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Cross-plane Seebeck coefficient in superlattice structures in the miniband conduction regime
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1Jack Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA
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We have studied experimentally and theoretically the cross-plane Seebeck coefficient of short period
InGaAs/ InAlAs superlattices with doping concentrations ranging from 2�1018 up to 3�1019 cm−3. Measure-
ments are performed with integrated thin film heaters in a wide temperature range of 10–300 K. It was
interesting to find out that contrary to the behavior in bulk material the Seebeck coefficient did not decrease
monotonically with the doping concentration. We did not observe a sign change in the Seebeck coefficient at
dopings where the Fermi energy is just above a miniband. This is a sign that electrons’ lateral momentum is
conserved in the transport perpendicular to superlattice layers. A preliminary theory of thermoelectric transport
in superlattices in the regime of miniband formation has been developed to fit the experimental results.

DOI: 10.1103/PhysRevB.74.195315 PACS number�s�: 73.50.Lw, 73.63.�b

I. INTRODUCTION

N-type materials have negative Seebeck coefficients. That
is because the energy the electrons contribute in transport is
distributed mostly above the Fermi level. This can be shown
with the following linear transport equations:
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The “differential” conductivity is defined as

��E� = e2��E� � � vx
2�E,ky,kz�dkydkz � e2��E�v̄x

2�E�n̄�E� ,

�3�

where � and S are the electrical conductivity and the See-
beck coefficient, respectively. ��E� is the energy dependent
relaxation time, vx�E� is the average velocity of the carriers
with energy between E and E+dE in the direction of current
flow, and nx�E� is the number of electrons in this energy
interval. Electrical conductivity is the sum of the contribu-
tions of electrons with various energies E 	given by the dif-
ferential conductivity ��E�
 within the Fermi window factor
�feq /�E. The Fermi window is a direct consequence of the
Pauli exclusion principle, and at finite temperatures only
electrons near the Fermi surface contribute to the conduction
process. In this picture the Seebeck coefficient described in

Eq. �2� is the average energy transported by the charge car-
riers corresponding to a diffusion thermopower. In N-type
materials this average energy is positive; hence, the Seebeck
coefficient is negative. On the other hand, P-type materials
generally have positive Seebeck coefficients. Thus for the
same bias polarity, the n-type device cools on the cathode
side and heats on the anode, whereas the p-type device heats
on the cathode and cools on the anode. This is fortunate as it
lets us have a configuration of multi n- and p-type elements
connected electrically in series and thermally in parallel.
This arrangement has several advantages over the single-
element case. It first allows for the removal of the external
electrical connection to the cold side of the device and keeps
all external connections on the hot side, close to the heat
sink. The other main advantage is in reducing the necessary
external current bias. A large-area thermoelement �length and
width � thickness� requires a much larger current than a
small-area thermoelement �length and width � thickness� to
maintain the same temperature difference. By placing many
of the small-area thermoelements together, it is still possible
to cool an area that is the same size as the large-area ther-
moelement. Correspondingly, as the individual elements are
made smaller, the required current is reduced and the exter-
nal voltage is increased.

The overall device performance in conventional thermo-
electric coolers is given by the dimensionless figure of merit
ZT, which has the equation ZT=S2�T /	. This equation de-
scribes the tradeoffs between the Peltier cooling given by the
Seebeck coefficient �S�, the Joule heating given by the elec-
trical conductivity ���, and the heat conduction from the hot
to cold junction given by the thermal conductivity �	�. ZT
should be maximized to reach optimum performance and
efficiency. We have recently shown that thick and tall barrier
superlattices can improve ZT substantially if the lateral mo-
mentum of electrons is not conserved in thermionic emission
process.1,2

In this paper, we study thermoelectric transport in short
period superlattice structures. Strong coupling between
neighboring wells produces minibands. We chose an
InGaAs/ InAlAs superlattice with a high barrier �0.54 eV�.
We studied the effect of the doping concentration on the
cross-plane Seebeck coefficient at various ambient tempera-
tures.
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II. THERMOELECTRIC TRANSPORT IN MINIBAND
CONDUCTION REGIME

Figure 1 shows a schematic of the superlattice miniband
structure and the corresponding transmission probability for
the conduction electrons. If the miniband gap is wide enough
and if the Fermi energy is placed approximately kBT above
the miniband, it could be possible to selectively block elec-
trons above the Fermi energy and transmit electrons below
the Fermi energy. Consequently, heating and cooling would
be reversed compared to a normal n-doped material. Cantrell
et al.3 and Larsson et al.4 have also predicted that in a suit-
able multiple barrier structure, the thermopower may change
sign because of quantum transport process. However, they
were not concerned about the thermoelectric figure of merit
�ZT�. Cantrell et al.3 consider the case where the Fermi level
�EF� lies in the neighborhood of a particular subband mini-
mum �En�. They calculate the corresponding Seebeck coeffi-
cient �S� for two cases of EF
En and EF�En. They also
assume that the differential conductivity, ��EF�, varies lin-
early on either side of En. In this situation, they show that
when EF is close to a subband minimum, S changes sign as T
is reduced below �10 K. Larsson et al.4 do not calculate for
the Seebeck coefficient, but they solve the equations for ther-
moelectric current density. They show that the thermoelectric
current density at zero bias can change sign under special
conditions that are very similar to the situation in the intui-
tive picture of Fig. 1. They explain that this sign change in
current density should be reflected in thermopower as well.

The theoretical approach presented in this paper is differ-
ent from the above references. Hence, we end up with dif-
ferent results, which we will explain at the end of this sec-
tion.

The transport theory used in this section is based on the
model presented in Ref. 2. The conductivity and Seebeck
coefficient can be calculated from the number of electrons
participating in transport �ne� and the energy transported by
these electrons �nQ� respectively,
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where V is the applied voltage. The transmission probability
�T� depends only on V and the kzi

value since we have as-
sumed that the transverse momentum is conserved. The first
and second integrals are the number of transmitted electrons
from the well and barrier regions respectively. The two inte-
grals are different in their reference of energy �Eb

=�2kb
2 /2mb

*� and the carrier’s effective mass. We are consid-
ering miniband widths comparable with thermal energy.
Thus we have used a bulk-type Boltzmann transport equation
with a Fermi window factor of �−�f /�E� and a correction
due to the quantum mechanical transmission through the bar-
rier. The energy transported by the electrons shall be calcu-
lated using the following quantity:
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Equation �5� is similar to Eq. �4� except that the integrand
is multiplied by the difference of the energy of emitted elec-
trons from the Fermi level. Also a dispersion relation for an
electron’s wave vector in the z direction is assumed, similar
to the one on the xy plane. This approximation simplifies the
integrations while not noticeably affecting the final results.
We thus calculate the conductivity from �=ene, and the
Seebeck coefficient from S=nQ /eneT, where e, , and T are
the electron’s charge, mobility, and temperature respectively.
This equation for the Seebeck coefficient is a good approxi-
mation compared to the more accurate definition S=JQ/TJ,
where JQ is the heat current transported and J is the electrical
current. This is because mobility in the miniband transport
regime is a much weaker function of electron energy than the

FIG. 1. The above diagram illustrates the concept of manipulat-
ing the miniband conduction for electron filtering. Dashed line in
transmission probability picture indicates the barrier height of
500 meV �superlattice parameters are listed in Table I�.
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quantum mechanical transmission probability in superlat-
tices. In analogy with bulk thermoelectrics, one can define
the thermionic figure of merit as ZT=�S2T /	, where 	 is the
thermal conductivity of the material. Figure 2 shows the cal-
culated Fermi energy and electrical conductivity versus dop-
ing concentration for an InGaAs/ InAlAs superlattice. For
comparison, transmission probability versus energy is also
illustrated on the same plot as well as the Fermi energy.
Parameters used in the simulations are listed in Table I. In
this table, nw is the number of superlattice periods, Lw and Lb
are the widths of well and barrier, respectively, m* is the
electron’s effective mass, and � is the nonparabolicity of the
conduction band. For comparison, corresponding quantities
are also calculated and plotted for bulk InGaAs material. It
can be seen that superlattice conductivity is about an order of
magnitude smaller than that of the bulk material in the range
of doping concentration. This is basically due to the fact that
electronic transport happens dominantly through the two
available minibands below the barrier height �Eb

=450 meV�.
Figure 3 shows the calculated Seebeck coefficient and

thermoelectric figure of merit versus doping concentration
for this structure.

Based on Fig. 1, we may have expected a change of sign
for the Seebeck coefficient as the doping increases and Fermi
level moves above the first miniband. However, this is not
the case. Seebeck coefficient reduces significantly to about
25 V/K at a doping of 1�1019 cm−3. This reduction in the
Seebeck coefficient happens for the second miniband too.
The right-hand side of Fig. 3 shows that the maximum value
of the thermoelectric figure of merit, ZT, in an
InGaAs/ InAlAs superlattice is slightly larger than the bulk
InGaAs. This is due to the reduced electrical conductivity of
the superlattices, although the superlattice’s Seebeck coeffi-
cient is mostly above that of bulk materials in the whole
range of doping concentrations.

Contrary to the results of Ref. 4, the sign of Seebeck
coefficient does not change for any value of doping concen-
tration in Fig. 3. The sign change is in fact due to two key
assumptions made in Ref. 4: �i� Electron transport in super-
lattice minibands is in the nonlinear regime, and �ii� trans-
mission probability does not depend on the electron’s trans-
verse kinetic energy, which implies the transverse
momentum of electrons is conserved. The former assumption
is true only for electron transport in narrow minibands �in
the range of a few meV�. When miniband widths are small
compared to the broadening of the energy levels due to scat-
tering or compared to the voltage drop per superlattice pe-
riod, the linear miniband transport no longer exists.5 Super-
lattice minibands for our existing structure are too wide to
yield such a thermopower anomaly. In consequence, formal-
ism of Ref. 4 is not able to explain the experimental data. In
the applications in which the superlattice miniband is wide,
nonlinear transport equations must be replaced with a better
approximation based on linear transport theory. Our ap-
proach in this paper is based on the latter assumption and
thus can explain the experimental results.2 Although there is
still thermopower anomaly seen in the left-hand side of Fig.
3, the sign of the Seebeck coefficient does not change. As we
will see in the next section, the sign change in Seebeck co-
efficient at the given temperature may only happen if the
transverse momentum of electrons is not conserved.

Cantrell et al.3 have also shown that the Seebeck sign
change happens only below relatively low temperatures
��10 K�. Their analysis is valid when there are no sharp
variations in density of states within the thermal energy, kBT,
of the Fermi level. Consequently, it does not include the
effect of discontinuities such as the subband edge or other
neighboring minibands. This is more likely to happen at
higher temperatures. The formalism presented hereby self-
consistently includes such deviations 	see Eqs. �4� and �5�
.
Cantrell et al. also derived a rather simplified expression for
the highest temperature at which the Seebeck coefficient
changes sign. This expression depends on the electron differ-
ential conductivity near the subband minimum. However, in

FIG. 2. Calculated Fermi energy �left� and electrical conductiv-
ity �right� vs doping concentration for InGaAs bulk and
InGaAs/ InAlAs superlattice. Inset shows the transmission probabil-
ity of the superlattice vs energy. The scale of the energy axis is set
the same as that of the Fermi energy axis for comparison.

TABLE I. Structural parameters for the In0.53Ga0.47As/ In0.52Al0.48As superlattice �Refs. 6 and 7�.

nw

Lw

�nm�
Lb

�nm�
Eb

�meV� mw
* mb

*
�w

�ev−1�
�b

�ev−1�
w

�cm2/Vs�
b

�cm2/Vs�
Vs

�cm/s�

250 50 30 450 0.041 0.084 1.167 1.167 1000 6000 107

FIG. 3. Seebeck coefficient �left� and thermoelectric figure of
merit �right� vs doping concentration for bulk InGaAs material and
the InGaAs/ InAlAs superlattice.
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their calculation of the differential conductivity ��E�, which
is presented elsewhere,8 the transverse momentum remains
conserved.

In the following section, we will see that nonconservation
of electron’s transverse momentum in the thermionic current
has two effects: it significantly increases thermionic figure of
merit ZT, and it can change the sign of Seebeck coefficient
for the superlattice structure under test. In Sec. IV, we
present experimental results for thermoelectric transport in
superlattice structures in miniband conduction regime.

III. NONCONSERVATION OF TRANSVERSE MOMENTUM

Equations �4� and �5� imply that the transmission prob-
ability T�kz� depends on the quantized energy levels inside
the wells �see Ref. 2 for more details�. However, when the
transverse momentum is not conserved during thermionic
emission, the transmission probability depends on the total
energy of the electron, and not just the kinetic energy per-
pendicular to the well. Nonconservation of transverse mo-
mentum happens due to the interaction of the quantized
charge carriers in the quantum well, both with each other and
with inhomogeneities. One thus replaces T�kz ,V� with
T�kx ,ky ,kz ,V� in Eqs. �4� and �5�,
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For thermionic power, we calculate the following integral
when the transverse momentum is not conserved:
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Figure 4 shows the conductivity of the same structure
with the assumption that transverse momentum is not con-
served.

It is seen that when the transverse momentum is not con-
served, the electrical conductivity of the superlattice can be
three times larger than the value for the conserved transverse
momentum case at some doping concentrations. Figure 5
shows the corresponding Seebeck coefficient and thermo-
electric figure of merit. It can be seen that the Seebeck coef-
ficient changes sign when the Fermi energy is close to the
minibands �see the left-hand side of Fig. 2�. Positive Seebeck
coefficient peaks of about 100 V/K and 200 V/K are
predicted at a doping of 5�1018 cm−3 and 7�1019 cm−3,
respectively. Interestingly, the thermionic figure of merit for
the case of nonconserved transverse momentum is about four
times larger than that of the conserved transverse momentum
case, and about six times larger than that of bulk. It should be
noted that this improvement in ZT is due to the improvement
in the effective power factor. This improvement can be com-
bined with the other methods to reduce the phonon thermal
conductivity in superlattices and thus obtain a higher thermo-
electric figure of merit.9–11

Surprisingly, Fig. 4 shows that the electrical conductivity
for the case of conserved transverse momentum can be larger
than that of nonconserved transverse momentum at some
doping levels. This is counterintuititive; we would expect the

FIG. 4. Electrical conductivity �right� vs doping concentration
for InGaAs bulk and InGaAs/ InAlAs superlattice for two cases of
conserved and nonconserved transverse momentum.

FIG. 5. Seebeck coefficient �left� and thermoelectric figure of
merit �right� vs doping concentration for InGaAs bulk and
InGaAs/ InAlAs superlattice for two cases of conserved and non-
conserved transverse momentum.
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nonconservation of transverse momentum to increase num-
ber of electrons tunneling through the barrier.12 We devote a
paragraph clarifying this discrepancy.

Figure 6 shows electrical conductivity versus Fermi en-
ergy for the two cases of conserved and nonconserved trans-
verse momentum. The corresponding transmission probabil-
ity versus energy is also plotted on the same x axis for
comparison. It is noted in this figure that when the transverse
momentum is conserved, the electrical conductivity rises
rapidly when the Fermi energy is within the minibands and
slowly when it is far from the minibands. However, when the
transverse momentum is not conserved, the electrical con-
ductivity has peaks when Fermi energy lies within the mini-
bands, and decreases below that of the conserved transverse
momentum case when it moves out of the miniband. The
unexpected electrical conductivity of Fig. 6 can be best un-
derstood from the momentum space diagram of the left-hand
side of Fig. 7. This figure depicts the Fermi sphere and a
quantized energy surface in k space. For simplicity we con-
sider a single energy state, but the conclusion is equally valid
for the case of minibands. Transport takes place within the
thermally spread states around the Fermi surface �E

�Ef ±kBT�. When the transverse momentum is conserved,
transmission probability depends only on kz �the electron’s
wave vector perpendicular to the superlattice layer�, thus
quantized energy levels make flat surfaces in k space as
shown on the left in Fig. 7. States participating in the trans-
port are the ones in the overlap area of the thermally spread
states around the Fermi surface and the quantized energy
surface. For the case of conserved transverse momentum,
when the Fermi energy is about at the energy of the first
quantized energy level, electrical conductivity increases with
the Fermi energy due to the increase of the overlap area.
However, when the Fermi energy is larger than the quantized
energy level, the overlap area, and thus the electrical conduc-
tivity, does not change very noticeably. The electrical con-
ductivity increases again as the Fermi energy increases to the
level of the second quantized energy surface. With a similar
perspective, we can explain why the Seebeck coefficient
never changes sign in the left-hand side of Fig. 3 when the
transverse momentum is conserved. This is because in the
quantized energy disk, the number of hot electrons with en-
ergies above the Fermi level is always more than that below
the Fermi level �cold electrons� �see the left-hand side of Fig.
7�.

On the other hand, nonconservation of transverse momen-
tum can affect the structure of the minibands. Minibands are
formed as a result of the additional periodicity of the super-
lattice in the growth direction. In the in-plane direction, there
is no periodic structure and electrons are not expected to be
affected by minibands. However, if due to scatterings, the
electron transverse momentum is not conserved, the trans-
mission probability depends on the total energy, and mini-
bands are no longer flat bands in k space. At the extreme
point that the transverse momentum is not conserved for all
electrons, one may use the transmission probability in the
growth direction and then replace kz by k, as in Eqs. �6� and
�7�. This approximation is effectively equal to an assumption
of the formation of spherical minibands. This model is an
approximate way to take into account nonconservation of
transverse momentum and a more detailed analysis of this
effect is needed. In the case of a spherical miniband de-
scribed by Eqs. �6� and �7�, when the Fermi energy is within
a miniband, the volume of the overlap states between the
thermally spread states around the Fermi level and the mini-
band reaches its maximum and a peak appears in the electri-
cal conductivity as seen in Fig. 6. However, when the Fermi
energy is out of the miniband, the overlap volume vanishes
�or only the tail of the Fermi sphere is left in the minibands�,
thus the electrical conductivity decreases significantly.

In the next section we discuss experiments investigating
the cross-plane Seebeck coefficient of superlattice structures
in miniband conduction regime.

IV. EXPERIMENTS

The molecular beam epitaxy �MBE� grown superlattice
contained 25 periods of 5-nm thick InGaAs n-doped with
varying concentrations, 2�1018, 4�1018, 8�1018, to 3
�1019 cm−3, and 3-nm thick undoped InAlAs. The superlat-
tice layer composition was lattice matched to the InP sub-

FIG. 6. Electrical conductivity vs Fermi energy �left axis�, and
transmission probability vs energy �right axis� for two cases of con-
served and nonconserved transverse momentum.

FIG. 7. Left: Transverse momentum conserved; most of the
electrons in the first miniband are above Fermi energy �Seebeck
coefficient negative�. Right: transverse momentum not conserved;
most of the electrons move below Fermi energy �Seebeck coeffi-
cient positive�.
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strate. 0.5-m thick highly doped �1�1019 cm−3� InGaAs
layers were used as the buffer and the cap layers. These
facilitate contact metallization on top and on the bottom of
the superlattice. Devices with various sizes were fabricated
using conventional lithography, dry etching, and metalliza-
tion techniques. Ni/AuGe/Ni/Au was used to make ohmic
contacts to both electrodes. The left side of Fig. 8 shows the
device’s geometry under the scanning electron microscope
�SEM�. A thin film heater was deposited on top of the mi-
crocooler and used as both heat source and temperature sen-
sor, as illustrated in the right-hand side of Fig. 8.

At last, the sample was attached to a package, wire
bonded, and loaded into the cryostat. There were a total of
four samples under test with different dopings in the super-
lattice layer. We used two device sizes, 100�100 m2 and
70�70 m2, for measurements. First, we calibrated the
heater resistance with the stage temperature. We used four-
wire measurement to measure the resistance to reduce the
influence of contact wires and pads. At a given heater power,
the top of the cooler device was heated up by the thin film
heater at a fixed temperature �Th�. The substrate was attached
to the heatsink inside the cryostat, where the temperature was
controlled by the flow of liquid Helium �Ts�. The temperature
difference across the superlattice layer ��T=Th−Ts� gener-
ates a voltage difference ��V�, which can be measured by
probing the microcooler contact and ground contact. Thus,
the effective Seebeck coefficient of the device could be cal-
culated easily from S=�V /�T. �V is voltage difference
across the junction, and �T is the temperature difference
across the junction. As long as we could measure the voltage
and temperature difference accurately, the Seebeck coeffi-
cient could be calculated. The difficulty of characterizing the
Seebeck coefficient of a superlattice thin film lies in simul-
taneously measuring voltage and temperature drops to within
a few microns on both sides of the film. We successfully
measured the Seebeck coefficient by integrating a thin film
heater on top of the microcooler.13 For the detailed calcula-
tion methods used to derive the Seebeck coefficient of the
superlattice, refer to Ref. 14. The Seebeck coefficients were
measured through the cryostat temperature change from
10 K to 300 K.

V. RESULTS AND SIMULATIONS

Figure 9 illustrates the measured Seebeck coefficients
along with theoretical calculations for samples A, B, C, D
with doping concentration ranging from 2�1018 to 3
�1019 cm−3. From the graph, we can see the Seebeck coef-

ficient increases with temperature for all samples. The graph
verifies that the Seebeck coefficient is independent of device
size. The Seebeck coefficient measured for both 100
�100 m2 �squares� and 70�70 m2 �circles� devices
match except for one case. We found that the discrepancy
was due to a fabrication error for the sample D of size 100
�100 m2. Heater wire was shortened in a small area. For
sample D, data for the device of size 70�70 m2 is used for
comparison with theoretical predictions.

The theoretical fitting was based on the model presented
in Sec. II, which assumes that the transverse momentum is
conserved. The transmission probability is calculated with
the use of the transfer matrix method �TMM�. Since the re-
sulting minibands’ widths are either on the order of, or larger
than, the thermal energy ��20 meV and 100 meV for the
first two minibands�, a bulk-type Boltzmann transport with a
correction accounting for quantum mechanical transmission
above and below the barrier is assumed 	Eqs. �4� and �5�
.
Parameters used in the calculations are listed in Table I.15

The left-hand side of Fig. 10 illustrates the superlattice
transmission coefficient as a function of electron energy.
Given the finite coherence length of carriers, only two peri-
ods are taken into account. Three minibands at approxi-
mately 120, 380, and 670 meV can be identified. The posi-
tions of Fermi levels for the four samples are also shown.
The right-hand side of Fig. 10 illustrates the theoretical pre-
diction of the Seebeck coefficient as a function of doping
concentration, along with the experimental data points
�circles and squares�. From the graph, we can see that the
Seebeck coefficient monotonically decreases with doping
concentrations up to 1019 cm−3, but it starts to increase with
the doping concentration. This trend was confirmed by the
increased Seebeck coefficient measured for sample D. As it
can be seen in Fig. 9, sample D’s Seebeck coefficient is lager
than bulk InGaAs doped at the same level, while the Seebeck
coefficients of samples A, B, and C were lower than bulk
values over the whole temperature range. The Seebeck coef-

FIG. 8. A cope of the device structure �left�, and the microcooler
integrated with heaters �right�.

FIG. 9. The measured effective Seebeck coefficient for samples
A, B, C, D. Circles �device size 70�70 m2� and squares �device
size 100�100 m2� are experimental data, the lines are theoretical
modeling.
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ficient of samples A, B, and D fit the theoretical calculations
for well and barrier widths of 43 and 30 Å, respectively.
However, sample C is well fitted with the well and barrier
widths of 50 and 30 Å, respectively. This variation could be
due to different growth rates between epitaxial growths. The
thickness variations were verified by measuring the superlat-
tice period accurately with the use of x-ray diffraction.

VI. SUMMARY

We described detailed calculation of thermoelectric ef-
fects in short period superlattice devices. Nonmonotonic be-

havior of the cross-plane Seebeck coefficient versus doping
was observed. This was explained due to miniband conduc-
tion regime. Simple diagram shown in Fig. 1 suggests that
the sign of the Seebeck coefficient could be changed com-
pared to that of bulk n-doped material. However, we did not
observe the sign change experimentally. When we carefully
examined the theoretical model, we found out that only when
the electron’s transverse momentum is not conserved during
quantum mechanical transmission the sign of the Seebeck
coefficient could be changed �see Fig. 5�. Transverse mo-
mentum conservation is a consequence of translational sym-
metry in the plane of quantum wells, and it could be violated
by adding any substructure that breaks this symmetry such as
embedded quantum dots. Calculations in Ref. 16 illustrated
indeed the Seebeck coefficient sign change as p-doping in-
creases for Ge/Si quantum dots superlattices. In the case of
planar barrier, when transverse momentum is conserved, sign
of the Seebeck coefficient does not change and we only see a
nonmonotonic variation of the Seebeck coefficient versus
doping.
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