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Abstract: Immunological memory to a previously encountered pathogen can influence the outcome
of a sequential infection, which is called heterologous immunity. Lymphocytic choriomeningitis virus
(LCMV) immune mice develop a NP205-specific T cell response that is cross-reactive to Pichinde
virus infection (PICV). So far, limited data are available if cross-reactive T cell responses appear also
during chronic infections with exhausted T cell responses. Exhaustion in chronic viral infections
can be treated with checkpoint inhibitors, which might affect heterologous outcomes unexpectedly.
The aim of this study was to investigate the cross-reactive immune response in chronic LCMV clone
13 (LCMVcl13) infection during primary PICV infection at phenotypic, functional, and T cell receptor
(TCR) level. Moreover, the influence of checkpoint inhibitor therapy with αPD-L1 was investigated.
Cross-reactive NP205-specific responses were present and functional in the chronic environment.
Additionally, chronically infected mice were also protected from PICV mediated weight loss compared
to naive PICV mice. An altered phenotype of NP205-specific T cells was detectable, but no major
differences in the clonality and diversity of their TCR repertoire were observed. Checkpoint inhibitor
treatment with αPD-L1 did alter chronic LCMV infection but had no major effect on heterologous
immunity to PICV. Our study demonstrated that cross-reactive CD8+ T cells also exist in the setting
of chronic infection, indicating a clinically relevant role of cross-reactive T cells in chronic infections.

Keywords: heterologous immunity; LCMV; PICV; virus-specific T cells; cross-reactive T cells; sequential
infection; chronic infection

1. Introduction

Throughout our life, our immune system is shaped by a series of infections. Previous
infection with one pathogen can alter the immune response to an unrelated pathogen,
which has been defined as heterologous immunity [1–4]. Cross-reactive T cell responses
have been documented in numerous studies, e.g., in humans between influenza A virus
(IAV) and hepatitis C virus, between IAV and Epstein-Barr virus, and within members
of the flavi-, hanta-, orthomyxo- and arenavirus family [2,5–9]. Cross-reactive T cells
received increased attention during the current COVID-19 pandemic [10–13], because
protective T cell responses from one of the four other endemic coronavirus infections
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could potentially minimize severe courses. Initially, the relevance of cross-reactive T cell
responses was systematically investigated in mouse models, e.g., between IAV and lym-
phocytic choriomeningitis virus (LCMV), IAV and murine cytomegalovirus (MCMV) or
between LCMV and Pichinde virus (PICV). These studies have shown that cross-reactive
T cell responses can result in either enhanced or diminished protective immunity, as
well as altered immunopathology [2,8,14]. LCMV and PICV both belong to the fam-
ily of arenaviridae with LCMV being an old world arenavirus and PICV a new world
one [9]. In this interaction, a positive influence has been shown, since exposure and T
cell memory formation from acute resolving LCMV-Armstrong infection results in faster
viral reduction of the sequential PICV infection (LCMV+PICV) compared with mice in-
fected with PICV alone (naive+PICV) [9]. This protection is mediated by CD8+ T cell
responses that are cross-reactive to the two subdominant CD8+ T cell epitopes of LCMV
NP205–212 (YTVKYPNL) and of PICV NP205–212 (YTVKFPNM) [15]. In previously naive
C57Bl/6 mice, a predicted hierarchy of CD8+ T cell responses (immunodominant, sub-
dominant and cryptic) can be detected during LCMV infection which are stable during
the primary response, memory homeostasis and in response to homologous LCMV in-
fection (NP396 ≥ GP33 > GP276 > NP205) [5]. This is also seen in PICV infected mice
(PICV-specific CD8+ T cells hierarchy: NP38 > NP16 > NP205) [5]. However, in sequential
heterologous PICV infection in LCMV-immune mice, the cross-reactive, previously sub-
dominant NP205-specific CD8+ T cell response dominates (10–20-fold increase), whereas
the dominant primary PICV NP38-specific CD8+ T cell response is attenuated or even
becomes subdominant [5].

Whereas the relevance of cross-reactive T cells has been studied in the setting of acute
resolving infection [1,2,5,8,16], only very limited information is available in the setting
of chronic infections [17–19] and especially in chronic infections with ongoing high viral
replication such as hepatitis B and hepatitis C [20,21]. Hallmarks of chronic, but not latent,
viral infections, are continuous replication of the virus and exhaustion of virus-specific T
cells. T cell exhaustion is defined by the loss of cytokine production (IL2, TNFα, IFNγ)
after antigen-exposure, upregulation of co-regulatory molecules (e.g., PD1, CTLA4, Tim3),
reduced proliferation, as well as reduction and in some cases also deletion of virus-specific
T cells [22–25]. Blocking these pathways of the co-regulatory molecules, e.g., PD1/PD-L1
pathway by monoclonal antibodies, known as checkpoint-inhibitor therapy, has been shown
to reinvigorate exhausted virus-specific T cell responses resulting in viral clearance [26].
This treatment is currently used in cancer therapy [27,28] and is considered for chronic
viral infections [29,30].

In order to analyze the relevance of cross-reactive T cells during chronic infection, we
used the well-established model of LCMV clone 13 (LCMVcl13) infection. LCMVcl13 is
nearly identical to LCMV Armstrong (LCMV) with only a three amino acid difference, but
no changes in the commonly investigated LCMV-specific CD8+ T cell epitopes [19,31,32].
C57Bl/6 mice infected with LCMVcl13 develop a chronic infection with exhausted virus-
specific T cell responses [25,26].

The aim of this study was to analyze the existence of a cross-reactive T cell response
between LCMV and PICV in the setting of a chronic LCMV infection, the potential influence
of checkpoint inhibitor therapy and the impact on the outcome of the PICV infection. Taken
together, our study demonstrated that cross-reactive CD8+ T cells, as described in LCMV-
immune mice, are capable of responding to sequential PICV infection also in the setting of
chronic LCMV infection.

2. Materials and Methods
2.1. Ethics Statement

All experiments were approved by the Lower Saxony State animal welfare (LAVES-
Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit) under
project number 33.12–42502-04-16/2127 (date of approval 02 June 2016) and were performed
in accordance with ethical guidelines of Medical School Hannover (MHH), Germany; the
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national animal protection law, and the animal experiment regulations. The highest possible
ethical standards were ensured, and all efforts were made to reduce suffering of the mice.

2.2. Mice, Viral Infection and Treatment

For this study, 8 to 11 week old male C57Bl/6 mice were bred and housed in the
central animal facility of the Hannover Medical School under specific-pathogen-free and
individually ventilated cage conditions with a 12 h light/dark cycle and received diet and
water ad libitum.

As previously described, LCMV and PICV were propagated in baby hamster kidney
cells (BHK21) [5,33]. For injection, the LCMV stocks were diluted in PBS. PICV stocks were
purified through a sucrose gradient.

Mice were infected either intraperitoneally with 5 × 104 plaque forming units LCMV
Armstrong, which are considered immune four weeks post infection, or intravenously
with high-doses (2 × 106 plaque forming units) LCMVcl13 to induce a chronic infection.
LCMVcl13 infected mice were then either treated with αPD-L1 (200 µg, 10F.9G2, Biole-
gend, San Diego, CA, USA) or control treated five times intraperitoneally every third day
starting at day 23 post infection [26,34]. Mice were sequentially infected intraperitoneally
with 1 × 107 plaque forming units PICV at day 36 post LCMV infection. As control, age-
matched naive mice were used. At day 44 post LCMV infection/day 8 post PICV infection,
mice were sacrificed, immune responses and viral titer were analyzed. To address the
overall suppression of chronic LCMVcl13 infection without any sequential PICV infection,
mice were either infected with LCMVcl13 or LCMV Armstrong or age-matched uninfected
mice were investigated (Supplementary Figure S1a).

2.3. Synthetic Peptides and Dextramers

The synthetic peptides for the analyzed nucleoproteins (NP) LCMV NP396–404 (FQPQNGQFI),
LCMV NP205–212 (YTVKYPNL), PICV NP38–45 (SALDFHKV) and PICV NP205–212 (YTVKF-
PNM) were purchased from ProImmune Ltd. (Oxford, UK). Dextramers were purchased
from Immudex (Copenhagen, Denmark): H-2Db/SALDFHKV (PICV NP38), H-2Kb/YTVK
FPNM (PICV NP205) and H-2Kb/YTVKYPNL (LCMV NP205).

2.4. Cell Surface, Intracellular and Dextramer Staining for Flow Cytometry

For direct ex vivo staining of cells, one flow cytometric panel was used. Single
cell suspensions from spleens were prepared and the red blood cells were lysed. Single
cell suspensions of 2 × 106 splenocytes each were treated with FCγR-block (αCD16/32;
2.4G2; BD Bioscience, Heidelberg, Germany) to reduce unspecific binding of antibody
stainings. Further, cell suspensions were stained for virus-specific T cells using Dextramer
reagents (Immudex). Briefly, cells were stained with the Dextramer (NP205 or NP38) for
20 min at 4 ◦C, followed by additional 15 min surface antibody staining. Fluorochrome-
labeled antibodies against the cell-surface antigens CD4, CD8, CD44, CD62L, CD127,
KLRG1 and PD1 were used (BioLegend or eBioscience, Hatfield, UK, Supplementary
Table S1). For intracellular staining with EOMES, Ki67, Tbet (Biolegend or Invitrogen,
Waltham, MA, USA, Supplementary Table S1), cells were permeabilized using the True-
Nuclear transcription buffer set (Biolegend) according to the manufacturer’s protocol. Flow
cytometric measurements were performed with the LSRFortessa (BD Bioscience; 3 lasers
and 14 colors). The flow cytometric data were collected and analyzed with the FlowJo_V10
software (BD Bioscience). All cells were gated for lymphocyte size, single cells (doublet
exclusion), live cells, CD8+ and CD44+ prior to marker gating. A detailed gating strategy is
shown in Supplementary Figure S2.

2.5. Intracellular Cytokine Measurement

Intracellular cytokine measurements were performed with a second flow cytometric
panel (Panel 2) of stimulated cells, as described previously [34]. In brief, the single cell
suspensions of 2×106 splenocytes were stimulated with 1µg/mL of the peptide NP396,
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NP205LCMV or NP38 in the presence of Brefeldin A (GolgiPlug, BD Bioscience) for 4.5 h
at 37 ◦C and 5 % CO2. As controls, splenocytes were incubated with α-CD3 antibody
(145-2C11; eBioscience) or with media. Cells were used for flow cytometric staining as
described in 2.4. with CD8 and CD44 as surface marker stainings and intracellular cytokine
staining for IFNγ and TNFα (Biolegend, Supplementary Table S1) were performed after
permeabilization with the True-Nuclear transcription buffer set (Biolegend) according
to the manufacturer’s protocol. Flow cytometric measurement was performed with the
LSRFortessa (BD Bioscience; 3 lasers and 14 colors) and analyzed with the FlowJo_V10
software (BD Bioscience). Pre-gating was done as described in 2.4. and a detailed gating
strategy is shown in Supplementary Figure S2.

2.6. Viral Titer Determination

LCMV titers were determined by plaque assay as described before [34]. Briefly, homog-
enized kidney tissue was incubated on Vero cells with ~70% confluence in a 6-well plate,
whereby log10 dilutions of the kidney tissue were used. Staining was performed 4 days
post infection with neutral red (Sigma-Aldrich, St. Louis, MO, USA); after 2 days, plaques
were counted and plaque forming units per organ were calculated. As the limit of detection,
2 counted plaques (200 plaque forming units) were set.

2.7. Next-Generation Sequencing

For T cell receptor (TCR) repertoire analysis, splenocytes were stained with CD4, CD8,
CD44, viability stain (LD) and the respective Dextramer for fluorescence-activated cell
sorting (FACS). Cells were sorted for the following populations: CD4-CD8+CD44+NP38+

and CD4-CD8+CD44+NP205+. As previously described [34], the sorted cells were prepared
for next-generation sequencing. In brief, the RNA was extracted from the sorted cells using
the RNeasy plus microRNA extraction kit (Qiagen, Hilden, Germany), transcribed to cDNA
and amplified by PCR using the SMARTer RACE cDNA amplification kit (Takara, Kusatsu,
Japan) and Advantage 2PCR kit (Takara), respectively. After determining the amplicon by
size on an agarose gel (2% agarose in Tris-acetate-EDTA buffer containing Gel Red Nucleic
Acid Gel Stain (10,000×, Biotium, Fremont, CA, USA)), bands were cut out of the gel and
the samples were extracted using the QIAquick gel extraction kit (Qiagen). All sorted
samples were performed until this step, although sorted cell numbers below 500 T cells
usually did not generate a gel band and had to be excluded from further analysis. This was
true for seven samples, including three naive+PICV mice. Further, the extracted samples
were prepared for sequencing with an index PCR (llumina, San Diego, CA, USA, according
to manufacturer’s guide) and sequenced on a MiSeq (Illumina) using V2 chemistry and
150-bp paired-end sequencing.

2.8. Sequencing Analysis

As described before [34], for each individual sample, quality control of forward and
reverse reads was performed using fastp [35]. With the MiXCR tool [36], the assembling
and alignment of reads to certain TCRbeta clonotypes were determined. In order to avoid
artificial diversity increases by erroneous sequences, the number of clonotypes was trimmed
down by using a 96% cutoff, as described before [37]. R, as well as the R-based program
VDJtools [38] and python-based tcrdist3 [39,40], were used for graphical depiction.

2.9. Statistics

Statistical analysis were performed using Prism 8.4.2 (GraphPad Software, La Jolla, CA,
USA). Statistics are expressed as means ± standard error of the mean (SEM). Depending on the
number of groups compared and the standard deviation of the data, different statistical tests
were performed. Student’s t-test was used to compare two different groups and an one-way
ANOVA, followed by Tukey’s multiple comparison test, was used to compare three or more
groups. Differences were considered statistically significant when p was <0.05 (**** p < 0.0001;
*** p < 0.001; ** p < 0.01; * p < 0.05).
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3. Results
3.1. Diminished T Cell Responses during Sequential PICV Infection in a Setting of Chronic
LCMV Infection

Previously, it was shown that chronically LCMV infected mice have diminished
immune responses compared to immune mice ([26], Table 1(I)). By measuring splenocyte
numbers and IFNγ+ CD8+ T cell responses after α-CD3 stimulation, showed that this
diminishment carries over into the acute PICV infection response (Table 1(II)).

Table 1. The splenocyte numbers and α-CD3 response.

Splenocyte Number α-CD3 Response
[% IFNγ+ CD8+ T Cells]

Naive LCMV LCMVcl13 Naive LCMV LCMVcl13

(I) no sequential
infection

(mean ± SEM)
(n = 2–13)

6.5 × 107 ± 1.1 × 107 3.7 × 107 ± 6.2 × 106 2.7 × 107 ± 2.7 × 106 4.4 ± 0.2 47.9 ± 3.6 28.0 ± 3.5

(II) plus
sequential
infection

(mean ± SEM)
(n = 6–14)

8.1 × 107 ± 8.3 × 106 7.2 × 107 ± 7.1 × 106 4.3 × 107 ± 6.8 × 106 45.9 ± 4.2 51.3 ± 3.3 35.1 ± 2.5

p-value (I) vs. (II) n.s. 0.0029 0.026 0.0019 n.s. n.s.

Although the splenocyte numbers were significantly increased from pre- to post-PICV
infection in both LCMV infected groups, lower numbers in chronic environment prior to
PICV infection translated into lower numbers after PICV infection (Table 1). However, the
percentage of IFNγ+ CD8+ T cells after α-CD3 stimulation was only slightly increased after
PICV infection in both LCMV groups, compared to the respective group prior to PICV
infection, reaching no significance (Table 1). This indicates that all mice immunologically
responded to subsequent PICV infection with increasing splenocyte numbers, but showed
minor increases in the overall IFNγ response, measured after α-CD3 stimulation. The
diminished response in the chronic setting prior to PICV infection translated to a decreased
response after sequential PICV infection (LCMVcl13+PICV) compared to LCMV+PICV
mice (Table 1).

Our data showed that chronically LCMVcl13+PICV infected mice had less splenocytes
and lower IFNγ+ CD8+ T cells (α-CD3) compared to LCMV+PICV mice. This led to the
question whether the known cross-reactive NP205-specific T cell response is also diminished
in the chronic setting.

3.2. Cross-Reactive Epitope-Specific T Cell Responses Existed in Chronically LCMV Infected Mice
upon PICV Infection

Cross-reactive NP205 and the non-cross-reactive NP38-specific T cell responses were
then investigated in more detail in sequentially LCMVcl13+PICV infected mice.

The cross-reactive NP205-specific T cell response was significantly increased by 27-
fold in LCMV+PICV infected mice compared to mice without previous LCMV infection
(naive+PICV) (Figure 1b). This is in line with published data [1,5]. The analysis of this
response in chronically LCMVcl13 infected mice (LCMVcl13+PICV) also demonstrated a
significantly higher frequency of the cross-reactive NP205-specific T cells (21-fold) com-
pared to naive+PICV mice. No significant differences were observed between LCMV+PICV
and LCMVcl13+PICV infected mice (Figure 1b).
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Figure 1. Cross-reactive NP205-specific T cells were detectable after sequential Pichinde virus (PICV)
infection in chronic lymphocytic choriomeningitis virus clone 13 (LCMVcl13) mice. (a) Experimental
setup: Age-matched C57Bl/6 mice were infected with LCMVcl13 (LCMVcl13+PICV) to induce
a chronic LCMV infection, or LCMV Armstrong (LCMV+PICV), which are considered immune
at day 28 post LCMV infection or kept naive (naive+PICV) prior to PICV infection. One group
of LCMVcl13 mice were treated with αPD-L1 prior PICV infection (LCMVcl13+αPD-L1+PICV).
(b) Frequency of IFNγ+ CD8+ CD44+ T cells after in vitro stimulation with NP205 LCMV or NP38
peptides and (c) representative flow cytometry plots of IFNγ+/TNFα+ CD8+ CD44+ T cells after
in vitro stimulation with α-CD3, NP205LCMV or NP38 are shown. In (c), two representative mice (#1
and #2) of the LCMVcl13+PICV group are shown, accounting for inner-group diversity. Statistical
comparison of all groups is depicted with asterisks. * p < 0.05; ** p < 0.01 (One-way ANOVA
comparison). Results are pooled from four independent experiments with n = 6–14 mice/group.
(a) was created with BioRender.com.
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In line with published data, the primary PICV, non-cross-reactive NP38-specific T
cell response was significantly reduced (3-fold) in LCMV-immune compared to naive
(naive+PICV) mice (Figure 1b). A reduced NP38-specific T cell response was also seen in
LCMVcl13+PICV infected mice, albeit not significant.

Interestingly, in addition to the altered frequency of cross-reactive NP205-specific
T cells in LCMV and LCMVcl13 infected mice, the multi-functionality of these T cells
was also shifted (Figure 1c). Whereas in LCMV+PICV infected mice, all NP205 responses
analyzed had higher multi-functionality (IFNγ+ TNFα+) than single IFNγ+ (IFNγ+ TNFα-)
T cells (mean ratio: 2.3:1), this was the case in only 57 % of LCMVcl13+PICV-infected mice
(representative flow cytometry plots in Figure 1c).

Our data show that cross-reactive NP205-specific T cell responses existed also in chroni-
cally LCMVcl13 infected mice upon PICV infection, but are altered and more heterogeneous.

3.3. Checkpoint-Inhibitor Treatment Had No Effects on the Cross-Reactive NP205-Specific T Cells
in LCMVcl13+PICV Infected Mice

In the established model of chronic LCMVcl13 infection, checkpoint inhibitor therapy
is effective in restoring LCMV-specific T cell responses [26,34]. Consequently, we observed
enhanced IFNγ+ LCMV NP396-specific CD8+ T cells after αPD-L1 therapy compared to
untreated mice, as well as increased clearance of the chronic LCMVcl13 infection, which is
in line with previously published data (Supplementary Figure S1, [34]). However, αPD-L1
treatment of LCMVcl13 infected mice, prior to sequential PICV infection (LCMVcl13+αPD-
L1+PICV), showed no impact on the cross-reactive NP205-specific T cell response (Figure 1).

3.4. Distinct Phenotype of Cross-Reactive and Non-Cross-Reactive T Cells in LCMVcl13+PICV

To investigate if the cross-reactive NP205- and the non-cross-reactive NP38-specific
T cell responses are phenotypically modulated in a chronic environment, we analyzed
phenotypical markers on these virus-specific T cells (Figure 2a). Beside regularly used
markers in a chronic setting such as PD1 and Ki67, we used different, previously published
marker combinations to determine the phenotype of short-lived (CD127−) and long-lived
(CD127+) T cells.

Higher frequencies of memory T cell phenotypes (TCM, TEM, Tmem) and active cell
cycle marker Ki67 were detected in the cross-reactive NP205-specific T cell response in
LCMV+PICV compared to naive+PICV mice (Figure 2a). In contrast, lower frequencies of
Teff, Te and PD1+ T cells were measured. Higher frequencies of TCM and Tmem memory
phenotypes were also detected in LCMV+PICV compared to LCMVcl13+PICV infected
mice, and in this line Teff, Te and PD1+ T cells were detected in lower abundance. Albeit in
very low frequencies, Tml are significantly increased in LCMVcl13+PICV vs. LCMV+PICV
infected mice. No differences in the frequencies of Ki67+ T cells were measured. Anti-PD-
L1 treatment had no effect on the phenotype of the NP205-specific T cells, measured by
comparing to non-treated LCMVcl13+PICV mice.

The phenotype of the primary PICV NP38-specific T cell response showed a similar
alteration in all LCMV infected mice compared to the naive+PICV ones (Figure 2b). The
sole exemption was the frequency of Ki67+ T cells, which was significantly increased in
LCMVcl13+PICV compared to LCMV+PICV mice. For comparing individual groups over
all phenotypical markers, radar plots are depicted in Supplementary Figure S3.

Our data suggest that phenotypical characterization in cross-reactive T cell responses
in a chronic environment showed close phenotypical proximity of T cells to naive+PICV
infected mice cells, while also revealing some similarities to those in LCMV+PICV infected
mice. Therefore, we concluded that the chronic environment is distinctly different from
both other groups, adding an additional layer of complexity to the analysis.
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Figure 2. Cross-reactive NP205-specific CD8+ CD44+ T cells revealed an altered phenotype in
chronic lymphocytic choriomeningitis virus clone 13 mice sequentially infected with Pichinde virus
(LCMVcl13+PICV). Phenotypic characterization of (a) cross-reactive NP205- and (b) PICV NP38-
Dextramer+ T cells were determined ex vivo. (a,b) Statistical comparison (One-way ANOVA) is
depicted with asterisks. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.001 Results are pooled from four
independent experiments with n = 6–11 mice/group. Te: effector/terminally exhausted T cells, Teff:
effector T cells, TEM: effector-memory T cells, Tml: memory-like T cells, Tmem: memory T cells, TCM:
central memory T cells, SLEC: short lived effector T cells, MPEC: memory precursor T cells.

3.5. No Major Differences in the NP205-Specific TCR Repertoire between LCMV+PICV and
LCMVcl13+PICV Infected Mice

The TCR repertoire of LCMV NP396-specific T cells is significantly different between
LCMV and LCMVcl13 mice [34]; therefore, we hypothesize that cross-reactive NP205-
specific T cells might also be different prior to PICV infection and therefore translate into
distinctly different TCR repertoires post PICV infection. No significant differences in
the number of clonotypes, the frequency of TOP3 clonotypes, and the diversity (mean
Shannon-Wiener index) were detectable for both investigated virus-specific T cell popu-
lations between the chronic setting and other groups post PICV infection (Figure 3a,b).
Additionally, as control, cross-reactive NP205-specific T cells were analyzed from one
naive+PICV mouse.



Viruses 2022, 14, 2293 9 of 15

Viruses 2021, 13, x FOR PEER REVIEW 9 of 15 
 

 

3.5. No Major Differences in the NP205-Specific TCR Repertoire between LCMV+PICV and 
LCMVcl13+PICV Infected Mice 

The TCR repertoire of LCMV NP396-specific T cells is significantly different between 
LCMV and LCMVcl13 mice [34]; therefore, we hypothesize that cross-reactive NP205-spe-
cific T cells might also be different prior to PICV infection and therefore translate into 
distinctly different TCR repertoires post PICV infection. No significant differences in the 
number of clonotypes, the frequency of TOP3 clonotypes, and the diversity (mean Shan-
non-Wiener index) were detectable for both investigated virus-specific T cell populations 
between the chronic setting and other groups post PICV infection (Figure 3a,b). Addition-
ally, as control, cross-reactive NP205-specific T cells were analyzed from one naive+PICV 
mouse. 

 
Figure 3. No differences were detectable in the NP205-specific T cell receptor (TCR) repertoire be-
tween chronic lymphocytic choriomeningitis virus clone 13 mice sequentially infected with Pichinde 
virus (LCMVcl13+PICV) and lymphocytic choriomeningitis mice sequentially infected with 
Pichinde virus (LCMV+PICV). Dextramer+ NP38- and NP205-specific T cells were sorted and TCRβ 

Figure 3. No differences were detectable in the NP205-specific T cell receptor (TCR) repertoire be-
tween chronic lymphocytic choriomeningitis virus clone 13 mice sequentially infected with Pichinde
virus (LCMVcl13+PICV) and lymphocytic choriomeningitis mice sequentially infected with Pichinde
virus (LCMV+PICV). Dextramer+ NP38- and NP205-specific T cells were sorted and TCRβ clono-
types were sequenced using the Illumina MiSeq platform. Number of (a) cross-reactive NP205- and
(b) NP38-specific TCRβ clonotypes, frequency of TOP3 clonotypes and the diversity, calculated by
the Shannon–Wiener index, are depicted. (c) Vβ and Jβ matching within the NP205-specific T cell
response is depicted by lines connecting both chains, with colors from top to bottom referring to
relative abundance within each individual group (ribbon plots; taking clonotype frequencies into
account). (d) NP205- and NP38-specific TCRβ clonotypes from each individual mouse are depicted.
Clonotypes were grouped in regard to their individual relative frequency: Sum of relative frequency
of all hyperexpanded clonotypes (defined as ≥25% in relative frequency) are depicted in dark blue,
“large” clonotypes (20 to 25%) in light blue, “medium” clonotypes (10 to 20%) in turquoise, “small”
clonotypes (1 to 10%) in orange, and “rare” clonotypes (≤1%) in red. (a–c) Results are pooled from
two independent experiments with n = 3–6 mice/group.
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A narrowed TCR repertoire of NP205-specific T cells was detected in LCMV+PICV
mice (Shannon–Wiener Index with mean ± SEM: 63 ± 17.8) compared to the one naive+PICV
infected mouse (Shannon Wiener Index: 100.8), as also indicated by Cornberg et al. [1].
Looking at the complementary determining region 3 (CDR3) of the TCR and the Vβ, as
well as Jβ usage, the NP205-specific T cells of the naive+PICV mouse has a high usage of
Vβ12-1. All LCMV infected mice after PICV infection showed a similar usage of different
Vβ and Jβ chains in the cross-reactive NP205-specific T cells with the usage of Vβ14 and
Vβ13-3, as well as the usage of Jβ1-1 and Jβ2-7 in high frequencies (Figure 3c). In contrast,
the PICV NP38-specific T cell response was altered in the different LCMV infected groups
(Supplementary Figure S4). Moreover, when comparing the TCR repertoires between the
NP38- and the NP205-specific T cells, significantly higher frequencies of TOP3 clonotypes
of the non-cross-reactive NP38 T cells (LCMVcl13+PICV p = 0.01; LCMV+PICV p = 0.08)
were in line with lower diversity ratings (LCMVcl113+PICV p = 0.16; LCMV+PICV p = 0.03)
compared to the cross-reactive NP205-specific response (Figure 3). The higher diversity of
the NP205-specific TCR repertoire originated from higher numbers of rare and small clono-
types compared to NP38-specific T cells, which had more high abundant (hyperexpanded)
clonotypes occupying a large fraction of the repertoire (Figure 3d).

Overall, our data indicate that there are differences between the TCR repertoire of
NP205- and NP38-specific responses, but no modulations occurred due to the chronic
setting compared to LCMV+PICV infected mice.

3.6. Chronically LCMVcl13 Infected Mice Are Protected against PICV Induced Weight Loss

Additionally, to analyze the cross-reactive NP205-specific T cell response, we also
investigated the disease outcome of the sequential primary PICV infection in chronically
LCMVcl13 infected mice. Therefore, we closely monitored the weight of the mice after the
PICV infection.

All LCMVcl13+PICV infected mice survived without severe pathology. Interestingly,
no weight loss was observed in LCMVcl13+PICV infected mice, as also seen in LCMV+PICV
mice over the course of an acute PICV infection (Figure 4). A significant difference in the
bodyweight was detectable at day 4 post PICV infection between naive and all previously,
LCMV infected mice. In contrast, naive+PICV infected mice showed significant weight loss
early after PICV infection (day 3: p < 0.001 and day 4: p = 0.0053 compared to the day of
PICV infection).
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daily. Statistical comparisons of all mouse groups on the respective day was performed, significant
difference is depicted with asterisks (* p < 0.05). Results are pooled from four independent experiments
n = 6–11 mice/group.
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Our data show that previous LCMV infection protected against PICV-induced weight
loss and that cross-reactive NP205-specific T cells might be involved.

4. Discussion

In this study, we systematically investigated, for the first time, cross-reactive T cell
responses in the setting of chronic LCMV infection in mice with and without checkpoint
inhibitor therapy that were sequentially infected with PICV. Chronic LCMV infected mice were
protected against PICV-induced weight loss. Additionally, these mice showed significantly
more cross-reactive NP205-specific T cell responses, which are comparable to results we and
others have shown in LCMV-immune mice infected with PICV [1,5,9]. Even though we found
decreased numbers of splenocytes and α-CD3 induced IFNγ+ responses in chronically LCMV
infected mice, a similar cross-reactive NP205-specific T cell response was detectable after PICV
infection, compared to LCMV+PICV infected mice. Interestingly, checkpoint inhibitor therapy
with αPD-L1 had no influence on the heterologous immune response.

Heterologous immunity mediated by cross-reactive T cells between unrelated viral
infections has been described mainly after acute, resolving viral infections in humans and
in animal models [8,16,20,41]. This has recently gained interest due to reports of cross-
reactive T cell responses between endemic coronaviruses and SARS-CoV-2, which may
potentially influence the course of COVID-19 [10,11]. Broadly, heterologous immunity can
provide protective immunity on the one hand and trigger immunopathology on the other
hand [2]. It is also known that the sequence of infections is important and can influence the
existence and outcome of heterologous immunity. Whereas IAV memory response protects
against vaccinia virus, it will also render hosts more susceptible to LCMV and MCMV.
Interestingly, vaccinia virus immunity does not significantly affect sequential infection with
LCMV or MCMV [2,42]. This phenomenon of heterologous immunity has been studied
in few investigations in the context of latent viral infections, e.g., MCMV [17–19], but has
been scarcely studied in chronic infection with ongoing high viral replication, e.g., hepatitis
B, hepatitis C and LCMV [20,21,43].

Our initial hypothesis was that the immune response might be impaired in chronic
LCMV infection, so that potential cross-reactive T cell responses might be absent or re-
stricted to this extent after PICV infection, such that sequential PICV infection might have
the same consequences as a PICV infection in a naive mouse. In contrast, LCMVcl13-
response protected against PICV induced weight loss (Figure 4). Furthermore, we were
able to detect a cross-reactive T cell response, despite LCMV-specific T cell exhaustion, in
LCMVcl13+PICV infected mice (Figure 1). The data on protection are in line with data from
latent MHV68 or MCMV mice sequentially infected with IAV, where enhanced survival
and viral clearance has been reported [44,45]. Our data were surprising because we and
others have shown strong exhaustion of virus-specific T cells in chronic viremic infections
like LCMVcl13, hepatitis B virus and hepatitis C virus, which has not been reported for
latent or low-level herpesvirus infections as cytomegalovirus [26,34,46–49]. However, the
quality of the cross-reactive responses in the LCMVcl13 might not be similar to the LCMV-
immune setting, as we could show that the CD8+ T cell response was generally reduced
and phenotypes are different in LCMVcl13+PICV infected mice (Table 1, Figure 2).

One explanation why cross-reactive responses are present during LCMVcl13+PICV
infection might be that the subdominant NP205-specific T cell responses are not as distinctly
exhausted in chronic LCMVcl13, as other responses, for example the dominant NP396-
specific response ([26,34], unpublished data). The first evidence that cross-reactive T cells
can be detected in chronic infections was reported in patients with chronic hepatitis C virus
infection, in whom cross-reactive T cells against IAV were detected [43]. However, it has not
been investigated whether IAV-specific T cells have a different phenotype than in patients
after resolved hepatitis C virus infection or whether these cross-reactive T cells have any
clinical relevance on subsequent IAV infections. Therefore, further studies to investigate
cross-reactive T cell response in chronic viremic infections in human and mouse models
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are needed to further understand potential beneficial effects of heterologous immunity in
chronic infections.

We further investigated in this study whether checkpoint inhibitor therapy in chron-
ically infected hosts would alter the cross-reactive T cell responses to an extent that the
protective heterologous immune response would transition to immunopathology. In our
LCMVcl13+PICV model we could not confirm that. An explanation for this could be
that the NP205-specific T cell response is only minimally affected by checkpoint-inhibitor
therapy, in contrast to the NP396-specific LCMV response [26,34]. Additional studies are
needed to determine further the heterogeneity of epitope-specific T cell responses in chronic
viral infections (such as NP396 vs. NP205 in chronic LCMV infection), their cross-reactive
potential to an unrelated primary infection and the individual responsiveness to checkpoint
inhibitor therapy.

Our study has several strengths and some limitations, as discussed below. We could
establish a mouse model to investigate cross-reactive immune responses in chronic viral
infections in a controlled setting, studies that are very challenging to do in humans. To
our knowledge, we are the first to demonstrate cross-reactive T cell responses in chronic
viral infection. Our study shows that cross-reactive T cells are still functional in a chronic
environment. We hypothesize that our finding has implications also in humans, which
so far remains unknown and requires further investigations. To verify this concept of
cross-reactive T cells in chronically infected humans, patients chronically infected with
hepatitis B virus, hepatitis C virus and human immunodeficiency viruses could be studied.
Another point which needs to be considered is that cross-reactive T cells are only one part
of the concept of heterologous immunity. Therefore, other mechanisms and subsets of
immune cells, e.g., NK cells, B cell responses, or macrophages, as well as soluble immune
factors (e.g., cytokines) that are altered in chronic infections, may also play a significant role.
Viruses have been shown to be differentially susceptible to type I IFN or NK cell killing,
which can be modulated by the underlying infection [2,8]. In the setting of sequential
vesicular stomatitis virus (VSV) infection in chronically LCMV Docile infected mice, a
prolonged type I interferon response has been shown to inhibit the enforced viral replication
of VSV in specific antigen-presenting cells, such as CD169+ macrophages, resulting in
reduced VSV titers, followed by a less strong VSV-specific immune response [18,19]. In our
study, we focused on the cross-reactive CD8+ T cells specific for a subdominant epitope.
Whether these data translate to human immune responses remains to be seen. To gain a
deeper understanding of heterologous immunity in chronic viral infections, the underlying
mechanisms need to be further investigated, as different chronic viral infections lead to
different degrees of molecular imprinting of the immune system. Although not important in
this specific model, systematic investigation of checkpoint inhibitor treatment is important
in the setting because they are increasingly used to treat cancer [50].

In conclusion, we showed that a cross-reactive T cell response was detectable even in
chronic viral infection and mice are protected against sequential virus-induced weight loss.
Treatment with a checkpoint inhibitor had no additional effect. Our findings may provide
important insight for future understanding of cross-reactive T cell responses in a chronic
viral infected host and the development of, for example, virus-vector based vaccines.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14102293/s1, Table S1: Antibodies for flow cytometric staining;
Figure S1: Checkpoint inhibitor therapy in LCMVcl13 infected mice resulted in increased LCMV
NP396-specific T cell response and decreased LCMV load. Figure S2: Gating strategy. Figure S3:
Phenotypical comparison of different groups from cross-reactive and non-cross-reactive T cells. Figure
S4: Vβ and Jβ usage of PICV NP38-specific T cells.
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