean responses of the control experiment (normalization
model including suppression: mean r2

# 0.94; without sup-
pression: mean r2

# 0.98). Using the % and n parameters
obtained in fitting the channels separately could have poten-
tially biased our fits of the mean responses. We therefore
repeated the fitting procedure, allowing % and n to vary freely.
This yielded very similar and high r2 values for both models,
to the mean responses of both the main and control experiment
(r2

%0.96). However, the low number of data points compared
with the number of free parameters (4) resulted in overfitting.
Indeed, when unconstrained, the % and n parameters varied
greatly between permutations during the cross-validation pro-
cedure and differed greatly from the parameter values reported
for the channel responses.

DISCUSSION

We used fMRI, in combination with a forward modeling
analysis (Brouwer and Heeger 2009; Kay et al. 2008), to
measure cross-orientation suppression in human primary visual
cortex (V1) and test the normalization model. We found that
for the channel tuned to the orientation of the target grating,
responses to the target grating were suppressed when a second,
orthogonal mask grating was added. The remaining channels,
tuned to either intermediate orientations or the mask orienta-
tion, also showed clear evidence of suppression. We found this
suppression to be implemented as a change in the contrast gain
of the channel responses. When the target and mask were
temporally interleaved, no suppression was observed.

Fig. 7. Cross-orientation suppression in individual subjects. A: V1 channel
responses for the cross-orientation suppression experiment. Each row corre-
sponds to a different subject (same format as Fig. 5). B: best-fit contrast gain
(%) parameter values. x-Axis, target only; y-axis, target " mask. Circles,
cross-orientation suppression experiment; squares, control experiment; filled
symbols, individual subjects; open symbols, fit of the mean responses across
subjects. For the cross-orientation experiment, the % values for target only
were lower than those for target " mask, indicating a shift in contrast gain. For
the control experiment, the contrast gain was similar with and without the
mask.

Fig. 8. Population responses. A: population responses to the cross-orientation
suppression experiment. Left: target-only condition. Right: target " mask
condition. Target contrast increases from top to bottom in each column. Solid
curves depict the best-fit normalization model. B: control experiment. Same
format as A. Error bars: SE across subjects.
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The decomposition of responses into idealized channels with

different orientation tunings allowed us to specifically test the

predictions of the normalization model (Heeger 1992), a model

that has been successful in explaining neural responses in

various brain areas (see introduction for references). In most of

these previous studies, the normalization model was applied to

the responses of individual neurons, with the exception of one

study that measured population activity in cat primary visual

cortex (measured with electrode arrays) and visually evoked

potentials in human subjects (Busse et al. 2009) and another

that measured fMRI responses to interocular suppression (Mo-

radi and Heeger 2009). Here we provided additional evidence

for the validity of the model by showing its ability to also fit

fMRI responses in human visual cortex during cross-orienta-

tion suppression.

Decomposition of fMRI responses into channels also al-

lowed us to characterize the inferred responses of an entire

orientation-selective population of neurons to both isolated and

superimposed stimuli of different contrast strengths. Conven-

tional fMRI analyses average across responses of all differently

tuned mechanisms and therefore offer little insight into how

stimuli are encoded in the patterns of activity in an entire

neural population. At the other extreme, neurophysiology mea-

sures the responses of only one neuron at a time. While this

provides invaluable knowledge about how neurons integrate

incoming signals into spiking activity, it is generally believed

that stimuli are represented by the activity of entire neuronal

populations. Multivariate pattern classification of fMRI data

(Brouwer and Heeger 2009; Brouwer and van Ee 2007; Haynes

and Rees 2005b; Kamitani and Tong 2005; Kay et al. 2008)

and fMRI-adaptation approaches (Grill-Spector and Malach

2001; Weiner et al. 2010) have demonstrated the potential of

fMRI to investigate response selectivity. More recent work,
using electrode arrays to simultaneously measure the responses
of many neurons, has begun to provide us with a picture of the
response profiles of large populations (Busse et al. 2009) to
isolated and superimposed stimuli. Here we demonstrated that

our forward model allowed to us infer these population re-

sponses from human fMRI data.

The parameter values we obtained by fitting the normaliza-

tion model to the data deviated from earlier reports based on

single-unit measurements. The mean value of the best-fit ex-

ponent in single neurons (cat and macaque) is n ) 2 (Geisler

and Albrecht 1997), whereas we found a lower value for the

exponent, n ) 1.25. However, this was expected because we

measured population responses, averaging across large num-

bers of neurons, each of which probably had a different % value

drawn from a distribution. Although the mean of the distribu-
tion of exponents has been found to be n ) 2, fitting the mean
responses after averaging across many neurons has yielded a
best-fit value of n )1 (Busse et al. 2009). Similarly, the %

parameter we found was also somewhat lower than that typi-
cally reported from single-unit studies (Geisler and Albrecht
1997).

Why did the mean activity, averaged across all voxels in V1,
show no evidence of suppression, unlike the channel responses
(compare Fig. 5A with Fig. 9A)? In our analysis, the mean
responses averaged across stimulus conditions were removed
from each voxel’s response before computing the channel
responses (baseline removal, see MATERIALS AND METHODS).
Hence, the sum of the channel responses, as we computed
them, was not equal to the mean responses averaged across
voxels. As a consequence, the channel responses revealed
phenomena of suppression that were not evident in the mean
responses. Even so, a previous study examining dichoptic
stimulus presentations did find evidence for cross-orientation
suppression in the mean responses averaged across voxels
(Moradi and Heeger 2009).

Our main incentive for applying baseline removal to each
individual run was that it increased the stability of the weights
across runs and sessions. In earlier work we also observed that
baseline removal dramatically increased classifier and forward
model decoding and reconstruction accuracies (Brouwer and
Heeger 2009). What confounding factor does such baseline
removal actually remove? One possibility is that it removed

A B

Fig. 9. Mean V1 responses. A: mean re-
sponses (averaged across V1 voxels) for the
cross-orientation suppression experiment.
Solid (target only) and dashed (target "

mask) curves depict the best fit of a model
that includes cross-orientation suppression.
B: mean responses for the control experi-
ment. Solid (target only) and dashed (target
" mask) curves depict the best fit of a model
that does not include cross-orientation sup-
pression.
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any component of the hemodynamic responses that was time-
locked to the stimulus presentations but not differentially
responsive to the different stimulus conditions. By removing
such a baseline response component, the residual hemody-
namic responses have been shown to be tightly linked with
spiking activity, such that the time courses of the hemody-
namic responses evoked by different stimulus contrasts were
well fit as a shift-invariant linear transform of the firing rates
(A. Das, personal communication). Alternatively, or in addi-
tion, baseline removal might have acted to remove run-specific
noise factors (e.g., head motion, gradient heating, physiologi-
cal noise, attentive state) that influenced the fit of the forward
model to the measured response amplitudes. We compared
several different methods of baseline removal (subtracting the
mean, z-scoring and projecting out the mean, removing the
mean across voxels vs. the mean across conditions). These
different methods yielded very similar results that supported
the same conclusions, but projecting out the mean across
conditions gave the cleanest (least noisy) channel responses.

The forward model allowed us to separate responses into
channels with different stimulus preferences, and to character-
ize interactions (e.g., divisive suppression) between neural
subpopulations. Conventional fMRI provides only a single
measure of activity, which is assumed to be the sum of all
underlying responses. In contrast, the forward model separates
the responses, allowing us to determine how differently tuned
channels respond to various stimuli and how stimuli interact
within these channels. We have previously used a very similar
forward model to decode colors from the responses in several
visual cortical areas (Brouwer and Heeger 2009), showing that
this model provides a good approximation of hue responses in
visual area V4. An analogous forward model (but with far
more basis functions tuned for a variety of orientations, spatial
frequencies, and spatial locations) has been used to character-
ize fMRI responses to natural images (Kay et al. 2008) and to
identify a novel image based on the pattern of activity that it
evoked. The forward model is related to, but should not be
confused with, the classification methods currently prevailing
in the neuroimaging literature (Brouwer and van Ee 2007;
Dinstein et al. 2008; Haynes and Rees 2005b, 2006; Kamitani
and Tong 2005). Both methods rely on the distributed patterns
of responses across voxels and the assumption that these differ
for different stimuli (e.g., colors, orientations, etc.). However,
the forward model specifies a transformation from voxel re-
sponses to a much smaller number of channel responses, using
a decomposition in terms of physiologically motivated chan-
nels. These channels are a mathematical formalization of the
tuning curves of the underlying neural subpopulations (see
MATERIALS AND METHODS).

The forward model in the present study was limited to our
modality of interest: orientation. Trying to use this particular
forward model to decode more complex stimuli, like natural
images, would inevitably fail. The model would have to be
extended to include multiple spatial locations (our model col-
lapsed across space to extract the responses to the 6 orientation
channels), spatial frequency bands (our model used only 1 spatial
frequency channel because the stimulus components all had the
same spatial frequency), etc., as was done by Kay et al. (2008).
However, its succinct linear form, based on neurophysiological
tuning curves, makes it a powerful model to test modality-specific
interactions (specifically, cross-orientation suppression).

The forward model approach used in the present study has
the potential for a wide range of applications. By assuming a
basis set for neural tuning curves, it allows us to measure
simultaneously the responses of each of several subpopulations
of neurons (channels) in the human brain that span a particular
stimulus or feature dimension (e.g., orientation, color, motion
direction, spatial frequency, or even facial expressions). In
addition, it allows us to examine the representation of a
stimulus across subpopulations of selective neurons within a
cortical area.
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