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ABSTRACT

Performance prediction across platforms is increasingly important
as developers can choose from a wide range of execution platforms.
The main challenge remains to perform accurate predictions at a
low-cost across different architectures.

In this paper, we derive an affordable method approaching
cross-platform performance translation based on relative per-
formance between two platforms. We argue that relative perfor-
mance can be observed without running a parallel application in
full. We show that it suffices to observe very short partial execu-
tions of an application since most parallel codes are iterative and
behave predictably manner after a minimal startup period. This
novel prediction approach is observation-based. It does not re-
quire program modeling, code analysis, or architectural simula-
tion. Our performance results using real platforms and production
codes demonstrate that prediction derived from partial executions
can yield high accuracy at a low cost. We also assess the limitations
of our model and identify future research directions on observation-
based performance prediction.

1. INTRODUCTION

Problem Overview:

Studying application performance has been in the limelight of high-
performance computing (HPC) for a long time. In this realm, for-
mal performance modeling and simulation have played a central
role [1, 2, 6, 8, 9, 13, 15, 18, 21, 24, 28, 31, 34, 36, 37]. While
model-based prediction has become indispensable for future archi-
tectures, its accuracy is increasingly compromised for existing ar-
chitectures due to their complexity and heterogeneity. In particular,
HPC users need cross-platform performance prediction to compare
the efficiency of hardware platforms, to guide acquisitions of new
systems, and to steer the development of next-generation hardware.
The growing variety, scale, and complexity for applications and
platforms alike have made traditional model- or simulation-based
approaches difficult and expensive to be deployed across platforms.

This paper contributes a low-cost, high-accuracy approach to
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cross-platform performance prediction that is highly appealing due
to is stunning simplicity. While this approach is shown to succeed
for a large number of HPC applications and hardware platforms,
we also assess its limitations and identify future directions for our
work. The strengths of these contributions are on the breadth of our
experimentation and the simplicity, wide applicability, and porta-
bility of our methodology.

Motivation:

Scientists today have access to an increasing number of geograph-
ically distributed HPC resources. It is essential for them to de-
termine the performance of their specific applications on a wide
range of execution platforms in deciding which system best fits
their needs (both for acquisition and account application purposes),
especially for long production runs. If scientists were provided
with performance estimations for their applications on several large
clusters, their choosing and gaining accesses to suitable platforms
would be considerably simplified. In addition, they could be guided
in their quantitative request for service units on a specific cluster.

Accurate performance estimates are also instrumental in assist-
ing a grid resource scheduler to efficiently schedule user jobs. A
“meta-scheduler” would benefits from knowledge about the run-
time of jobs on each participating site in improving the global load
balance and overall job throughput. When a job is scheduled to run
at a specific grid-participating site, the local job scheduling system
there also requires an estimated upper bound on its execution time.
This bound is then utilized in scheduling decisions [25, 30]. Overly
inaccurate estimations can result in excessive wait times in queues
or in forced premature job termination (cancellation) during execu-
tion for over- and under-estimations, respectively.

Performance prediction for parallel programs has a large body of
prior work (see Section 2). These prior efforts have mostly focused
on performance modeling or program simulation. However, the
size, diversity, and extensibility of today’s HPC environments pose
new challenges that traditional performance prediction approaches
were not designed to address.

First, it is increasingly difficult to obtain knowledge regarding
both the applications and the execution platforms. Application de-
velopers often lack sufficiently detailed knowledge about accessi-
ble hardware platforms. Similarly, a job scheduler cannot obtain
application-specific knowledge without user intervention. As a re-
sult, traditional, model-based performance prediction has become
a case-by-case effort per application and platform instead of matur-
ing to an automated computing service. Second, most traditional
performance prediction approaches incur high costs in time and
manpower, which is prohibitive for everyday usage. For fairly ac-
curate results, the cost of predictions may exceed the benefits from



job scheduling and platform selection in the first place.

Main Approach:

Our main approach is, in contrast to previous work, based on
observation-based performance prediction. We enable very short
“test drives” of applications on multiple candidate platforms to
quickly derive the execution time of much longer runs. The tim-
ing results of these test drives can be stored in a database for reuse
in future predictions. This approach facilitates cross-platform per-
formance estimation as an affordable utility, equally beneficial to
HPC users and grid schedulers.

One of the key innovations of our work is its reliance on the
novel concepts of relative performance and partial execution. We
observe that HPC users often have one or more reference comput-
ers to develop and test applications. Consequently, our work inves-
tigates inter-platform performance translation. More specifically,
this paper make the following contributions:

e We predict the overall execution time of a large-scale appli-
cation on a target system using the combination of its known
performance on a reference system and the relative perfor-
mance between the two systems derived from a very short
run of the application.

e We determine the an early point in execution that captures the
cross-platform relative performance reasonably well, thereby
providing a low-cost, high-accuracy approach to prediction.

Our results from four production-scale parallel simulation codes
show very promising prediction accuracy and low prediction over-
head: in most cases, with a short execution that takes 1% or less of
the total execution time, we obtain an overall execution time pre-
diction accuracy of 97% or higher. We also discuss the limitations
and extensions of our methodology, namely:

e We show that such early observations do not fully capture
dynamically changing computational behavior. We further
discuss approaches based on hardware performance counters
combined with micro-benchmarks to tighten predictions.

e We report reduced accuracy for reusing partial execution re-
sults in predictions across varying problem sizes and num-
bers of processors.

2. RELATED WORK

Grid Job Scheduling: There has been an increasing interest and
efforts on grid scheduling (also called meta-scheduling) [17, 29,
32, 27], mostly built upon local job schedulers for executing jobs
on distributed computing resources. It is recognized that execution
time is an important job parameter to be translated across machines.
However, existing or under-development grid schedulers either do
not offer execution time translation, thereby implying that users
are responsible for specifying a “safe” maximum wall time value
across machines, or adopt simplified translation methods, such as
stretching the execution time with the CPU frequency ratio between
two machines [27], which is known to be very inaccurate. Our work
can form a building block for future grid schedulers by offering
affordable job execution time predictions for diverse applications
and platforms.

Parallel Program Performance Prediction: There have been nu-
merous previous studies of performance prediction for parallel pro-
grams. Many of these studies are built upon performance model-
ing techniques (e.g., [1, 9, 13, 18, 24, 31, 34]), requiring either
in-depth knowledge of the applications to build analytical mod-
els (e.g., [2, 21, 28, 36, 37]) or special compiler/instrumentation

tools to infer such knowledge from parallel codes (e.g., [6, 8, 15,
24]). With careful modeling of applications and platforms, many of
these previous studies achieved high prediction accuracy. However,
detailed modeling often compromises the portability of prediction
tools. E.g., some existing approaches are application-specific [2,
19] or language-specific [8, 15]. In addition, a number of prediction
techniques are based on simulations (e.g., [3, 6]), where simulators
are used to measure the execution time of applications.

Most of the work mentioned above targeted performance pre-
diction for the purpose of performance optimization. In contrast,
our method targets performance prediction as a means for making
resource usage estimation to help application owners in their re-
search planning and daily use of diverse computing resources. In
such cases, users may not be able or willing to afford traditional
performance prediction techniques, which require a fair amount
of work due to model building or instrumentation plus simulation.
Further, today’s multi-component codes (such as the simulations
discussed in this paper) are comprised of modules from many ap-
plication domains with diverse computational models/algorithms,
making analytical modeling very hard. Also, they often use exter-
nal libraries (MPI, BLAS, PETSc, NetCDF, just to name a few),
and/or multiple languages (e.g., mixed C/Fortran/C++ program-
ming). This greatly decreases the feasibility and effectiveness of
both analytical and compiler-aided performance modeling. Finally,
given the large number of application-platform combinations in fu-
ture HPC environments, simulation-based prediction can consume
excessive system resources themselves. In contrast, we develop
observation-based performance prediction, which does not require
in-depth knowledge of parallel codes or systems. This makes
our approach application-independent, language-independent, and
platform-independent. In our evaluation, we used multiple DOE
production simulations and a wide selection of contemporary su-
percomputers, which makes a side-by-side comparison with prior
work impractical due to the differences in platforms and codes stud-
ied. In most of our test cases, our prediction scheme achieves high
accuracy that matches or exceeds the best results reported by prior
methods, while our worst accuracy observed is comparable with
accuracies reported by many existing studies.

Further, many multi-platform performance studies (e.g., [3, 6, 7,
18, 23, 24]) evaluated their approaches with data collected at mul-
tiple supercomputers. However, data from each machine are pro-
cessed individually, so are predictions and evaluations performed.
Our approach, instead, combines benchmarking results from mul-
tiple platforms for cross-platform prediction. In addition, work on
cross-platform performance prediction (e.g., Prophesy [33] or con-
volution methods to map hand-coded kernels to machine profiles
[4]) was often based on modeling computational kernels instead of
complex applications with diverse tasks.

Several recent studies addressed performance prediction in het-
erogeneous grid environments [16]. A few projects addressed rela-
tive performance [19] and performance portability [20, 26]. How-
ever, we are not aware of work on performance prediction based on
relative performance.

Finally, the repetitive behavior of applications has been exploited
in speeding up architectural simulators [22], predicting perfor-
mance metrics based on history information [12] and synthesiz-
ing kernels that resemble applications using architectural simula-
tion [5]. Such studies exploit repetition at “instruction block™ level,
while we exploit larger-scale and more explicit behavior repetition
in high performance scientific codes, based on the iterative nature
many of them possess. Our method may be extended to comple-
ment the above work in facilitating efficient simulation.



3. METHODOLOGY AND SYSTEM DE-
SIGN

Scientific applications generally have computationally intensive
kernels. The performance of such applications is often constrained
by the floating point resources available, memory bandwidth, and
the characteristics of inter-processor communication, via either
shared memory or message passing. Due to these constraints, per-
formance prediction is often challenging. At the same time, scien-
tific applications are characterized by their regularity in the course
of executions, specifically with regard to array reference patterns
(at the micro level) and alternating phases of computation and com-
munication or 1/0 (at the macro level). It is this regularity that we
exploit for our observation-based performance prediction in con-
trast to traditional model- or simulation-based predictions.

The repetitive nature of scientific applications at the macro level
is generally a property of their computational model, often based
on the notion of convergence in different mathematical approxima-
tion methods. Many, if not most, parallel simulations are timestep-
based. In such applications, a timestep is one step of computa-
tion followed by inter-processor communication to update data.
Timestep computation is repeated until the results converge (e.g.,
when the simulation object reaches a stable state), or the computa-
tion has completed a given number of timesteps.

Traditional model-based or simulation-based approaches to per-
formance prediction generally consider the entire execution of an
application and study the interplay between the program and the
architecture in a case-by-case manner. For an observation-based
approach, executing the entire application takes too long to be ac-
ceptable. Instead, our approach utilizes partial execution for a lim-
ited number of timesteps to capture the relative performance across
platforms for an application. We argue that due to the highly repet-
itive nature of scientific codes, the relative performance observed
in this short partial execution is likely to sustain through the entire
run. When used in conjunction with known full execution time of
a particular application on a reference platform, partial execution
results can be utilized for very cost-effective cross-platform execu-
tion time predictions.

3.1 Application Model

As described above, many parallel scientific applications are
iteration-based. The execution of these applications can be de-
scribed by a regular expression:

I(CTW])'F

Such an application typically starts its execution with a one-time
initialization phase (I), where it reads the input data, gathers exe-
cution configuration with initial communication, performs data dis-
tribution if necessary, and prepares data structures. The execution
then enters the main timestep loop, repeating the timestep compu-
tation phase (C) to compute the target problem(s). Once every k
timestep, there is an optional 1/0 phase (W) for writing periodic
output, such as intermediate snapshots or checkpoints. Finally, the
execution is concluded with a one-time finalization phase (F).

Between two platforms, a given application is likely to have
different relative performance during the above execution phases.
Since the initialization phase I and the finalization phase F' both
occur only once, with overhead often negligible in long-running
applications, we focus on the repeated computation (C) and 1/O
(W) phases. The key challenges we face here are 1) to predict
the overall relative performance for the entire execution in spite of
unstable performance in the initial timesteps, and 2) to predict the

11n most studies on model-based performance prediction, efforts
have focused on modeling and analyzing computation kernels only.

correct mixture of relative performance from the C' and W phases,
when the periodic 1/O frequency k is unknown. Our performance
prediction models designed to solve these problems are presented
in Section 3.3. Before we discuss these models, we first describe
our partial execution scheme for observing relative performance in
short application runs.

3.2 Partial Execution

We have devised an API in support of partial execution for arbi-
trary iteration-based applications. While the design was inspired by
the properties of timesteps, the API can also be used in the absence
of explicit timesteps — as long as the activities between two con-
secutive calls closely represent repetitive phases in the application’s
execution. In the rest of the paper, we use the term “timestep” when
referring to these periodic phases. The API for partial execution is
as follows:

e init_timestep(): Thisisan optional call to time-stamp
the beginning of an execution. For applications with large
start-up overhead, e.g., due to reading large data sets from
secondary storage, this call may be used to separate the ini-
tialization overhead from subsequent regular timesteps.

e begi n_ti nest ep() : This call identifies the beginning of
a timestep and allows counters for metrics to be reset be-
tween timesteps.

e end_ti nest ep( maxst eps) : This call indicates the end
of a timestep and logs metrics pertinent to the timestep work.
The parameter maxst eps specifies the total number of
timesteps before partial execution prematurely terminates the
program’s execution.

The init_timestep() and begin_tinestep() calls
bracket the initialization phase I. Similarly, a neighboring pair of
begi n_tinmestep() and end_ti nestep() calls bracket the
timestep computation phase C' if this timestep does not perform
periodic 1/0O, and a combined computation-1/0 phase CW if oth-
erwise. As mentioned earlier, initialization is a one-time overhead
typically with negligible cost to long-running applications. Hence,
the initialization call i ni t ti mest ep() can often be omitted.
Our implementation discards the first timestep in computing rela-
tive performance, assuming the ramp-up is finished by the second
timestep. Excluding the first timestep also allows caches to warm
up before timing results enter the performance model.

Partial execution utilizing this API allows one to obtain metrics
on a per-timestep basis and limits the number of timesteps exe-
cuted. Once this number is exceeded, the application will be ter-
minated prematurely. Hence, the objective of partial execution is
not to obtain numerical results from scientific codes but to quickly
and cheaply capture their rudimentary execution behavior. Only re-
quiring high-level knowledge about the application’s control flow
and as few as two extra lines of code inserted, partial execution
via the above APIs is affordable, scalable and portable. The met-
rics obtained during partial execution can then be utilized to predict
the performance of an application run across different platforms, as
detailed below.

3.3 Cross-Platform Performance Prediction

Our approach of observation-based performance prediction is
based on two sets of data, one from the reference platform, where
we have more performance knowledge about the application in
question (denoted as A), and one from the target platform, where
we want to predict the full execution time.



We assume that T, the full execution time of A on the ref-
erence platform, or num_steps, the total number of timesteps in
the full execution, is available. This is reasonable considering that
there is at least one “base platform” where the code is developed
or tested, and researchers typically keep track of the overall statis-
tics for long-running jobs. In addition, we perform the same partial
executions of A on the reference platform as we do on the target
platform (see below).

On the target platform, we carry out a set of partial executions
of A for a limited number of timesteps. Both the number of partial
executions and the number of timesteps per partial execution can
be small, as will be demonstrated in the experimental section. The
objective of the approach is to inflict minimal time overhead for any
executions on both platforms so that performance predictions can
be provided quickly. This is especially important when scientists
need to select their preferred target from a large set of candidate
platforms (based on the relative performance, i.e., machine M; is
x times faster than machine Ms). With known execution times
on the reference platform, one can further estimate the absolute
performance to supply tight, yet relatively safe bounds on wall-
clock time for their submitted jobs, long before having observed a
complete run on the target platform, which can take hours or days.

Base Prediction Model via Cumulative Averages:

The base model utilizes cumulative averages (aka. running aver-
ages) to predict performance. It assumes that the relative perfor-
mance across platforms stabilizes early in the execution and re-
mains stable throughout the run. This is true for many regular ap-
plications with fixed dataset sizes and algorithms. Relative per-
formance observation is based on the average per-timestep execu-
tion time for a set of repeated partial executions to obtain the per-
timestep execution time t,:.p and the initialization overhead ¢;n¢,
using the aforementioned API.

Suppose on each platform, m partial executions are performed,
each running the first n timesteps (counting from timestep 2). We
denote the timestep execution time for the sth timestep in the jth
partial execution as ¢s¢ep_i,5. The per-timestep cumulative average
from multiple partial executions up to the Ith timestep (1 <1 < n)
is calculated as

ta/ug_.step = % Z

1<i<li<js<m

tstep_i,j

Similarly, if ¢;,:: is benchmarked in m partial executions, the aver-
age initialization overhead is

m
4 ! E t
avg-init — init_j
m 4
Jj=1

The observed relative performance R,y between the target
and the reference platform can then be calculated using the result-
ing average per-timestep overhead tqvg_step :

t ar-avg-ste
Riarrey = —2r-avg-step
tref_aug_step

Equipped with the above observed relative performance and
known execution time T;..; on the reference platform, we can es-
timate absolute performance of A on the target platform Tiar st
as:

Ttar_est = ttar_avg_init + ]Rta'r_'ref X (Tref - tref_init)

If T,y is not available but the total number of timesteps,
nume_steps, is known, we can predict T;qr_cst aS:

Tiar.est = ttar_avg_init + ttar_aug_step X num_steps

The accuracy of the above prediction can be assessed by compar-
ing Tiarest, the predicted absolute performance of A, with Tiqr,
the measured performance on the target platform:

Ttar_est

accuracy =
Ttar

Note that a full execution on the target platform for this metric is
only required to assess the model. However, when this prediction
technique is applied to a grid job scheduler, one of our target use
cases, such full execution time may be obtained without additional
cost from the batch job accounting system, after a job is eventually
scheduled and executed on one of the platforms managed by the
grid job scheduler. Such “free” information can be conveniently
fed back to the prediction model for its self-evaluation and self-
adaptation.

The observed relative performance during short, partial execu-
tions approaches the overall relative performance calculated from
actual full executions on both platforms when the initialization time
tinit 1S SMall relative to overall execution time, which results in
high prediction accuracy.

Prediction via Filter Model:

As mentioned above, the base model utilizing cumulative averages
of timestep overheads suffices for applications with regular com-
putation and platforms without runtime/OS intervention that af-
fects execution time. To generalize our prediction to compensate
for fluctuations in execution time and answer the challenges listed
at the end of Section 3.1, we designed two prediction models en-
hancing the base model. The first one, the filter model, predicts
the relative performance more accurately in the presence of erratic
fluctuations of timestep overheads.

Initial fluctuations may occur for multiple timesteps instead of
just during the initialization phase or the first timestep computa-
tion phase, where cache warm-up typically occurs. Such fluctua-
tions often originate from runtime/OS intervention, such as process
and/or memory page migration to better utilize system resources.

These fluctuations are often highly platform dependent and un-
predictable to application developers. As will be shown in more
detail in Section 4, we encountered such fluctuation in one of our
test applications, which is observed on only one of four test plat-
forms and spans the initial 20 timesteps.

The enhanced filter model captures fluctuations and filters out
initial fluctuations. With this model, our implementation performs
online processing of collected per-timestep overheads during par-
tial execution. The current fluctuation is considered significant if
this ratio differs from 1 by a threshold 6 or more. Both n and § are
tunable and will be quantified later.

If we detect initial fluctuations in a partial execution of n
timesteps, we treat it as part of the one-time initialization cost. Sup-
pose the detected fluctuation ends at timestep x. We then calculate
the new initialization overhead and timestep average up to the Ith
timestep (I > x):

r—1
/
Tinit = Tinit + Z tstep_i
i=1

l
1
4 — .
Tavg_step - 1 — x4+ 1 Zé_z tstep_z

This adjustment is made on both the reference and the target sys-
tems, even if only one of them observes a fluctuation. We then
replace the initialization overhead and timestep cumulative average



in our base prediction model with the above new values (both fur-
ther averaged over m partial executions). This enhanced prediction
filters out the impact of the initial fluctuation.

Prediction via Siding Window:

In addition to initial spikes, periodic fluctuations due to 1/0 phases
are common. One could augment the API to bracket I/O phases or
to specify the frequency of periodic 1/O at the expense of the users’
burden. Furthermore, the 1/0 frequency is often a configurable pa-
rameter obtained from input files and may vary between application
runs. Hence, we settled on a different approach.

We take a unified solution to capturing both one-time and peri-
odic fluctuations, and further enhance the filter model to use a slid-
ing window of timestep overhead averages. In addition to capturing
fluctuations and filtering out initial spikes, the relative performance
is adaptively sampled in the presence of periodic fluctuations.

As a result, we now need to distinguish between random anoma-
lies and periodic fluctuations. We apply heuristics 1) to compare
partial execution times from multiple platforms (it is more likely
an anomaly if it only occurs on one system) and 2) to detect re-
curring spikes/dips (it is more likely an anomaly if it only occurs
once, especially close to the beginning of execution). As before, a
fluctuation is considered significant if this ratio differs from 1 by
a threshold  or more. In practice, choosing n = 5 and § = 0.05
allows us to identify both one-time fluctuations and periodic 1/0
activities.

If we detect recurring performance fluctuations (most likely due
to periodic 1/0 activities) every k timesteps, we sample the rela-
tive performance with an appropriate mixture of the “regular” and
“irregular” timesteps, no matter where a partial execution is termi-
nated. This is done by computing a sliding window of averages
instead of cumulative averages, as an enhancement on the filter
model. Intuitively, this method uses the average of timestep times
collected in a contiguous window of size w. To ensure that we in-
clude the correct proportion of computation and periodic activities
such as 1/0O, we use a window size that is an integer multiple of the
observed pattern length k. Again, we adjust the initialization over-
head and timestep average used in the base prediction model to use
the sliding window average up to the [/th timestep with a window
sizew (I > w):

l—w
/
Tinit = Tinit + g tstep_i
=1

l

Z tstep.i

i=l—w+1

—_

/
T - —
avg-step
w

Obviously, the sliding window average matches the cumulative av-
erage for the first w timesteps. Afterwards, the cumulative ap-
proach is subject to recurrent fluctuations in the presence of peri-
odic activities besides timestep computation while the sliding win-
dow approach provides stability.

The above monitoring and adaptive prediction may not be able
to capture all fluctuations. For example, if these fluctuations oc-
cur after the partial execution is terminated, the partial execution is
not long enough to detect their recurrent pattern, or the fluctuations
are not big enough. However, our overall observation is that with
a reasonable length of partial execution, our enhanced prediction
scheme will capture fluctuations that are “important”. If fluctua-
tions are sparse or of low cost, they will safely be disregarded by
our approach, as they would not have a large impact on the overall
prediction accuracy in the first place.

3.4 Summary of Prediction Methodology

Because this prediction is observation-based, as long as appli-
cation A is executed in the same way across platforms, prediction
accuracy will not be affected by differing system characteristics,
such as:

e processor families, generations and clock frequencies,
e bus interconnects (for shared-memory systems),

e communication interconnects (for networked clusters),
e memory and cache configurations,

e connections from compute nodes to shared disks, and

e system software, such as operating systems and 1/O libraries.

Our experiments in Section 4 demonstrate the above.

A major objective of our performance prediction scheme is al-
ways to minimize the overhead for partial executions. The question
is, e.g., can we estimate the performance on the target platform us-
ing 64 processors with the relative performance observed in partial
runs using 8 processors only? Section 4 also presents our empiri-
cal study along this direction. The cheaper and more reusable the
partial executions are, the higher we can expect the acceptance of
our approach to be by end users.

One issue related to prediction cost is the number of partial ex-
ecutions. This number can be automatically configured, especially
by considering the actual performance variance observed from pre-
vious partial executions on a given system. In our experiments de-
tailed in the next section, we observed very small variances in par-
tial executions with negligible impact on cross-platform prediction
accuracy. However, larger variances may occur, depending on the
machine configuration, job execution environment, and the nature
of each application. The number of partial executions should be in-
creased if high variance is observed. In fact, one unique side benefit
of our observation-based prediction is that partial executions can be
used to take a glimpse at performance variances caused by typical
workloads on a given system. The prediction models presented in
this paper use the average timing from multiple partial executions.
This can be easily extended to utilize statistic distributions for giv-
ing a safer maximum wall time estimate for job schedulers using
cross-platform performance prediction.

4. PERFORMANCE RESULTS

In this section, we present prediction accuracy (as defined in Sec-
tion 3.3) and other results with our approach using partial execu-
tion and the notion of relative performance. Some of the experi-
ments were conducted using the partial execution APIs described in
Section 3.2 while others were obtained from scientists who bench-
marked per-timestep execution time for their applications. In the
second case, we took the first n timesteps to simulate partial ex-
ecutions. The applications form a diverse group of representa-
tive large-scale simulations, with a variety of computation models.
More specifically, the codes we chose cover four out of seven key
simulation areas identified by DOE Office of Science [11]: climate,
high-energy physics, combustion, and fusion.

4.1 Experiment Platforms

Our application performance data are collected from subsets of
ten different parallel computers with eight distinct types of parallel
architectures. Table 1 summarizes their technical configurations.



Table 1: Parallel platforms used in the evaluation

[ Name [Location| Architecture | CPU [ No. nodes [ Procs/node | Mem/node | OS [ Shared FS |
Datastar-690 | SDSC IBM SP4 1.7GHz Power4 8 32 128GB AIX GPFS
Datastar-655| SDSC IBM SP4 1.5GHz Power4 176 8 16GB AIX GPFS

Henry2 NCSU |IBM Blade Center | 2.8/3.0GHz Xeon 100 2 4GB Linux NFS
Ram ORNL SGI Altix 1.5GHz Itanium2 256 1 8GB Linux XFS
Turing uluc Apple Xserver 2GHz G5 640 2 4GB Mac OS NFS
Frost LLNL IBM SP3 375MHz Power3 64 16 16GB AIX GPFS
Cheetah ORNL IBM SP4 1.3GHz Power4 27 32 32/64/128GB AIX GPFS
Phoenix ORNL Cray X1 vector 512 1 2TB global |UNICOS/mp | StorNext
Seaborg NERSC IBM SP3 375MHz Power3 380 16 16/32/64GB AIX GPFS
TeraGrid NCSA Cluster 1.3/1.5GHz Itanium2 887 2 4/12GB Linux GPFS/NFS

4.2 Base Model

We evaluated our partial execution method with two benchmarks
from the DOE ASCI Purple suite [35], a set of large-scale parallel
codes with inputs resulting in hours of execution. This suite also
comprises a mixture of scientific domains, types of meshes, and
computation/communication models.

The two applications we successfully ported and tested on
four platforms (Datastar-690, Datastar-655, Henry2, and Ram) are
Sphot, a 2-D Monte Carlo photon transport code, and sPPM, a 3-
D gas dynamics code. For both of them, we chose a problem size
that results in hours of execution on the above platforms using 8
processors. These systems yield very small performance variances,
and our prediction results are based on 1-2 full executions and 2-5
partial executions. More specifically, the largest standard deviation
on the above platforms in partial execution overhead is 2.3% of the
mean value, which is not significant enough to affect the prediction
accuracy. Furthermore, the cost of inserting partial execution API
calls is small compared to cross-platform porting overhead. It took
a graduate student without prior knowledge of the codes mostly
minutes (less than an hour) to identify the major timestep loop in
these applications.?
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Figure 1: Sphot prediction accuracy using Datastar-690 as the
reference platform

Figure 1 shows the prediction results for Sphot, using Datastar-
690 as the reference platform and the other three systems as target

2However, porting these codes to diverse platforms and executing
batch jobs takes significantly more time and effort.

platforms. For each platform, we portray two prediction methods:
Steps, where the relative performance used in the ith prediction
point is based on the pair of execution time values from timestep
1 on the reference and target platforms, and cumulative, where the
relative performance is based on the cumulative average of execu-
tion times from timestep 1 to ¢ on both platforms (the base predic-
tion model).

In general, Figure 1 demonstrates that our prediction using par-
tial execution yields very accurate results: for all three target sys-
tems, the prediction error is within 1.5%. In addition, it demon-
strates the following: (1) High accuracy can be reached at a very
early stage of execution. Even with the first timestep, when initial-
ization and warm-up effects should perturb results on all three tar-
get platforms, the prediction accuracy is higher than 98%. Within
5 timesteps, the accuracy on all systems stabilizes at even higher
levels. (2) Partial executions can deliver accurate predictions at
a very low cost. In this full execution, Sphot executes thousands
of timesteps. On the most time-consuming platform (in this case
Ram), the full execution took more than 11 hours while our par-
tial execution of 25 timesteps only took 6 minutes. Moreover, as
mentioned earlier our prediction model is accurate even with fewer
timesteps as input. Therefore, a partial execution’s cost can be
bounded by a small maximum wall time for a job. Even when this
partial execution itself is terminated prematurely, our model still
generates reasonable observation-based predictions. (3) The “cu-
mulative” method works better than the “steps” method by smooth-
ing out small irregularities in per-timestep execution times. (4)
With such uniformly high accuracy, it appears that the selection
of a reference platform is not important, at least for this code.

4.3 Filter Model and Initialization Overhead

For sPPM, our filter model is required to obtain accurate predic-
tions. The simple, cumulative model did not suffice for one partic-
ular platform, namely RAM. Figure 2 depicts the per-timestep time
of the simulation, which increases significantly during the first few
timesteps and then drops back before stabilizing after 20 timesteps.
This kind of behavior is not observed on Datastar-690, as shown
in the same figure, or on any other platform. We suspect that on
this NUMA machine, the operating system has been enhanced to
perform page migration based on initial memory access patterns.
As such, pages are moved to the node of most frequently accesses
to exploit locality, while nodes issuing less frequent accesses may
experience longer latencies.

Our filter model can detect and compensate for this one-time
overhead, as explained in Section 3.2. Figure 2 shows the dif-
ference in prediction accuracy with and without this “ramp fil-
ter”. With the non-discriminative cumulative average method, the
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Figure 2: Normalized per-timestep execution time (right axis)
and prediction accuracy (left axis) for sSPPM

prediction error can reach 80%, and the effect of misleading rel-
ative performance lingers for many timesteps after the anomaly
disappears. In contrast, with the improved prediction, the first 23
timesteps will not produce prediction results as they are classified
as unstable. Right after that, the prediction instantly yields a con-
sistently high accuracy of over 99%.
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Figure 3: sPPM prediction accuracy using Datastar-690 as the
reference platform

Figure 3 depicts the prediction accuracy for SPPM on all three
target timesteps. Ram data points represent the first timesteps after
the relative performance stabilizes using the filter model. SPPM has
far more expensive timesteps than Sphot, with each timestep taking
around 3 minutes and full runs taking almost 10 hours on Datastar-
690 and 655. Therefore, we run only 10 timesteps in our partial
executions. Again, the accuracy is remarkably high, at above 98%
just after the first timestep.

Comparing the relative performance for Sphot and sPPM also
reveals interesting facts. For Sphot, Ram is by far the worst plat-
form, where each timestep takes more than 3.5 times as long as on
Datastar-690. For sPPM, however, it is by far the best platform,
where each timestep takes slightly more than 1/6 of the time on
Datastar-690. This dramatic contrast is likely due to the different
communication and computation patterns of the two codes. For
example, sPPM uses frequent large messages, which may benefit
from Altix’ distributed shared memory architecture. Such phenom-
ena suggest that relative performance across platforms can vary
dramatically from application to application (in this case, a 20+

times difference). This also shows that system parameters, such
as similar CPU frequencies on Ram and Datastar-690, do not offer
significant information.
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Figure 4: sPPM with high 1/O frequency on Ram and Henry2.
Top: normalized timestep overhead; bottom: ratio between
current timestep overhead and average of last 5 timesteps

4.4 Sliding Window and Periodic 1/0

Next, we consider predictions for executions with periodic 1/0
activities writing snapshot or checkpoint data. To save I/O time,
most applications choose to periodically generate output every k
computational timesteps. Between Sphot and sPPM, the latter pro-
vides an easier interface to adjust this 1/0 frequency. The runs
shown above used a default low I/O frequency. Figure 4 de-
picts sSPPM results from runs with a much higher 1/O frequency
(k = 10).
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Figure 5: sPPM (high 1/0 frequency) predictions from Ram to
Henry2, cumulative and sliding window models

Figure 4 and Figure 5 depict the 1/0 effect when the performance
of sPPM is predicted from Ram to Henry2. This experiment serves
a second purpose, namely to show that our ramp filter is valid on
a reference platform as well. From the per-timestep timing curves
shown in Figure 4, 1/0 “spikes” can be clearly identified after the
execution stabilizes. On Henry2, where computation is faster than
on Ram, 1/O is significantly slower. Using our filter model that
calculates the ratio of each current timestep versus the average of
the previous 5 steps, we can successfully identify these 1/O spikes
as recurring behavior. We can also capture k, the aforementioned
periodic 1/0 frequency in terms of number of timesteps.

We address recurring /O activities with the sliding window
model, as discussed in Section 3.3. Figure 5 shows the predic-
tion results (after the initial noise is filtered out on the reference



[655 Conf. | Bx1 [ 4x2 [ 2x4 [ Ix8 ]
[Accuracy | .00 | 0.991 [ 1.012 | 1.004 |

Table 2: Prediction accuracy for Datastar-655 varying (#-
processors-per-node x #-nodes), total # procs = 8.

[655 Conf. | 2x1 | 4x1 | 8x1 | 8x2 | 8x4 |
[Accuracy | 0.988 | 0.993 | 1.002 | 0.978 | 0.981 |

Table 3: Prediction accuracy for Datastar-655 varying (#-
processors-per-node x #-nodes), total # procs = 2..32

system). For the first 10 timesteps, the sliding window is growing,
so the two models perfectly overlap. After that, however, the cu-
mulative algorithm shows a periodic fluctuation in accuracy while
the sliding window algorithm is more stable. We believe that the
sliding window model will show more significant advantage if 1/0
is more frequent and of larger costs.

Finally, we study different processor/node configurations on the
reference and target platforms. As mentioned earlier, our partial
execution uses the same number of processors and the same prob-
lem size as in the full execution. However, with today’s large SMP
nodes, a particular configuration may not easily be reproduced
across platforms. We subsequently assess the prediction accuracy
with the cumulative average method from Datastar-690 (with 32-
processor nodes) to Datastar-655 (with 8-processor nodes).

On Datastar-690, we ran all experiments on one node. On
Datastar-655, in the first group of tests we fixed the number of pro-
cessors at 8 and varied the number of nodes (1, 2, 4, and 8). In
the second group of tests we increased the total number of proces-
sors from 2 to 32, where we always tried to minimize the number
of nodes to use on Datastar-655. As demonstrated by Table 2 and
Table 3, the prediction accuracy remains high in both cases, with
no significant variance caused by the different processor/node con-
figurations.

4.5 Limitations of the Models

For the applications studied so far, our models resulted in high
accuracy. The simplicity of the models is appealing, but it also
limits its application range where such high accuracy is delivered.
In the following, we study the effects of our low-cost model on
1) applications with variable overhead per timestep, and 2) reusing
partial execution results for different input problem sizes and dif-
ferent numbers of nodes. For each of these aspects, our method
shows less accurate predictions with errors ranging from 5-37%.
We also identify future directions of research toward equally tight
predictions as previously reported. Finally, we discuss methods to
detect arising inaccuracies and an “early-warning system” for users
in the presence of anomalies not covered by our prediction model.

Variable Timestep Overhead:

GENX is a multi-component rocket simulation code developed at
the University of Illinois [10]. The performance data was obtained
from model-validation runs simulating lab-scale rockets. We chose
this particular simulation since it has an interesting property: the
number of particles in its fluid dynamics code increases as time
goes on. Therefore, unlike any other codes demonstrated in this
paper, this per-timestep execution overhead grows gradually up to
a factor of 1.8 at the final point at 1550 timesteps. We use this code
to assess the limitations of our model in the presence of variable
timestep overhead.
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Figure 6: GENXx relative performance (right axis) and predic-
tion accuracy w/ cumulative average (left axis), one data point
per first 100 steps, then every 50 steps

Figure 6 depicts timing and prediction results from two 60-
processor runs, which took more than 5 hours on the reference
platform (Turing) and 15 hours on the target platform (Frost). It
shows that as the simulation progresses, the relative performance
between the target and reference platforms gradually increases as
well, i.e., the costs per timestep grows faster on Frost than on Tur-
ing. However, this increase in relative performance (around 24%)
is fairly small compared to the increase in per-timestep overhead
(around 45% on Turing and 80% on Frost). A partial execution
of 10 timesteps (taking 1.5 minutes on Turing and 4 minutes on
Frost) would have yielded a prediction accuracy of 91.6%. Over-
all, the worst accuracy produced by a partial execution of the first
n timesteps (n = 1,2, ...1550) is around 85%. We can extend our
filter model to detect when the timestep overhead fails to converge
within a certain error margin to then alert users about the potential
loss of prediction accuracy. Depending on the intended use of pre-
dictions, a 85% accuracy may or may not be considered sufficient,
and it is upon the user to make such a decision after being alerted
by our “early warning system”.

We are currently investigating different approaches to tighten
predictions for variable timestep overheads. In one approach,
micro-benchmarks are utilized to determine cross-platform differ-
ences at various levels. When combined with the growth rate of the
problem observed on the reference platform, a new growth rate can
be predicted on the target platform that takes architectural differ-
ences into account. Examples of such aspects include differences
in latencies within the memory hierarchy (from caches over mem-
ory down to disk 1/O) or the interconnect. Our observation-based
approach is to be enhanced to collect metrics from hardware per-
formance counters that provide the means to attribute application
characteristics to micro-benchmark behavior.

Reusing Partial Execution Results for Varying Number
of Nodes and Input:

GYRO [14] is a code for the numerical simulation of tokamak
micro-turbulence solving time-dependent, nonlinear gyrokinetic-
Maxwell equations. We obtained a large set of Gyro benchmarking
results from ORNL and NCSU researchers who conducted Gyro
runs with 3 problem inputs (B1-std, B2-cy, and B3-gtc) on 5 plat-
forms (Cheetah, Ram, Phoenix, Seaborg, and Teragrid) using a va-
riety of processor numbers. Unlike the GENXx simulation discussed
above, Gyro has extremely stable per-timestep overheads.

Our prediction models achieve high accuracy (exceeding 98%)
for cross-platform predictions for the same input data and number



of nodes. Furthermore, the choice of the reference system among
the five platforms does not affect the prediction accuracy. Instead
of reporting these base accuracy test results, we leverage the abun-
dance of experimental configurations in this case to examine if a
pair of partial executions can be reused to make prediction across
different input problem sizes or different numbers of processors.
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Figure 7: Gyro B1-std relative performance to Cheetah, using
different number of processors

| | Phoenix | Ram [ Seaborg | Teragrid |

# Pred. 11 6 5 7
Avg. Error | 12.1% | 255% | 16.7% 25.8%

Table 4: Average errors of predictions for different numbers of
processors relative to 16-processor runs

Figure 7 depicts the relative performance of four target plat-
forms against Cheetah for different numbers of processors (a mul-
tiple of 16, limited by hardware availability/configuration on each
platform) to compute B1-std. We see that the level of consistency
across different numbers of processors varies from platform to plat-
form. Since using a small number of processors is likely to be
cheaper (faster to get a job scheduled), we applied the relative per-
formance observed in the run using the fewest processors (16) for
each platform when predicting the overall execution time for the
other process numbers. Table 4 shows the average prediction error,
which varies between 12% and 26%.
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Figure 8: Gyro performance relative to Cheetah for 64 proces-
sors with different input problem sizes

| | Phoenix | Ram [ Seaborg | Teragrid |
[Avg. Error | 379% [17.0% ] 56% | 232% |

Table 5: Average errors of predictions from Bl-std to B2-cy
and B3-gtc

Similarly, Figure 8 plots the relative performance across differ-
ent problems, and Table 5 shows the average prediction error when
we use the relative performance from computing the smallest input
problem to predict for the other two problems. This would also re-
duce the costs of partial executions. E.g., B3-gtc takes up to 3 times
longer than B1-std. Here, the average error varies between 5% and
38%. Note that this group of Gyro results is not completely fair
to our prediction method, as these several input problems not only
bring different amount of computation but also different computa-
tion components to a certain degree.

The above results clearly indicate the trade-off between par-
tial execution overhead and prediction accuracy. Predictions
for processor (node) scalability are subject to different computa-
tion/communication ratios, which are application dependent [35].
We are currently assessing benefits from using micro-benchmark
results in conjunction with a small number of partial runs on se-
lected numbers of nodes, to enhance prediction accuracy in the
presence of changing computation/communication ratios while re-
ducing total partial execution costs. Problem (input) scaling, on
the other hand, provides a more subtle challenge as growth rates in
computation or communication often differ and may follow non-
linear relations [35]. While user-provided data on input data sizes
might help, we prefer a black-box approach due to the wider appli-
cability of our approach. Instead of user interaction, input sizes can
be inferred from memory requirements of partial executions along
with observed computation and communication overheads. Such
data can be automatically obtained using system calls and hardware
performance counters behind our instrumentation API.

5. CONCLUSION

In this paper, we demonstrated the benefit of a black-box style,
observation-based performance prediction approach built on the
notion of relative performance and utilizing affordable, short par-
tial application executions. \We presented a base prediction algo-
rithm utilizing relative performance derived from partial execution
results and enhanced it to handle one-time and periodic relative per-
formance fluctuations caused by system initialization or periodic
activities such as 1/0. We believe the merits of our approach lie in
its simplicity, portability, and cost-effectiveness that make it ideal
for performance prediction as a general service to HPC users and
grid schedulers.

In addition, a major contribution of our work is given by the thor-
ough evaluation of our prediction models based on relative perfor-
mance from multiple production-scale real-world codes on a total
of ten large parallel computers. We obtained highly accurate pre-
diction at extremely low cost for a wide variety of platforms and
multiple applications. We further identified limitations of our mod-
els and we discussed an “early warning system” to alert users to
potentially less accurate predictions. We also outlined a number of
approaches to tackle these scenarios ranging from variable timestep
overhead to problem and processor scaling. We are currently as-
sessing these approaches to design a tool for fully-automated per-
formance predictions based on partial execution of applications
with and without obvious timestep characteristics.
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