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Abstract 21 

RNA-seq has matured and become an important tool for studying RNA biology. Here we 22 

compared two RNA-seq (Illumina sequencing by synthesis and MGI DNBSEQ
TM

) and two 23 

microarray platforms (Illumina Expression BeadChip and GeneChipTM
 Human Transcriptome 24 

Array 2.0) in healthy individuals administered recombinant human erythropoietin for 25 

transcriptome-wide quantification of differential gene expression. The results show that total 26 

RNA sequencing combined with DNB-seq produced a multitude of genes of biological relevance 27 

and significance in response to recombinant human erythropoietin, in contrast to other platforms. 28 

Through data triangulation linking genes to functions, genes representing the processes of 29 

erythropoiesis as well as non-erythropoietic functions of erythropoietin were unveiled. This 30 

study provides a knowledge base of genes characterising the responses to recombinant human 31 

erythropoietin through cross-platform comparison and validation. 32 

  33 
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Introduction 34 

High-throughput technologies in gene discovery, quantification and functional investigation have 35 

advanced our understanding of complex traits and facilitated disease diagnosis, prevention and 36 

treatment over the past decade
1, 2

. Although technologies continue to evolve for discerning and 37 

characterising genes and gene-protein interactions both ex- and in-vivo, uncovering coding 38 

transcriptomes of bulk cells can capture global gene expression patterns that may directly 39 

pinpoint important biological processes at the molecular level. Which tool to use will ultimately 40 

depend on the fundamental research question. Here, we performed RNA-seq and microarray 41 

analyses in healthy individuals administered recombinant human erythropoietin (rHuEPO) to 42 

assess their discriminatory capacity, and importantly, to explore the implications of the findings 43 

to better understanding the systemic responses to rHuEPO; a first of its kind in the investigation 44 

of transcriptome-wide responses to rHuEPO in humans. This study primarily differs from 45 

previous cross-platform gene-expression studies in 1) systematic comparisons between two 46 

RNA-seq platforms (MGI DNBSEQ-G400RS and Illumina NextSeq 500), 2) comparisons with 47 

the benchmarking microarrays (GeneChip
TM

 Human Transcriptome Array 2.0 and Illumina 48 

HumanHT-12 v4 Expression BeadChip), 3) the use of a relatively large number of the same 49 

experimental samples across all four platforms, and 4) the adoption of a data triangulation 50 

approach across platforms to prioritise the functional genes of diagnostic potential.    51 

 52 

Eighteen endurance-trained Caucasian males at sea level (Glasgow, Scotland; age: 26.0±4.5 yrs, 53 

weight: 74.8±7.9kg, height: 179.8±5.4cm) underwent 4 weeks of rHuEPO injections (50 IU/kg 54 

every 2 days)
3
. Whole blood samples collected from the 18 subjects across 8 time points — 55 

before (-14- and -1-day prior to the first injection; Base1 and Base2), during (2-, 14- and 28-day 56 
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into the administration; EPO3, EPO4 and EPO5) and post rHuEPO administration (2-, 14- and 57 

28-day after the last injection; Post6, Post7 and Post8) — were analysed on the Illumina 58 

HumanHT-12 v4 Expression BeadChip previously
4
. In the current study, 50 samples from 10 of 59 

the 18 subjects collected at Base1, Base2, EPO3, EPO4 and Post7 were analysed on the two 60 

RNA-seq platforms as well as on the GeneChip
TM

 array for quantifying differential gene 61 

expression (DGE). This experimental design aimed to identify the gene expression response to 62 

rHuEPO through robust quantification processes, and to generate results with wide applications 63 

ranging from developing effective therapeutics targeting clinical disorders associated with EPO 64 

dysfunctions to facilitating sensitive testing strategies against blood doping in sport. 65 

 66 

Results 67 

Total RNA DNB-seq (MGI) identifies a wealth of mRNA genes in response to rHuEpo  68 

We identified 16,738 genes (MGI RNA-seq), 16,581 genes (Illumina RNA-seq), 29,517 69 

transcript clusters (GeneChip), and 10,622 transcripts (BeadChip) for the DGE analyses (Table 70 

1). Both MGI and Illumina RNA-seq generated good base call quality, with an average quality 71 

score of >34 across the read lengths and across the samples (Supplementary Fig. 1). No sample 72 

contamination/swaps (Supplementary Fig. 2) and no other significant surrogate variables of 73 

batch effects were detected in these sequencing datasets. Genome mapping using HISAT2
5
 74 

(against the reference genome assembly GRCh38.p12
6
) showed the overall alignment rates of 75 

94.2% (MGI; 197.9M total reads) and 95.0% (Illumina; 110.4M total reads) (Supplementary 76 

Table 1). RseQC
7
 revealed a large proportion of the sequences aligned to introns in the MGI 77 

RNA-seq data (37.4% versus 8.7% Illumina on average; Supplementary Fig. 3 and 78 

Supplementary Table 2), a result coinciding with the differing sequencing library preparation 79 
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methods used (total RNA-seq with rRNA depletion and globin mRNA reduction, MGI versus 80 

mRNA enrichment, Illumina). RseQC also showed that among a total of 186.6M (MGI) and 81 

104.6M (Illumina) averaged reads observed, 52.4% (~ 97.8M reads) and 74.8% (~ 78.2M reads) 82 

of the reads were effectively mapped to the coding sequences (exons), respectively 83 

(Supplementary Table 2). The average Salmon
8
 transcriptome mapping rates, following 84 

selective-alignment-based lightweight mapping, were 38.8% (38.3M aligned reads; MGI) and 85 

81.9% (45.1M aligned reads; Illumina) (Supplementary Table 3). The seeming discrepancies 86 

observed in total reads and alignment rates across the software tools (HISAT2, RseQC and 87 

Salmon) were expected given their specific usage. Overall, these data suggested high quality 88 

sequences obtained from both sequencing platforms. For the purposes of cross-platform 89 

comparison, the relative abundance estimates of transcripts after Salmon transcriptome mapping 90 

were summed to gene level, and genes were considered expressed when the gene-level 91 

abundance estimates were equal to or more than 5 in at least 4 samples; resulting in the exclusion 92 

of 17,198 and 18,347 genes from the MGI and Illumina RNA-seq datasets, respectively (Table 93 

2). Gene annotation resulted in 3,852 (MGI) and 2,860 (Illumina) un-defined gene mappings 94 

removed from the sequencing datasets (Table 2). As a result, 16,738 and 16,581 protein-coding 95 

genes identified from MGI and Illumina sequencing, respectively, were used for the downstream 96 

DGE analyses (Table 1 and 2).  97 

 98 

Initial quality control metrics revealed variability in eight out of the fifty GeneChip
TM

 arrays 99 

(Supplementary Fig. 4A). Two of the eight samples were then repeated for chip scanning, and 100 

the other six samples were repeated from the target preparation step (Supplementary Fig. 4B). 101 

Raw intensity values obtained from the GeneChip and BeadChip analyses correspond to 67,480 102 
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and 47,286 coding and non-coding transcriptomic features, respectively (Table 1). The process 103 

of normalisation and filtering unveiled 29,517 transcript clusters (GeneChip) and 10,622 104 

transcripts (BeadChip) as identified features (Table 1), with the detailed filtering steps and the 105 

resulting number of features summarised in Table 2. Briefly, 18,494 and 6,900 probes were 106 

removed as undetected and low-quality probes, respectively, from the BeadChip dataset (Table 107 

2). While 8,166 probes were removed due to low average expression (cutoff value: 5.1) in the 108 

BeadChip dataset, no such probes were necessarily excluded from the GeneChip dataset 109 

(Supplementary Fig. 5 and Table 2). No significant surrogate variables representing the 110 

underlying biases, potentially arising from library preparation and/or scanning, thereby 111 

confounding the biological effects being studied, were observed in the two microarray datasets. 112 

 113 

Unsupervised principal component analysis (PCA) revealed substantial variance, estimated using 114 

the top 500 genes ranked by expression variance across all samples. Variances explained by the 115 

principal component 1 and the principal component 2 were: 69% vs. 5% (MGI RNA-seq), 44% 116 

vs. 9% (Illumina RNA-seq), 58% vs. 14% (GeneChip), and 78% vs. 7% (Beadchip) 117 

(Supplementary Fig. 6). Gene clustering of the top 30 genes of high variance showed a good 118 

distinction across biological conditions in all datasets (Supplementary Fig. 7). Nevertheless, a 119 

more distinctive pattern across the conditions was observed following MGI RNA-seq compared 120 

to Illumina RNA-seq and GeneChip (Supplementary Fig. 7, A versus B, C). In contrast with the 121 

discrimination pattern presented in the 143 BeadChip samples, a higher expression level of the 122 

examined top 30 genes was detected by MGI RNA-seq (Supplementary Fig. 7, A versus D). The 123 

DESeq2
9
 and limma

10
 DGE analyses yielded 1,552, 582, 252 and 2,372 transcriptomic features 124 

exceeding the pre-defined thresholds following MGI RNA-seq, Illumina RNA-seq, GeneChip
TM

 125 
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and BeadChip, respectively (thresholds for RNA-seq: a fold change of 1.2 and s-value of 0.005; 126 

for microarray: a fold change of 1.2 and BH adjusted p-value of 0.05; note that the probability 127 

thresholds bound to the fold change of 1.2) (Table 3). A significant proportion of these findings 128 

were unique to MGI RNA-seq at EPO4 (66.8%) and Post7 (54.5%) (Supplementary Table 4). 129 

Notably, substantial sub-proportions of the gene features identified from MGI RNA-seq 130 

exceeded an absolute fold change of 2 (12.4% at EPO4 and 18.0% at Post7) and captured even 131 

smaller changes between 1.2 and 2 (54.4% at EPO4 and 36.5% at Post7), when compared to the 132 

Illumina RNA-seq and GeneChip
TM

 gene features (ranging from 0% to 19.4%; Supplementary 133 

Table 4 and Fig. 1). Furthermore, strong correlations between the two RNA-seq platforms on the 134 

commonly identified genes were observed (r = 0.74 at EPO4 and r = 0.85 at Post7, P < 2E-16; 135 

Fig. 2, a and d), whereas the correlations ranged from very weak (r = 0.2) to moderate (r = 0.7) 136 

when compared RNA-seq to GeneChip
TM

 (P < 0.0003; Fig. 2, b, c, e and f). Overall, MGI RNA-137 

seq, the total RNA DNB-seq, resulted in an increased sensitivity in identifying coding genes in 138 

response to EPO compared to the Illumina mRNA-seq and GeneChip
TM

 (Fig. 1, Fig. 2 and 139 

Supplementary Data 1). 140 

 141 

Pathway analysis links the differentially expressed genes to erythropoiesis and non-142 

erythropoietic functions of EPO 143 

To explore the biological functions of the gene features identified from sequencing and 144 

microarray, we performed a standard GSEA run (v4.0.3) subject to 1,000 phenotype 145 

permutations
11, 12

 on all datasets, using the MSigDB (v7.2)
11, 13

 hallmark (H)
14

 and Gene 146 

Ontology (C5; BP: GO biological process)
15, 16

 collections of functional gene sets. As expected, 147 

heme metabolism emerged as the most significantly enriched pathway in all datasets following 148 
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the analysis on the 50 hallmark gene sets (FDR: MGI = 0.011 EPO4, Illumina = 0.033 EPO4, 149 

GeneChip £ 0.017 EPO4/Post7 and BeadChip £ 0.004 EPO3/4/5/Post7/8; Supplementary Table 150 

5). Leading edge genes, those contributing the most to the enrichment score of the heme 151 

metabolism pathway constituting 200 genes, included 144 (MGI; EPO4), 105 (Illumina; EPO4), 152 

125/96 (GeneChip; EPO4/Post7) and 101/103/103/97/84 (BeadChip; EPO3/4/5/Post7/8) genes 153 

found in these datasets (Supplementary Data 2). Fifty-six leading edge genes overlapped across 154 

all platforms and across conditions (pathway FDR < 0.1) (Supplementary Data 2). Of the 56 155 

genes, 51 and 34 genes were also identified by the standard DGE analyses for the EPO4 and 156 

Post7 conditions, respectively, across two or three of the MGI RNA-seq, Illumina RNA-seq and 157 

GeneChip
TM 

platforms (Supplementary Data 3). GSEA was able to detect the associated genes 158 

that have fallen off the detection thresholds in the standard DGE analyses of Illumina RNA-seq 159 

and GeneChip datasets (Supplementary Data 3). In addition, subsets of 10, 51, 51, 36, and 19 of 160 

the 56 leading edge genes were found in the BeadChip DGE results across EPO3, EPO4, EPO5, 161 

Post7 and Post8 conditions, respectively (Supplementary Data 4). The data suggest the 162 

effectiveness of all four detection platforms and the effectiveness of GSEA in capturing the most 163 

context-relevant biological pathway in response to rHuEPO. Next, GSEA was conducted on 164 

7,530 GO biological processes included in the MSigDB C5 collection, and identified a total of 165 

212, 134, and 33 biological pathways from MGI RNA-seq (EPO4), GeneChip (EPO4) and 166 

BeadChip (EPO4, EPO5, Post7 and Post8) datasets, respectively, exceeding the pathway FDR < 167 

0.1 and nominal P < 0.05. No significantly enriched GO biological processes were identified 168 

from GSEA in the Illumina RNA-seq datasets. From the MGI RNA-seq dataset, these included 169 

biological processes, resembling EPO cytoprotective functions and the downstream signal 170 

transduction pathways
17-19

, typically involved in response to oxidative stress (e.g. positive 171 
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regulation of mitophagy, hydrogen peroxide metabolic process, and nucleotide-excision repair, 172 

DNA damage recognition), heme formation (e.g. porphyrin-containing compound metabolic 173 

process), erythrocyte development, mTOR (target of rapamycin) signaling, regulation of energy 174 

metabolism (e.g. regulation of generation of precursor metabolites and energy), low density 175 

lipoprotein clearance, and nervous system development (Fig. 3). Key pathways characterising the 176 

responses to EPO, such as autophagy of mitochondrion, positive regulation of cell cycle arrest, 177 

iron ion homeostasis, tetrapyrrole metabolic process, erythrocyte development, and ventricular 178 

system development also were identified from the GeneChip dataset (Supplementary Fig. 8). In 179 

addition, other biological processes, including cyclic GMP mediated signaling, positive 180 

regulation of cardiac muscle cell proliferation, and gamma-aminobutyric acid transport, were 181 

observed, to name a few (Supplementary Fig. 8). In the BeadChip datasets, particular pathways 182 

identified that were common to those observed on both the MGI RNA-seq and the GeneChip 183 

platforms included hemoglobin metabolic process, erythrocyte development, and hydrogen 184 

peroxide metabolic process (Supplementary Fig. 9). Further pathways of negative regulation of 185 

necrotic cell death, negative regulation of TORC1 signaling, cellular response to monoamine 186 

stimulus, monoamine transport, gas transport, lipid transport, drug transmembrane transport, 187 

synaptic signaling, synapse organisation, and multicellular organism development, were found in 188 

the BeadChip datasets (Supplementary Fig. 9). Leading edge genes from top 34, 14, and 16 189 

pathways defined by the normalised enrichment score (NES) > 1.90 and from 38, 66, and 12 the 190 

most enriched pathways representing a biological theme where NES < 1.90 were further 191 

investigated in the MGI RNA-seq, GeneChip and BeadChip datasets, respectively. Out of a total 192 

of 308 leading edge genes identified in the MGI RNA-seq EPO4 dataset overlapping with the 193 

DESeq2 EPO4 DGE results, 135 genes also were found to be significantly expressed in the Post7 194 
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condition following the DESeq2 analysis (Supplementary Data 5). Of the 135 genes, top 10 195 

genes filtered based on the GSEA ranks and pathway NESs — BPGM, ALAS2, PKD1L3, 196 

SLC4A1, AP2A1, IGF2, FAM210B, DYRK3, FECH and SLC25A37 — characterise erythrocyte 197 

development, heme formation, metal ion homeostasis, cellular response to PH, LDL particle 198 

clearance, glucose and energy metabolism, and TOR signaling (Supplementary Data 5). Fifty-199 

seven leading edge genes of the GeneChip EPO4 dataset were common to the limma EPO4 DGE 200 

genes, while 15 (of the 57) were also present in the Post7 DGE results (Supplementary Data 6). 201 

These 15 genes — ALAS2, SLC4A1, FOXO3, TMOD1, FECH, SLC6A8, SLC25A39, SNCA, 202 

FAM210B, EPB42, SLC25A37, YBX3, BPGM, STRADB, and BCL2L1 — correlate with heme 203 

formation, bicarbonate transport, muscle atrophy, lens fiber cell development, gamma-204 

aminobutyric acid transport, erythrocyte development, cellular hyperosmotic response, negative 205 

regulation of signal transduction in the absence of ligand and cellular response to amino acid 206 

stimulus (Supplementary Data 6). Among 376 leading edge genes identified from the BeadChip 207 

datasets, 76 also were observed in the limma DGE analysis. Top 10 genes (of the 76 genes) — 208 

KCNJ10, YBX3, SNCA, OR2W3, IRX1, OR2W5, CAMK2A, ACP4, NCDN and HOXC10 — are 209 

involved in regulation of neuronal synaptic plasticity and necrotic cell death, sensory perception 210 

of smell, proximal/distant pattern formation, and cell fate specification, and were enriched in the 211 

GSEA Post7 dataset as well as were significantly expressed across EPO4, EPO5, Post7 and 212 

Post8 conditions following the limma DGE analysis (Supplementary Data 7). Among the above 213 

135, 15 and 76 leading edge genes identified on the three platforms, BPGM, ALAS2, SLC4A1, 214 

FAM210B, EPB42, SNCA, YBX3 and TMOD1 were detected by all three platforms 215 

(Supplementary Data 8). FECH, SLC25A37, FOXO3, BCL2L1, and SLC25A39 were common 216 

between MGI RNA-seq and GeneChip, SLC6A8 between GeneChip and BeadChip, and SLC7A5, 217 
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PINK1, DMTN, TRIM58, SESN3, GATA1, FURIN, HBQ1, EIF2AK1, and HBM between MGI 218 

RNA-seq and BeadChip (Supplementary Data 8). One hundred and twelve leading edge genes 219 

(top 5: PKD1L3, AP2A1, DYRK3, IGF2 and TAL1) were uniquely identified by MGI RNA-seq, 1 220 

(STRADB) by GeneChip and 57 by BeadChip (top 5: KCNJ10, OR2W3, IRX1, OR2W5 and 221 

CAMK2A) (Supplementary Data 8). Further, 43 leading edge genes identified from one or more 222 

of the three platforms were detected by Illumina RNA-seq across EPO4 and Post7 conditions 223 

following the DESeq2 DGE analysis (Supplementary Data 9). 224 

 225 

To follow up on the DGE and GSEA results, we performed additional analysis using the 226 

Reactome database to examining the pathway components inferred from the 43 genes in pathway 227 

diagrams and to confirming the gene functions attributed to rHuEPO across the experimental 228 

conditions. By overlaying the gene expression values on Reactome pathway diagrams (release 229 

73)
20

, 13 and 8 significantly expressed interaction networks represented by 29 and 13 of the 43 230 

genes, or their interactors (IntAct score ≥ 0.556), were identified in the MGI RNA-seq and 231 

BeadChip datasets, respectively (pathway FDR < 0.05; see Supplementary Data 10 for pathway 232 

entities and statistics and Supplementary Data 11 for the corresponding pathway overviews). 233 

Notably, pathway components in the entire cascade of O2/CO2 exchange in erythrocytes were the 234 

most significantly altered in the MGI RNA-seq datasets as opposed to findings obtained from the 235 

Illumina RNA-seq, GeneChip and BeadChip platforms, including the pathway genes SLC4A1, 236 

HBB, CA1, AQP1, RHAG, HBA1 and CYBSR1 (pathway FDR £0.003, Supplementary Data 10) 237 

across EPO4, up-regulation and Post7, down-regulation (see Fig. 4 for the enhanced high-level 238 

pathway diagram of the Post7 dataset). Finally, by overlapping a total of 172 and 91 significantly 239 

expressed Reactome pathway genes and their interactors (IntAct score > 0.9 of high confidence 240 



 

12 

 

interactions, Supplementary Data 10) emerged from the 13 and 8 networks with the genes 241 

identified from the standard DGE analyses in the MGI RNA-seq and BeadChip datasets, 80 and 242 

41 genes were further confirmed, respectively (Supplementary Data 12). These 80 and 41 genes 243 

represent the candidate genes that warrant further studies to rule out potential confounding 244 

factors that mimic the EPO effect in terms of developing robust anti-doping gene signatures, or 245 

to verify the role of the genes in EPO production and function for therapeutic purposes. The 246 

subsets of the top 10 genes (sorted by the standard DGE s-value < 0.005 or FDR < 0.05) 247 

accompanied by their corresponding GSEA and Reactome pathways are presented in 248 

Supplementary Table 6 and 7.  249 

 250 

Discussion 251 

Taken together, cross-platform comparison in 10 subjects administered rHuEPO (50 IU every 2 252 

days for 4 weeks) was conducted following gene expression quantification on MGI DNBSEQ-253 

G400RS, Illumina NextSeq 500 and GeneChip
TM

 HTA2.0 platforms. To initiate a direct 254 

comparison, only the coding gene features were extracted and compared across platforms. There 255 

was a 2.28-fold increase in genes significantly expressed following MGI RNA-seq, as compared 256 

to the combined number of genes identified on the other two platforms (Fig. 1 and 257 

Supplementary Table 4). Furthermore, among 1,126 genes identified at EPO4, 25.5% of the 258 

genes overlapped between MGI RNA-seq and the other two platforms, and 66.8% of the genes 259 

were unique to MGI RNA-seq; among 674 genes identified at Post7, the corresponding figures 260 

were 21.5% and 54.5%, respectively (Supplementary Table 4). Among genes with an absolute 261 

fold change less than 2, Illumina RNA-seq captured a much higher proportion of the identified 262 

gene features compared to GeneChip (10.3% vs 1.7% EPO4; 26.4% vs 0.6% Post7; 263 
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Supplementary Table 4). The experimental effect of EPO was largely captured by MGI RNA-seq 264 

(PC1: 69% vs PC2: 5%), followed by GeneChip (PC1: 58% vs PC2: 14%) and Illumina RNA-265 

seq (PC1: 44% vs PC2: 9%) by examining the top 500 genes showing the highest variability 266 

across samples (Supplementary Fig. 6, A to C). These observations support the supreme 267 

performance of total RNA DNB-seq on MGI DNBSEQ-G400RS, followed by mRNA-seq on 268 

Illumina NextSeq 500 and GeneChip
TM

 HTA2.0 in this study. Nevertheless, genes characterised 269 

by Illumina HumanHT-12 v4 Expression BeadChip in the 18 subjects represented a total of 85% 270 

of variance captured by PC1 (78%) and PC2 (7%) (Supplementary Fig. 6D), suggesting 271 

increased statistical power owing to the larger sample size (i.e. 143 samples from 18 subjects in 272 

contrast to 50 samples from 10 subjects comprising the sample sets analysed on the other 273 

platforms). Following on, quantitative pathway analysis by GSEA identified the heme 274 

metabolism pathway enriched in all datasets across the four high-throughput gene quantification 275 

platforms when analysing the MSigDB Hallmark collection of functional gene sets, while 212, 276 

134, and 33 enriched pathways were unveiled from MGI RNA-seq, GeneChip and BeadChip 277 

datasets, respectively, by examining the MSigDB C5 collection of 7,530 biological processes. 278 

The pathway results underpinned the biological relevance of the gene expression findings, 279 

particularly with a wealth of functional information emerged from the MGI RNA-seq dataset 280 

(Fig. 3). Pathways of interest were prioritised by focusing on pathways of NES > 1.9 and 281 

representative pathways of the biological themes where the NES < 1.9. Three hundred and eight, 282 

57 and 376 leading edge genes were extracted from the pathways of interest, eventually led to 283 

135, 15 and 76 genes also confirmed by the standard DGE analyses of MGI RNA-seq, GeneChip 284 

and BeadChip datasets, respectively (Supplementary Data 5-7). Among these genes, 43 were 285 

further validated in the list of genes resulted from the Illumina RNA-seq DGE analysis 286 
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(Supplementary Data 9). Despite strong positive correlations observed at the gene level between 287 

MGI RNA-seq and Illumina RNA-seq, the lack of significantly expressed pathways following 288 

GSEA in the Illumina RNA-seq datasets is in line with the generally weaker signals being picked 289 

up by Illumina RNA-seq in this study (Fig. 2). To better understand the interacting networks or 290 

signaling cascades represented by the 43 genes, we explored the Reactome database and 291 

generated a total of 21 pathway overviews detailing the pathway entities/genes, their expression 292 

levels, and their interactions with other entities within the pathway or across different pathways 293 

(Supplementary Data 11). Finally, by extracting the significantly altered genes involved in these 294 

Reactome networks and by matching these genes to the results of the standard DGE analyses, we 295 

concluded with the lists of 80 and 41 genes that are of biological relevance to rHuEPO, identified 296 

on the MGI RNA-seq and BeadChip platforms, respectively (Supplementary Data 12). They 297 

represent the top biological pathways enriched in metabolism of porphyrins, O2/CO2 exchange in 298 

erythrocytes, response to oxidative stress induced cellular senescence, and tissue damage caused 299 

by amyloid deposition.  300 

 301 

This comprehensive profiling of rHuEPO gene expression based on both RNA-seq and 302 

microarrays has generated a robust set of genes of biological significance in relation to 303 

erythropoiesis as well as non-erythropoietic effects of rHuEPO. It also establishes a knowledge 304 

base of genes capturing a wide range of magnitude of changes attributable to rHuEPO by RNA-305 

seq, highlighting advantages of total RNA-seq combined with DNB-seq in quantifying gene 306 

transcription. The adoption of a data triangulation approach by cross-platform comparisons and 307 

by linking genes to their functions reinforces the biological findings and mitigates gene 308 

expression perturbations caused by normal physiological changes such as seasonal changes and 309 
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lifestyle related changes. The longitudinal nature of the current investigation in healthy 310 

individuals would help facilitate detailed studies of erythroid disorders and help formulate target 311 

therapeutics, through disrupting and examining the mechanisms of the putative genes involved in 312 

erythropoiesis and non-erythropoietic functions of rHuEPO. Finally, this study underpins the 313 

follow-up studies needed to develop sensitive and robust gene signatures of blood doping in 314 

sport. 315 

 316 

Methods 317 

Subjects 318 

In a previously funded research project by the World Anti-Doping Agency (grant no.: 319 

08C19YP), we collected whole blood samples from 18 endurance-trained Caucasian males at sea 320 

level from Glasgow, Scotland (26.0±4.5 yrs, 74.8±7.9 kg, 179.8±5.4 cm), who underwent 4-321 

week 50 IU·kg
−1

 body mass of rHuEPO every second day
3
. Daily oral iron supplementation (100 322 

mg of elemental iron, ferrous sulphate tablets, Almus, Barnstable, UK) was given during the 4 323 

weeks of rHuEPO administration
3
. Whole blood samples were collected at baseline (2 weeks and 324 

1 day before rHuEPO; denoted by Base1 and Base2, respectively), during the rHuEPO 325 

administration (2 days, 2 and 4 weeks following the 1st injection; denoted by EPO3, EPO4 and 326 

EPO5, respectively) and for 4 weeks after the rHuEPO administration (1, 2 and 4 weeks after the 327 

last injection; denoted by Post6, Post7 and Post8, respectively) for gene expression profiling on 328 

the HumanHT-12 v4.0 Expression BeadChip (Illumina, San Diego, CA, USA)
4
. In the current 329 

study (grant no.: ISF15E10YP), samples from 10 out of the 18 subjects collected at Base1, 330 

Base2, EPO3, EPO4 and Post7 were analysed on a new microarray platform (GeneChip
TM

 331 

Human Transcriptome Array 2.0 or HTA2.0, Thermo Fisher Scientific, Waltham, MA, USA) 332 
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and on two RNA-seq platforms (NextSeq500, Illumina, San Diego, CA, USA, and DNBSEQ-333 

G400RS, MGI Tech, Shenzhen, China) for cross-platform gene expression comparisons for 334 

robust detection of EPO gene signatures. The studies were approved by the University of 335 

Glasgow Ethics Committee (Scotland, UK) and the University of Brighton Ethics Committee 336 

(England, UK) and were performed in accordance with the “Declaration of Helsinki”. Written 337 

informed consent was obtained from all subjects. 338 

 339 

RNA collection and preparation 340 

Three milliliters of whole blood was collected from an antecubital vein using Tempus™ 341 

Blood RNA tubes (Thermo Fisher Scientific, Waltham, MA, USA). Each Tempus™ tube 342 

contains 6 mL of RNA stabilising reagent and was vigorously mixed immediately after 343 

collection for 10 s. The blood samples were incubated at room temperature for approximately 3 344 

hours and then stored at −20°C or −80°C before subsequent analysis or transportation to the 345 

analytical lab. Total RNA was isolated from the whole blood according to the manufacturer’s 346 

instructions (Tempus™ Spin RNA Isolation Kit, Thermo Fisher Scientific, Waltham, MA, 347 

USA). The purified total RNA was eluted in 90 µL elution buffer and stored in three aliquots at 348 

−80°C until further analysis. Initial RNA quantity and purity was assessed by the Nanodrop
TM

 349 

ND-2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, US). RNA integrity was 350 

assessed using the Agilent 2100 Bioanalyser (Agilent Technologies, Santa Clara, CA, USA) 351 

prior to the RNA-seq and GeneChip analyses.  352 

 353 

Microarray analysis with HumanHT-12 v4.0 Expression BeadChip 354 
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Detailed sample preparation for the Illumina microarray experiment are available elsewhere
4
. 355 

Briefly, 500 ng of total RNA was used for complimentary RNA (cRNA) synthesis using the 356 

Illumina
TM

 TotalPrep RNA Amplification Kit (Thermo Fisher Scientific, Waltham, MA, USA). 357 

Seven hundred and fifty nanograms of the purified labelled cRNA samples were hybridised to 358 

the HumanHT-12 v4.0 Expression BeadChip arrays containing > 47,000 probes, following the 359 

manufacturer’s recommended procedures (Illumina, San Diego, CA, USA). The Bead arrays 360 

were scanned on the Illumina BeadArray Reader. In this current study, the raw intensity values 361 

were exported using the Illumina GenomeStudio software (v2.0; Gene Expression Module). The 362 

bioconductor “limma” package
10

 was used for background correction, data normalisation (using 363 

the “neqc” function)
21

 and differential gene expression analysis (DGE)
22

 for paired samples 364 

(using the “treat” function) in the 18 subjects across all 8 time points (i.e. Base1, Base2, EPO3, 365 

EPO4, EPO5, Post6, Post7 and Post8). Notably, only probes expressed in at least 7 samples at a 366 

detection p<0.05 were kept. Probes were annotated to illuminaHumanv4.db
23

 and only probes 367 

with “good” and “perfect” matching quality were retained followed by removing probes with 368 

“NA” or multiple mappings.  Probes with low expression values below 5.1 were excluded prior 369 

to the DGE analysis (assessed using the limma “plotSA” function). Transcripts were considered 370 

significantly expressed for a fold change of 1.2 bounded to a 5% false discovery rate (FDR) 371 

(thereby, giving more weight to fold change for gene ranking). These are common cut-off values 372 

being used for declaring biologically and statistically significant findings in a DGE analysis
24

.  373 

 374 

Microarray analysis with GeneChip
TM

 HTA2.0  375 

One hundred nanograms of total RNA was processed using the GeneChip
TM

 WT Plus Reagent 376 

Kit according to the manufacturer’s instructions (Thermo Fisher Scientific, Waltham, MA, US) 377 
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for 10 out of the 18 subjects at the selected time points (i.e. Base1, Base2, EPO3, EPO4 and 378 

Post7). Single-stranded cDNA (ss-cDNA) was synthesised by the reverse transcription of cRNA. 379 

Two hundred microlitres of hybridisation cocktail (containing approximately 5.2 µg fragmented 380 

and labelled ss-cDNA) was loaded onto the GeneChip
TM

 HTA2.0 (Thermo Fisher Scientific, 381 

Waltham, MA, US). The GeneChip
TM

 arrays were incubated in the GeneChip
TM

 Hybridization 382 

Oven 645 for 16 hours, washed and stained on the GeneChip
TM

 Fluidics Station 450. The arrays 383 

were then scanned using the GeneChip
TM

 Scanner 3000 7G. The Applied Biosystems
TM

 384 

Transcriptome Analysis Console (version:4.0.1.36; Thermo Fisher Scientific, Waltham, MA, 385 

US) was used to perform initial data QC and data visualisation. The relative log expression box 386 

plots were plotted following the quality assessment steps illustrated in ref
25

. The Bioconductor 387 

“oligo” package
26

 was used to read in the raw intensity CEL files, and the “rma” function was 388 

used for background correction, normalisation, and data summarisation to the gene level (defined 389 

by the argument “core”). Probes were annotated to hta20transcriptcluster.db
27

 and probes with 390 

“NA” or multiple mappings were removed. The “limma” package was then used to perform the 391 

usual DGE analysis for paired samples (the analysis setting is identical to that used in the 392 

Illumina microarray analysis illustrated above). Transcript clusters (loosely equal to genes) were 393 

considered significantly expressed at a fold change of 1.2 bounded to a 5% FDR. 394 

 395 

RNA-seq on Illumina NextSeq500 396 

Five hundred nanograms of total RNA was used for sequencing according to the Illumina TruSeq 397 

Stranded mRNA sample prep guide - high sample protocol (Illumina, San Diego, CA, USA). 398 

Briefly, mRNA molecules were purified using the poly-T oligo attached magnetic beads 399 

following which the mRNA was fragmented and primed for cDNA synthesis. A single “A” base 400 
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was subsequently added to the 3-prime end of the synthesised blunt-ended cDNA and ligated 401 

with index adapters for hybridisation onto a flow cell. The DNA fragments with adapters on both 402 

ends were amplified via polymerase chain reaction to generate the final double-stranded cDNA 403 

(ds-cDNA) library followed by library validation and normalisation and pooling of the samples. 404 

Samples were pooled and then sequenced at 2x75 bp read length to a depth of approximately 64 405 

M reads per sample on the Illumina NextSeq 500 (Illumina, San Diego, CA, USA). 10 out of the 406 

18 subjects at the selected time points (i.e. Base1, Base2, EPO3, EPO4, and Post7) were 407 

analysed. Raw sequences were examined by FastQC
28

 for basic quality checks (e.g. per base 408 

sequence quality, adaptor content, and per base N content), FastQ Screen
29

 for mapping against 409 

multiple reference genomes for detecting sample swaps or sample contamination that may have 410 

resulted from sources other than humans (i.e. in this case, mapping against human, 411 

mouse and rat genomes were conducted), HISAT2
5
 for alignment to the reference genome 412 

assembly (GRCh38.p12
6
) using the Ensembl 94 annotation

30
 prior to RseQC

7
 for read 413 

distribution analysis, Salmon
8
 for aligning to the transcriptome and transcripts quantification 414 

(using selective alignment with the decoy aware target transcriptome to eliminate potential 415 

spurious mapping to unannotated genomic locus over a k-mer length of 31, along with --SeqBias 416 

and --gcBias flags switched on to correct for any unwanted effects), bioconductor package 417 

“tximport”
31

 for summarising transcript-level estimates to genes based on Ensembl release 94
30

, 418 

and DESeq2
9
 for paired sample DGE analysis. Pre-filtering was performed to keep genes that 419 

have at least 5 reads across 4 samples prior to the DGE analysis. Ensembl IDs were mapped to 420 

gene symbols using the bioconductor package “org.Hs.eg.db”
32

 and un-defined mappings were 421 

removed (i.e. gene with “NA” or multiple mappings). MultiQC
33

 was used to aggregate the 422 

analysis results from the FastQC, FastQ Screen and RseQC runs from multiple samples. 423 
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Unsupervised principal component analysis (PCA) for top 500 genes of high variance and gene 424 

clustering analysis for the top 30 genes were performed following the DESeq2 vignette on data 425 

quality assessment procedures
34

. The bioconductor package “SVA”
35

 was used to assess 426 

surrogate variables that may represent other variations in the data for further correction. 427 

Shrinkage estimator “apeglm” was used for the shrinkage of log fold change estimates and for 428 

ranking genes by effect size
36

. Genes exceeding a fold change of 1.2 bounded to the default s-429 

value < 0.005 were reported.  430 

 431 

RNA-seq on MGI DNBSEQ-G400RS 432 

Four hundred nanograms of total RNA was used for sequencing on the MGI DNBSEQ-G400RS 433 

instrument (MGI, Shenzhen, China). Total RNA was first treated with Globin-Zero Gold Kit 434 

(Illumina, San Diego, CA, USA) for rRNA depletion and globin mRNA reduction. The ds-435 

cDNA library preparation is in line with the Illumina RNA-seq protocol described in the above 436 

section. The ds-cDNAs were then heat denatured and circularised by the splint oligo sequence to 437 

generate the single strand circle DNA followed by rolling circle replication to create DNA 438 

nanoballs (DNB) for processing on the MGI DNBSEQ-G400RS. The same 50 samples used for 439 

the GeneChip
TM

 and Illumina RNA-seq profiling were again analysed on this platform. These 440 

samples were sequenced on 6 flowcells at 2x100 bp read length aimed at a sequencing depth of 441 

64 M reads. Raw sequences were processed for quality assessment, alignment, transcripts 442 

quantification and DGE analysis as described above in the “RNA-seq on Illumina NextSeq500” 443 

section. The same cut-offs as in the Illumina RNA-seq section for defining a significant result 444 

were applied (i.e. a fold change of 1.2 bounded to the default s-value < 0.005). 445 

 446 
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Gene set enrichment analyses in GSEA and Reactome 447 

The pathway enrichment analysis was performed in accordance with recommendations from ref 448 

37
, where appropriate. Specifically, normalised RNA-seq counts (outputted from DESeq2 449 

“counts” function with the argument “normalized=TRUE”) and normalised microarray gene 450 

expression values were subjected to gene set enrichment analysis using GSEA (v4.0.3)
11, 12

 by 451 

examining the Molecular Signatures Database (MSigDB)
11, 13

 Hallmark (H; containing 50 gene 452 

sets)
14

 and Gene Ontology (C5; BP: subset of GO biological processes containing 7,573 gene 453 

sets)
15, 16

 collections of functional gene sets. Low count genes (by removing genes with counts 454 

below 5 in at least 4 samples) and genes with unidentified mappings from RNA-seq, and control 455 

probes, low-quality probes and probes with unidentified mappings from microarray analyses 456 

were excluded from the expression datasets prior to the GSEA. A standard GSEA run was 457 

applied for each dataset by performing 1,000 phenotype permutations and by collapsing the 458 

Ensembl IDs and probe IDs to gene symbols by mapping to their corresponding chip platforms 459 

available from the MSigDB database (i.e. Human_ENSEMBL_Gene_ID_MSigDB.v7.2.chip for 460 

RNA-seq, Human_AFFY_hta_2_0_MSigDB.v7.2.chip for GeneChip
TM 

HTA2.0 and  461 

Human_Illumina_HumanHT_12_v4_Array_MSigDB.v7.2.chip for Illumina BeadChip). Other 462 

main parameters used in a GSEA run included the default ranking metric “Signal2Noise”, gene 463 

set size filters (15-200 for H, and 10-500 for C5) and collapsing mode (“Sum_of_probes” for 464 

RNA-seq, and “Max_probe” for microarray). Default values were used for other fields of the 465 

GSEA run. EnrichmentMap App
38

 was used for creating biological networks of the GSEA 466 

pathways (pathway FDR<0.1, nominal P<0.05 and Jaccard Overlap coefficient >0.375 with 467 

combined constant k=0.5) and AutoAnnotate App
39

 for gene sets annotation and clustering 468 

(MCL Cluster annotation) in Cytoscape (v3.8.0)
40

. The most significantly enriched gene set was 469 
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used to label a gene set cluster, characterised by the normalised enrichment score (NES). Raw 470 

counts from the RNA-seq (outputted from DESeq2 “counts” function by setting 471 

“normalized=FALSE”), and normalised and log2 transformed gene expression values from 472 

microarray analyses were uploaded onto Reactome (v73)
20

 for quantitative pathway analysis 473 

(ReactomeGSA) using the PADOG algorithm
41, 42

 for gene expression visualisation in pathway 474 

diagrams. Protein-protein interactors derived from the IntAct database
43

 with the IntAct score ≥ 475 

0.556 (of medium to high confidence interactions) were included in the analysis to improve the 476 

Reactome pathway coverage.  For consistency, these expression datasets were collapsed to gene 477 

symbols using the “Collapse Dataset” tool in the GSEA software prior to the ReactomeGSA. 478 

 479 

Cross-platform DGE comparison 480 

Direct comparisons for the coding gene features identified across MGI DNBSEQ-G400RS, 481 

Illumina NextSeq 500 and GeneChip
TM

 HTA2.0 platforms in the 10 subjects (comprised of 50 482 

samples) were carried out on the differentially expressed genes following the formal 483 

DESeq2/limma DGE analyses. A sankey diagram was plotted for visualisation of the DGE 484 

results using the “ggalluvial” package
44

. The cross-platform correlations were computed using 485 

the “ggscatter” function in the package “ggpubr”
45

. “ggplot2”
46

 and “cowplot”
47

 packages were 486 

used for creating publication-quality figures, where appropriate. Leading edge genes from the 487 

significantly expressed GSEA pathways (derived from MGI DNBSEQ-G400RS, GeneChip
TM

 488 

HTA2.0 and HumanHT-12 v4.0 Expression BeadChip; including all pathways with the NES>1.9 489 

or the representative pathway of a gene set cluster when the NES<1.9) were extracted and 490 

compared to the DGE genes to generate common sets of genes identified by both the GSEA and 491 

DGE analyses. These genes were then overlapped with the DGE results obtained from the 492 
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Illumina NextSeq 500 platform for confirmation. The interaction networks among pathway genes 493 

were defined by expression overlay with the Reactome pathway diagrams, focusing on the 494 

networks represented by the confirmed genes above. The final lists of genes were obtained by 495 

extracting all significantly altered genes and their interactors involved in these Reactome 496 

networks and by matching them back to the differentially expressed genes resulted from the 497 

formal DESeq2/limma analyses. 498 

 499 

Data availability: Note all data will be made available and deposited into appropriate 500 

repositories at publication, including raw RNA-seq data, raw microarray data, and code required 501 

to reproduce all analyses. Full data access may be provided to reviewers on request during 502 

manuscript reviewing.  503 

 504 

 505 

 506 
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 507 

Fig. 1. Sankey diagram showing the flow of the differentially expressed gene features stratified by platform, biological 508 

condition and absolute log2-transformed fold changes. M/I/H: MGI RNA-seq/Illumina RNA-seq/HTA2.0; M/I: MGI RNA-509 

seq/Illumina RNA-seq; M/H: MGI RNA-seq/HTA2.0; M: MGI RNA-seq; I: Illumina RNA-seq; and H: HTA2.0. abs(lfc): absolute 510 

log2-transformed fold change. The colour coded band represents a detection platform or a combination of the detection platforms. The 511 

abs(lfc)>1 abs(lfc)<1

Post7 EPO4

M/I/H M/I M/H M I H

LFC

Condition

Platform

0 500 1000 1500
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wider the band, the higher number of the identified features on a platform or across platforms. The x-axis represents the number of 512 

identified features captured on each platform. Note, for M/I/H, M/I, and M/H, that biological magnitude of the features used for 513 

stratification is based on the MGI RNA-seq DGE results. Thirty-four identified non-protein coding transcript clusters on the GeneChip 514 

are removed for the purposes of cross-platform comparison.515 
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 516 

 517 

Fig. 2. Cross-platform gene expression correlation analyses of log2-transformed fold 518 

changes of all identified gene features. a-c Genes identified when compared the level of 519 

expression between EPO4 and Base1 among the platform pairs in Illumina-MGI RNA-seq (a), 520 

GeneChip
TM

 HTA2.0-MGI RNA-seq (b), GeneChip
TM

 HTA2.0-Illlumina RNA-seq (c). d-f 521 

Genes identified when compared the level of expression between Post7 and Base1 among the 522 
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platform pairs in Illumina-MGI RNA-seq (d), GeneChip
TM

 HTA2.0-MGI RNA-seq (e), 523 

GeneChip
TM

 HTA2.0-Illlumina RNA-seq (f). Genes identified as differentially expressed by 524 

each pair are plotted in blue; genes that are only differentially expressed in Illumina RNA-seq, 525 

MGI RNA-seq or GeneChip
TM

 HTA2.0 are plotted in yellow, grey and dijon, respectively; genes 526 

not identified as differentially expressed by a pair are plotted in red. For simplicity, the 527 

maximum expression value of a gene was used when multiple mapping of transcripts to the same 528 

gene occurred.  FOXO3B is only differentially expressed in GeneChip
TM

 HTA2.0 when 529 

compared to the MGI RNA-seq findings in (b), thus it has been removed from the correlation 530 

analysis. R: Pearson’s r. LogFC: log2-transformed fold change.    531 
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 532 

 533 

 534 

Fig. 3. Biological network of the MGI RNA-seq dataset following Gene Ontology (biological process) gene set enrichment 535 

analysis in GSEA (v4.0.3) and visualisation in Cytoscape (3.8.0). Each circle (node) represents a gene set and two nodes are 536 
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connected by lines (edges) indicating shared genes. The size of a node and width of an edge are proportional to the number of genes 537 

enriched in a gene set and the number of genes shared between gene sets, respectively. Gene sets that are similar were annotated and 538 

clustered to form a biological theme using the AutoAnnotate App in Cytoscape. The most significantly enriched gene set is used to 539 

label a gene set cluster, defined by NES. Red node: gene set enriched in EPO4. Purple node label: top gene sets with NES > 1.90. The 540 

enrichment map was created with pathway FDR < 0.1, nominal P < 0.05 and Jaccard Overlap coefficient > 0.375 with combined 541 

constant k = 0.5.  542 
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 544 

 545 

Fig. 4. Enhanced high-level Reactome pathway diagram for O2/CO2 exchange in 546 

erythrocytes
48

 by expression overlay with the MGI RNA-seq Post7 dataset. This high-level 547 

diagram represents two subpathways, namely erythrocyte take up oxygen and release carbon 548 

dioxide and erythrocyte take up carbon dioxide and release oxygen. The green band indicates the 549 

proportion of the pathway that is represented in the MGI RNA-seq Post7 dataset, and the colour 550 

(green) represents the down-regulation of the pathway genes. The grey bar contains the 551 

information for the number of pathway entities in the query dataset, the total number of the 552 

pathway entities, and the FDR corrected over-representation probability.  553 
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Figure legends: 672 

 673 

 674 

Fig. 1. Sankey diagram 
44

 showing the flow of the differentially expressed gene features 675 

stratified by platform, biological condition and absolute log2-transformed fold changes. 676 

M/I/H: MGI RNA-seq/Illumina RNA-seq/HTA2.0; M/I: MGI RNA-seq/Illumina RNA-seq; 677 

M/H: MGI RNA-seq/HTA2.0; M: MGI RNA-seq; I: Illumina RNA-seq; and H: HTA2.0. 678 

abs(lfc): absolute log2-transformed fold change. The colour coded band represents a detection 679 

platform or a combination of the detection platforms. The wider the band, the higher number of 680 

the identified features on a platform or across platforms. The x-axis represents the number of 681 

identified features captured on each platform. Note, for M/I/H, M/I, and M/H, that biological 682 

magnitude of the features used for stratification is based on the MGI RNA-seq DGE results. 683 

Thirty-four identified non-protein coding transcript clusters on the GeneChip are removed for the 684 

purposes of cross-platform comparison. 685 

Fig. 2. Cross-platform gene expression correlation analyses of log2-transformed fold 686 

changes of all identified gene features. a-c Genes identified when compared the level of 687 

expression between EPO4 and Base1 among the platform pairs in Illumina-MGI RNA-seq (a), 688 

GeneChip
TM

 HTA2.0-MGI RNA-seq (b), GeneChip
TM

 HTA2.0-Illlumina RNA-seq (c). d-f 689 

Genes identified when compared the level of expression between Post7 and Base1 among the 690 

platform pairs in Illumina-MGI RNA-seq (d), GeneChip
TM

 HTA2.0-MGI RNA-seq (e), 691 

GeneChip
TM

 HTA2.0-Illlumina RNA-seq (f). Genes identified as differentially expressed by 692 

each pair are plotted in blue; genes that are only differentially expressed in Illumina RNA-seq, 693 

MGI RNA-seq or GeneChip
TM

 HTA2.0 are plotted in yellow, grey and dijon, respectively; genes 694 

not identified as differentially expressed by a pair are plotted in red. For simplicity, the 695 

maximum expression value of a gene was used when multiple mapping of transcripts to the same 696 
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gene occurred.  FOXO3B is only differentially expressed in GeneChip
TM

 HTA2.0 when 697 

compared to the MGI RNA-seq findings in (b), thus it has been removed from the correlation 698 

analysis. R: Pearson’s r. LogFC: log2-transformed fold change.   699 

Fig. 3. Biological network of the MGI RNA-seq dataset following Gene Ontology (biological 700 

process) gene set enrichment analysis in GSEA (v4.0.3) and visualisation in Cytoscape 701 

(3.8.0) 
40

. Each circle (node) represents a gene set and two nodes are connected by lines (edges) 702 

indicating shared genes. The size of a node and width of an edge are proportional to the number 703 

of genes enriched in a gene set and the number of genes shared between gene sets, respectively. 704 

Gene sets that are similar were annotated and clustered to form a biological theme using the 705 

AutoAnnotate App 
39

 in Cytoscape. The most significantly enriched gene set is used to label a 706 

gene set cluster, defined by NES. Red node: gene set enriched in EPO4. Purple node label: top 707 

gene sets with NES > 1.90. The enrichment map was created with pathway FDR < 0.1, nominal 708 

P < 0.05 and Jaccard Overlap coefficient > 0.375 with combined constant k = 0.5.  709 

Fig. 4. Enhanced high-level Reactome pathway diagram for O2/CO2 exchange in 710 

erythrocytes 
48

 by expression overlay with the MGI RNA-seq Post7 dataset. This high-level 711 

diagram represents two subpathways, namely erythrocyte take up oxygen and release carbon 712 

dioxide and erythrocyte take up carbon dioxide and release oxygen. The green band indicates the 713 

proportion of the pathway that is represented in the MGI RNA-seq Post7 dataset, and the colour 714 

(green) represents the down-regulation of the pathway genes. The grey bar contains the 715 

information for the number of pathway entities in the query dataset, the total number of the 716 

pathway entities, and the FDR corrected over-representation probability.  717 

 718 

  719 
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Table 1. Summary of the number of transcriptomic features available for the DGE analysis 720 

across the four gene expression detection platforms. 721 

 722 

 MGI 

DNBSEQ-

G400RS 

Illumina 

NextSeq 500 

GeneChip
TM 

HTA2.0 

Illumina 

HumanHT-12 v4 

Expression 

BeadChip 

Number of samples 50 48 49 143 

Number of 

transcriptomic features 

following RNA-seq 

quantification (Salmon) 

or on the array 

175,775 175,775 285,543 47,286 

Number of identified 

features available for the 

DGE analysis 

16,738
g
 16,581

g
 29,517

tc
 10,622

t
 

 723 

DGE: differential gene expression. g: protein-coding gene features. tc: protein coding and non-724 

protein coding transcript clusters, loosely corresponding to genes. t: coding and non-coding 725 

transcripts. Two, one and one samples were removed from the DGE analyses due to human 726 

processing errors, sample quality and sampling issue in the Illumina RNA-seq, GeneChip and 727 

BeadChip datasets, respectively.728 
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Table 2. Transcript annotation and filtering of the RNA-seq and microarray data prior to the DGE analysis.  729 

	 MGI 

DNBSEQ-G400RS	

Illumina 

NextSeq 500	

GeneChip
TM 

HTA2.0	 Illumina HumanHT- 

12 v4 Expression 

BeadChip	

Annotation 

database (N=the 

number of 

transcriptomic 

features) 

Org.Hs.eg.db (N=175,775 

transcripts following 

Salmon transcription 

quantification, aggregated 

into 37,788 genes using 

Ensembl 94 annotation) 

Org.Hs.eg.db (N=175,775 

transcripts following 

Salmon transcription 

quantification, aggregated 

into 37,788 genes using 

Ensembl 94 annotation) 

hta20transcriptcluster.db 

(N=285,543 transcripts, 

corresponding to 67,480 

protein-coding and non-

protein coding transcript 

clusters) 

illuminaHumanv4.db 

(N=47,286 coding and 

non-coding transcripts) 

Undetected probes - - - 18,494 

Low quality 

probes 
- - - 6,900 

Low-expressed 

genes (RNA-seq) 
17,198 18,347 - - 

NA  mapping 

to stable gene 

symbols 

3,675 2,668 36,709 2,406 

Multiple mapping 

to stable gene 

symbols 

177 192 1,254 698 

Low-expressed 

probes 

(microarray)
1
 

- - 0 8,166 

Identified features 

available for DGE 

analysis 

16,738
g
 16,581

g
 29,517

tc
 10,622

t
 

 730 

NA: features with no gene symbols returned after annotation. DGE: differential gene expression. -: not applicable. 
1
: low expressed 731 

probes were further removed following assessing the average log expression and the mean-variance relationship after fitting the linear 732 
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model in limma microarray analysis. g: protein-coding gene features. tc: protein-coding and non-protein coding transcript clusters, 733 

loosely corresponding to genes. t: coding and non-coding transcript features.  734 
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Table 3. Summary of the number of significantly expressed transcriptomic features across all platforms.  735 

 736 

 DGE 

thresholds 

Base2 

vs Base1 

EPO3 

vs Base1 

EPO4 

vs Base1 

Post7 

vs Base1 

Up/down 

regulation 

MGI DNBSEQ-

G400RS (N = 50) 

abs FC > 1.2 & 

s-value < 0.005 
0 1 959 60 Up 

  0 0 81 451 Down 

Illumina NextSeq 500 

(N = 48) 

abs FC > 1.2 & 

s-value < 0.005 
0 0 277 27 Up 

 0 0 20 258 Down 

GeneChip
TM

 

HTA2.0 (N = 49) 

abs FC > 1.2 & 

FDR < 0.05 
0 0 200 0 Up 

 0 0 1 51 Down 

Illumina HumanHT-

12v4.0 Expression 

Beadchip (N = 143) 

abs FC > 1.2 & 

FDR < 0.05 
0 13 796 7 Up 

 0 0 1,315 254 Down 

  737 

DGE: differential gene expression. abs FC: absolute fold change. FDR: false discovery rate. The number of protein-coding gene 738 

features, and coding and non-coding transcript clusters and transcripts are reported following the RNA-seq, GeneChip and Beadchip 739 

DGE analyses, respectively. 740 

 741 



Figures

Figure 1

Sankey diagram 44 showing the �ow of the differentially expressed gene features strati�ed by platform,
biological condition and absolute log2-transformed fold changes. M/I/H: MGI RNA-seq/Illumina RNA-
seq/HTA2.0; M/I: MGI RNA-seq/Illumina RNA-seq; M/H: MGI RNA-seq/HTA2.0; M: MGI RNA-seq; I: Illumina
RNA-seq; and H: HTA2.0. abs(lfc): absolute log2-transformed fold change. The colour coded band
represents a detection platform or a combination of the detection platforms. The wider the band, the
higher number of the identi�ed features on a platform or across platforms. The x-axis represents the
number of identi�ed features captured on each platform. Note, for M/I/H, M/I, and M/H, that biological
magnitude of the features used for strati�cation is based on the MGI RNA-seq DGE results. Thirty-four
identi�ed non-protein coding transcript clusters on the GeneChip are removed for the purposes of cross-
platform comparison.



Figure 2

Cross-platform gene expression correlation analyses of log2-transformed fold changes of all identi�ed
gene features. a-c Genes identi�ed when compared the level of expression between EPO4 and Base1
among the platform pairs in Illumina-MGI RNA-seq (a), GeneChipTM HTA2.0-MGI RNA-seq (b),
GeneChipTM HTA2.0-Illlumina RNA-seq (c). d-f Genes identi�ed when compared the level of expression
between Post7 and Base1 among the platform pairs in Illumina-MGI RNA-seq (d), GeneChipTM HTA2.0-



MGI RNA-seq (e), GeneChipTM HTA2.0-Illlumina RNA-seq (f). Genes identi�ed as differentially expressed
by each pair are plotted in blue; genes that are only differentially expressed in Illumina RNA-seq, MGI RNA-
seq or GeneChipTM HTA2.0 are plotted in yellow, grey and dijon, respectively; genes not identi�ed as
differentially expressed by a pair are plotted in red. For simplicity, the maximum expression value of a
gene was used when multiple mapping of transcripts to the same gene occurred. FOXO3B is only
differentially e xpressed in GeneChipTM HTA2.0 when compared to the MGI RNA-seq �ndings in (b), thus
it has been removed from the correlation analysis. R: Pearson’s r. LogFC: log2-transformed fold change.

Figure 3

Biological network of the MGI RNA-seq dataset following Gene Ontology (biological process) gene set
enrichment analysis in GSEA (v4.0.3) and visualisation in Cytoscape (3.8.0) 40. Each circle (node)
represents a gene set and two nodes are connected by lines (edges) indicating shared genes. The size of
a node and width of an edge are proportional to the number of genes enriched in a gene set and the
number of genes shared between gene sets, respectively. Gene sets that are similar were annotated and
clustered to form a biological theme using the AutoAnnotate App 39 in Cytoscape. The most signi�cantly
enriched gene set is used to label a gene set cluster, de�ned by NES. Red node: gene set enriched in EPO4.
Purple node label: top gene sets with NES > 1.90. The enrichment map was created with pathway FDR <
0.1, nominal P < 0.05 and Jaccard Overlap coe�cient > 0.375 with combined constant k = 0.5.



Figure 4

Enhanced high-level Reactome pathway diagram for O2/CO2 exchange in erythrocytes 48 by expression
overlay with the MGI RNA-seq Post7 dataset. This high-level diagram represents two subpathways,
namely erythrocyte take up oxygen and release carbon dioxide and erythrocyte take up carbon dioxide
and release oxygen. The green band indicates the proportion of the pathway that is represented in the
MGI RNA-seq Post7 dataset, and the colour (green) represents the down-regulation of the pathway genes.
The grey bar contains the information for the number of pathway entities in the query dataset, the total
number of the pathway entities, and the FDR corrected over-representation probability.
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