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Abstract

Many drug candidates fail in clinical development due to their insufficient selectivity that may

cause undesired side effects. Therefore, modern drug discovery is routinely supported by

computational techniques, which can identify alternate molecular targets with a significant

potential for cross-reactivity. In particular, the development of highly selective kinase inhibitors is

complicated by the strong conservation of the ATP-binding site across the kinase family. In this

paper, we describe X-ReactKIN, a new machine learning approach that extends the modeling and

virtual screening of individual protein kinases to a system level in order to construct a cross-

reactivity virtual profile for the human kinome. To maximize the coverage of the kinome, X-

ReactKIN relies solely on the predicted target structures and employs state-of-the-art modeling

techniques. Benchmark tests carried out against available selectivity data from high-throughput

kinase profiling experiments demonstrate that for almost 70% of the inhibitors, their alternate

molecular targets can be effectively identified in the human kinome with a high (>0.5) sensitivity

at the expense of a relatively low false positive rate (<0.5). Furthermore, in a case study, we

demonstrate how X-ReactKIN can support the development of selective inhibitors by optimizing

the selection of kinase targets for small-scale counter-screen experiments. The constructed cross-

reactivity profiles for the human kinome are freely available to the academic community at

http://cssb.biology.gatech.edu/kinomelhm/
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Introduction

The Human kinome, one of the largest families in the human proteome, comprises >500

genes 1. The pivotal function of kinases is the signal transduction through a reversible

phosphorylation of tyrosine, threonine and serine residues in other proteins 2, 3. The strong

implication of kinase activity in numerous disease states such as cancer 4, diabetes 5,

inflammation 6, multiple sclerosis 7, cardiovascular disease 8 and neurological dysfunctions

9 makes them very important drug targets. Consequently, there is a growing interest in the

development of novel compounds with kinase inhibition as their mode of action 10–12; this

has resulted in over a hundred of kinase crystal structures complexed with low-molecular-

weight inhibitors reported in the public domain 13.

Many therapeutic strategies have been developed to modulate kinase activity 14. The most

prevalent is kinase inhibition by targeting the catalytic site of kinases with ATP-competitive

inhibitors 15. The ATP-binding site provides a compelling environment for binding a

diverse range of organic molecules devised to compete with ATP, mostly by mimicking the

NIH Public Access
Author Manuscript
Mol Pharm. Author manuscript; available in PMC 2011 December 6.

Published in final edited form as:

Mol Pharm. 2010 December 6; 7(6): 2324–2333. doi:10.1021/mp1002976.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

http://cssb.biology.gatech.edu/kinomelhm/


binding interactions of the adenosine moiety 16. Indeed, ATP-binding pockets are the

primary target sites for the majority of the currently available kinase inhibitors 17. However,

the structural and chemical features of the ATP-binding site as well as the catalytic

mechanism are highly conserved across the kinase family, which significantly complicates

the development of kinase inhibitors with sufficient target selectivity.

To address this significant issue, a number of computational techniques have been

developed to support experimental efforts directed towards the development of selective

kinase inhibitors. Most employ various classification schemas for the kinase space with the

underlying assumption that kinases belonging to a common category have higher potential

to bind similar compounds, which may give rise to undesired cross-reactivity effects. The

most straightforward approach to the classification of kinases is based on the global

sequence or/and structure similarity. A comprehensive survey carried out for all available

kinase sequences classified them into 30 distinct families, with 19 of them covering nearly

98% of all sequences and representing seven general structural folds 18. Nevertheless, it has

been demonstrated that a high probability of being inhibited by the same groups of

compounds requires very high sequence identity thresholds, typically more than 50–60%

19–21. However, the average pairwise global sequence identity in the human kinome is

~25%; those kinase pairs with a sequence identity of 50–60% and less, might or might not

have similar pharmacological profiles.

In that regard, alternative approaches are required. A new method was proposed to classify

the medicinally relevant kinase space based on structure-activity relationship, SAR, profiles

22. Results obtained for 38 crystal structures of protein kinases and available small molecule

inhibition data showed that the SAR-based dendograms differ significantly from the

sequence-based clustering for distantly homologous targets. Another approach exploits

structure comparison of kinases based on a feature-similarity matrix 23. This new metric is

well correlated with a pharmacological distance generated by comparing affinity fingerprints

constructed from experimental cross-reactivity profiles. An interesting study reported

recently employs the QSAR analysis of residue contributions to the kinase inhibition profile

24. Using various experimental data sets, binding profiles are constructed based on the

properties of 29 residues in the active site, which can be applied to predict binding

similarities for untested kinases. Other chemical/structure-based classifications of ATP-

binding sites in protein kinases are based on target family landscapes constructed using

molecular interaction field analysis 25, exposed physicochemical properties of the active

sites calculated by Cavbase 26, geometric hashing algorithms 27 and binding site signatures

created from “hot spot” residues 28. These techniques have been shown to be relatively

successful in the identification of protein kinase binding sites known experimentally to bind

the same compound; however, they require high-resolution crystallographic structures of the

target kinase proteins, preferably complexed with inhibitors. As a consequence, the covered

kinase space remains incomplete because it is limited by the availability of experimentally

solved crystal structures; this corresponds to only about 20% of the human kinome.

This gap can be bridged by protein structure prediction, particularly comparative modeling

29, 30. Current state-of-the-art protein structure prediction approaches have reached the

level where they can construct protein models whose quality is often comparable to that of

low-resolution experimentally determined structures 31. Nevertheless, theoretically

predicted protein structures may still have significant structural inaccuracies in their ligand

binding regions 32, 33; this requires appropriate computational techniques that are different

from those applicable to the crystal structures and which can accommodate structural

distortions without significant loss in accuracy.
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In our previous study, we described the results of the first proteome-scale structure modeling

and virtual screening of the entire human kinome 34. Using a template-based modeling

procedure 35, 36, we constructed structural models for all kinase domains in humans.

Subsequently, we applied a structure/evolution-based approach 37 to precisely detect target

sites. These were then subject to large-scale virtual screening against a large collection of

commercially available compounds using a novel hierarchical approach that combines

ligand- and structure-based filters 38, 39. Retrospective benchmarks against several

commonly used ligand libraries demonstrate that predicted molecular interactions between

kinases and small ligands substantially overlap with available experimental data. In this

paper, we attempt to extend the modeling and virtual screening of individual protein kinases

to the system level in order to construct a cross-reactivity virtual profile for the entire human

kinome. To achieve this goal, we develop X-ReactKIN, a machine learning approach that

estimates the potential for cross-reactivity from sequence, structure and binding properties

of the ATP-binding sites in protein kinases. We validate the results against available

selectivity data from high-throughput kinase profiling experiments. Finally, we demonstrate

how X-ReactKIN can support the development of selective inhibitors by suggesting alternate

targets for small-scale counter-screen experiments. The constructed cross-reactivity profiles

for the human kinome are freely available to the academic community via a user-friendly

web interface that can be accessed from http://cssb.biology.gatech.edu/kinomelhm/

Methods

X-ReactKIN overview

Here, we use the concept of kinase family virtual profiling and compute the complete map

of putative cross-interactions within the human kinome. We develop X-ReactKIN, a machine

learning approach that combines sequence, structure and ligand binding similarities of the

ATP-binding sites in protein kinases to estimate the potential for cross-interactions. We note

that these similarities are calculated using modeled protein structures and virtual screening

ranking. We train a Naive Bayes classifier on the available inhibitor selectivity data to

calculate a new probabilistic cross-reactivity score, called a CR-score. Based on the

estimated similarities expressed by the CR-score values, we construct a cross-reactivity

virtual profile that corresponds to the matrix of pairwise interactions within the complete

human kinase family. Below, we describe the scoring functions used to construct the cross-

reactivity probabilistic score, the details of the datasets and machine learning

implementation including training and validation protocols.

Sequence-based score

For each kinase domain in the human proteome, we constructed its structural model using a

state-of-the-art template-based structure prediction approach. This procedure, described in

detail in 34, involves the identification of evolutionary related templates in the PDB 40

using the PROSPECTOR_3 threading algorithm 36, followed by structure refinement/

assembly by TASSER, a coarse-grained procedure guided by tertiary restraints extracted

from the template structures 35. Subsequently, modeled kinase structures were taken as

targets for the prediction of ATP-binding sites by FINDSITE, a structure/evolution-based

method that identifies ligand-binding sites based on binding site similarity among

superimposed groups of functionally and structurally related template structures 37. The

sequence-based score corresponds to the sequence identity (a fraction of identical residues)

of binding residues between two protein kinases calculated using FINDSITE identified

residues and structure alignments generated by TM-align 41.
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Structure-based score

In addition to the sequence-based scoring function, we also use a more structure-oriented

measure of binding site similarity. Here, we employ a modified version of a PocketMatch

score, PM-score, developed to provide a normalized similarity metric for binding site

comparisons 42. PocketMatch applies a geometric hashing algorithm to Cα atoms and side-

chain geometrical centers of ligand binding residues extracted from the crystal structures of

protein-ligand complexes. Each binding site is represented by a set of 90 predefined distance

bins, whose populations capture its shape and chemical features. The original PocketMatch

approach uses residues, one or more of whose atoms are within a distance of 4A from the

crystallographic ligand position 42. In our modified implementation, we use the consensus

binding residues identified by FINDSITE in modeled kinase structures to populate the hash

bins and calculate the PM-score.

Ligand-based score

Next, we introduce a new measure of binding site similarity that uses virtual screening ranks

to calculate a chemical correlation. In the previous study, we carried out a large-scale virtual

screening experiment for the complete human kinome 34. Here, we use this data to calculate

the correlation between compound ranks obtained for two binding pockets. The chemical

correlation corresponds to the Kendall τ rank correlation coefficient 43 calculated for the

average top ranked set of 10,000 ZINC compounds 44 ranked for individual target sites of

the entire human kinome by structure-based virtual screening using Q-DockLHM 39, 45.

Details on the docking/screening protocol are given in 34. Retrospective benchmarks carried

out against several ligand libraries demonstrate that this collection of compounds is likely to

be significantly enriched in ATP-competitive kinase inhibitors 34. A high Kendall τ
indicates that the pockets not only exhibit specific binding affinity toward similar

compounds, but also do not bind similar ligands. This new measure based on the similarity

of virtual screening ranks complements sequence-and structure-based similarities between

binding pockets.

Bioassay data

We use three publicly available bioassay datasets to train and validate X-ReactKIN: 28

commercially available compounds examined against a panel of 20 protein kinases

(Bioassay #1) 46, 38 kinase inhibitors assessed across a panel of 317 kinases representing

>60% of the predicted human kinome (Bioassay #2) 47 and 20 kinase inhibitors including

16 approved drugs or those in clinical development screened against a panel of 119 protein

kinases (Bioassay #3) 48. Bioassay #1 reports inhibitor potency as a percentage of kinase

activity with respect to that in control incubations at an ATP concentration of 0.1 mM.

Bioassays #2 and #3 use ATP site-dependent competition binding with each compound

screened against the kinase targets at a single concentration of 10 μM and the binding

efficacy reported in terms of quantitative dissociation constants, Kd. First, primary kinase

targets(one per compound)are selected based on the strongest inhibition (Bioassay #1) or the

lowest dissociation constant (Bioassays #2 and #3). Then, for each compound, we define

alternate targets as kinases whose activity was inhibited to ≤25% of the control for Bioassay

#1and those with Kd ≤10 μM for Bioassays #2 and #3. Remaining kinases are classified as

non-targets. In this study, we use only compounds with at least one alternate kinase target.

The list of compounds, primary target kinases and the number of alternate targets as well as

non-targets is provided in Supplementary Information, SI Table 1.

Activity-based SAR profiles

In addition to the bioassay data described above, we comparethe virtual profiles constructed

by X-ReactKIN to the experimentally derived activity-based SAR similarities on an
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orthogonal dataset of 577 diverse compounds screened across a panel of 203 protein kinases

21. Here, we use similarity scores expressed by a Tanimoto coefficient calculated for

binding affinity fingerprints generated using an affinity threshold of 10%. Similarly to the

CR-score values, kinase SAR similarity scores also range from 0(dissimilar)to 1(identical).

For each kinase target, we assess the quality of X-ReactKIN virtual profiles calculated

against the remaining kinases using the Pearson correlation coefficient between the SAR

similarities and the CR-score values.

Machine learning

In X-ReactKIN, we use a Naive Bayes classifier to combine individual scoring functions:

sequence-, structure- and ligand-based into a single probabilistic score. A classical Naive

Bayes classification is based on estimating P(X|Y), the probability or probability density of a

qualitative attribute X given class Y. In our classifier, the real-value attributes are modeled

by a Gaussian distribution, i.e. the classifier first estimates a normal distribution for each

class by computing the mean and standard deviation of the training data in that class, which

is then used to estimate P(X|Y) during classification 49. For a given pair of protein kinases,

the probabilistic score from the classifier, called a CR-score, estimates the chances of the

cross-reactivity from sequence, structure and binding similarities. X-ReactKIN was validated

using the following leave-one-out procedure: In each round, one inhibitor and its close

analogs are removed from the dataset that consists of the bioassay data described above and

the classifier is trained on the remaining compounds. Here, we define a close analog as a

compound that has a Tanimo to coefficient calculated using SMILES strings ≥0.7 50. Then,

for the excluded inhibitor and its primary target, the kinase proteins are ranked by the

predicted CR-score, with the top-ranked kinases assumed to be alternate targets. We assess

the accuracy of the off-target identification by a receiver operating characteristic

(ROC)analysis with the CR-score used as a variable parameter. In addition to the standard

ROC curves, we also calculate their distribution-free confidence bounds 51.

Virtual map of kinase cross-reactivity

Finally, X-ReactKIN was re-trained on all bioassay data and the complete map of putative

cross-interactions within the human kinome was calculated. Moreover, we constructed a

statistical model by fitting the distribution of the random CR-score values to a Normal

Inverse Gaussian distribution 52 in order to calculate the associated p-values. The fitting

procedure was done in R 53 using the ghyp package. The virtual cross-reactivity map is

visualized using matrix2png 54, with the kinase proteins grouped according to the subfamily

classification and clustered by sequence identity using CLUTO 55.

Results

X-ReactKIN validation

Here, we use the available selectivity data from high-throughput kinase profiling

experiments to train and validate X-ReactKIN in the off-target prediction. As described in the

Methods section, for each kinase inhibitor and the corresponding primary target, the

remaining kinases are assessed with respect to the estimated potential for cross-reactivity,

i.e. ability to bind similar compounds. The results of leave-one-out validation are presented

as a ROC plot in Figure 1. Encouragingly, in all cases the performance of X-ReactKIN is

better than random, with a true positive rate >0.5 and a false positive rate <0.5 for almost

70% of the benchmark inhibitors. Particularly the results obtained for Bioassay #2 are very

promising since this panel of kinases covers >60% of the human kinome 47. In addition,

individual ROC plots for six selected compounds that include approved drugs such as

Gleevec (imatinib), Iressa (gefitinib), Nexavar (sorafenib), Sprycel (dasatinib) and Tarceva
(erlotinib) are presented in Figure 2. In all cases, the cross-validated performance of X-
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ReactKIN is significantly better than random, with tight confidence bounds particularly for

dasatinib (Figure 2A), erlotinib (Figure 2B), motesanib (Figure 2E) and sorafenib (Figure

2F). The calculated cut-off points (displayed in Figure 2), which maximize the sensitivity

and specificity show that most of the cross-interacting kinases are identified at the expense

of a relatively low false positive rate; the true (false) positive rate is 0.75 (0.25), 0.51 (0.18),

0.60 (0.34), 0.63 (0.27), 0.80 (0.18) and 0.53 (0.11) for dasatinib, erlotinib, gefitinib,

imatinib, motesanib and sorafenib, respectively.

Human kinome cross-reactivity profile

Encouraged by the satisfactory performance of X-ReactKIN in benchmark tests, we re-

trained the model on all bioassay data and constructed a complete map of putative cross-

reactions within the entire human kinome. The details on the trained classifier used in X-

ReactKIN are provided in Supplementary Information, SI Table 2. In Figure 3, for the human

kinome, we compare the cross-interaction potential expressed by a sequence-based

classification (Figure 3A) to the CR-score based classification (Figure 3B). In both Figures

3A and B, the kinases are clustered using sequence identity and the resulting dendograms

are shown on the top of each plot. Comparing the sequence identity score to the CR-score,

we observe many off-diagonal interactions pointed out by high CR-values (Figure 3B, blue

spots). These non-trivial similarities, which are clearly the most interesting, indicate the

possibility to bind similar compounds by remotely related protein kinases that belong to

different groups. In particular, many potential cross-interactions are observed between

kinases that belong to AGC (containing PKA, PKC and PKG protein kinases), CAMK

(calcium/calmodulin-dependent protein kinases) and STE (the homologues of yeast Sterile

kinases) groups. We note that whereas the average pairwise sequence identity within these

groups is relatively high: 38%, 34% and 36%, respectively, the inter-group sequence identity

is notably lower: 29%, 26% and 26% for AGC/CAMK, AGC/STE and CAMK/STE,

respectively. Even lower average sequence identity is seen between the TK (tyrosine

kinases) group and those kinases that belong to AGC (23%), CAMK (24%) and CMGC

(22%). The functional similarities indicated by the high CR-score values between these

kinase proteinsare undetectable on the basis of the sequence similarity alone. We have also

constructed a statistical model for the CR-score distribution in order to assign statistical

significance values. Here, we use a Normal Inverse Gaussian distribution, which fits well to

the data; this is shown as histograms as well as a quantile-quantile plot in Supplementary

Information, SI Figure 1.

Comparison to SAR profiles

For a subset of 203 protein kinases, activity-based SAR similarities have been previously

reported 21. These similarities were calculated directly from the experimental data obtained

by screening the target kinases against a diverse set of >500 compounds, intended to

represent kinase inhibitor chemical space. This large-scale kinase profiling provides an

orthogonal dataset to validate the potential for cross-reactivity predicted by X-ReactKIN. The

results are presented in Figure 4. The direct comparison of the similarity between pairs of

kinases according to the SAR profiles and the CR-score values isshown in Figure 4A. In

both cases, the joint inhibition of many of these kinase pairs is observed within the TK

subfamily. Moreover, good agreement between both approaches is seen for the STE

subfamily, for which many predicted cross-interactions with kinases that belong to other,

particularly AGC and CAMK, groups are confirmed experimentally. The distribution of the

Pearson correlation coefficients between SAR similarities and CR-score values calculated

for 203 kinase targets is presented in Figure 4B. This distribution is clearly shifted toward

high (>0.5) values, which indicate a good overlap between experimental SAR and virtual

CR-score profiles for the majority of kinase targets. The average Pearson correlation

coefficient calculated across this dataset is 0.53 ± 0.14. The qualitative agreement between
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the activity-based SAR similarities and the CR-score profiles provides significant validation

of the X-ReactKIN approach.

Below, in a case study, we present a simple application of the human kinome cross-

reactivity virtual profile constructed by X-ReactKIN to demonstrate how it can be used to

optimize the selection of kinase targets for small-scale selectivity counter-screens in kinase

inhibitor development.

Case study: Inhibitors of Lck

2-Aminopyrimidine carbamates are a new class of compounds with potent and selective

inhibition of the leukocyte-specific protein tyrosine kinase, Lck. Structure-activity

relationship studies and extensive pharmacological tests carried out for a series of

substituted 2-aminopyrimidine carbamates identified 2,6-dimethylphenyl-2-((3,5-

bis(methyloxy)-4-((3-(4-methyl-1-piperazinyl)propyl)oxy) phenyl)amino)-4-

pyrimidinyl(2,4-bis(methyloxy)phenyl)carbamateas a potent inhibitor of Lck, with an IC50

of 0.6 nM (compound 43 in the original paper) 56. Subsequently, a counter-screen against

15 other kinases that belong to TK, CMGC and AGC groups was carried out in order to

characterize the selectivity profile of this compound. Here, we compare the experimental

inhibition data to the in silico profile of Lck and demonstrate that the map of putative cross-

interactions within the human kinome constructed by X-ReactKIN can be used to suggest

alternate kinase targets for the selectivity counter-screens. Figure 5 shows the selectivity

profile for the pyrimidine carbamate inhibitor. Experimentally, this inhibitor was found to be

highly selective with regards to the non-binding of JAK3(Kin. Dom. 2), MET, JNK3, PKCt,

IGF1R and CDK2 (Figure 5A). With the exception of JAK3 (Kin. Dom. 2), the CR-score

values (p-values) between Lck and these kinases are statistically insignificant: 0.483

(3.46×10−2), 0.126 (7.03×10−1), 0.182 (4.36×10−1), 0.267 (1.96×10−1), 0.229 (2.81×10−1)

and 0.162 (5.23×10−1), respectively (Figure 5B). For another 8 kinase targets, the

experimental IC50 values are in the range of 100 nM −1 μM; here the CR-scores are higher

(~0.3, p-values ~0.1 or better), with p-values <0.05 for BTK (1.39×10−2) and JAK2 (Kin.

Dom. 2, 4.07×10−2). No selectivity was shown against SRC kinase, for which the CR-score

(p-value) is 0.961 (1.55×10−3).

Furthermore, the map of putative cross-interactions reveals other similarities between e.g.

FGFR1 and TIE2 (CR-score=0.856, p-value=2.92×10−3), JAK2 (Kin. Dom. 2)and TIE2

(CR-score=0.663, p-value=9.96×10−3), BTK and ZAP70 (CR-score=0.544, p-

value=2.23×10−2), JNK3 and p38a (CR-score=0.532, p-value=2.43×10−2) or JAK3(Kin.

Dom. 2)and SYK (CR-score=0.603, p-value=1.49×10−2), which indicate a high probability

of inhibition by similar compounds. In fact, the joint inhibition of many of these kinase pairs

has been already confirmed experimentally. We note that none of this information was used

for the construction of the CR-score matrix; indeed we were unaware of the experimental

results until after the predictions were made and we did a literature search. For example, an

oral kinase inhibitor ACTB-1003 with multiple modes of action, targeting cancer mutations

via FGFR1 inhibition (IC50=6 nM)and angiogenesis through inhibition of VEGFR2 (2 nM)

and TIE2 (4 nM) has been recently reported 57. Several inhibitors (compounds 10, 11, 12,

13 and 14 in the original paper) were found to non-selectively inhibit JAK2 (TIE2) with the

percent of enzyme activity at 1μM concentration of 6 (35), 5 (0), 0 (1), 30 (1) and 27 (7),

respectively 58. Moreover, compound 7 in the original paper was found to be the most

selective against JAK2 and TIE2 (3% and 26%) across a panel of 59 recombinant serine/

threonine and tyrosine kinases. Many JNK3 inhibitors are known to also inhibit p38a; e.g.

two compounds with a nanomolar activity against JNK3 (IC50 of 7 and 1 nM) have been

reported as potent p38a inhibitors as well, with the IC50 of 0.2 and 4 nM, respectively 59.

Finally, in vitro enzymatic assays of the novel JAK3 inhibitor R348 showed potent

inhibition of JAK3-and SYK-dependent pathways 60.
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Lck was also included in the large-scale assessment of the chemical coverage of the kinome

space using activity-based SAR profiles 21. In Figure 4B (inset), we compare the

experimentally derived SAR similarities to the CR-score values calculated against the

remaining 202 protein kinases used as targets in the high-throughput binding assay. Here,

the Pearson correlation coefficient between the SAR similarities and the CR-score values is

0.73. This high correlation additionally confirms the good agreement between the potential

for cross-reactivity predicted by X-ReactKIN and the experimentally observed joint

inhibition of protein kinases.

Of course, a high probability of inhibition by the same groups of compounds does not

preclude a successful design of selective inhibitors. Rather, it should support the counter-

screen selectivity experiments by optimizing the selection of possible off-targets, whose

binding sites have the highest potential for cross-reactivity.

Discussion

Many drug candidates fail in clinical development due to their poor pharmacokinetic

characteristics and because of intolerable adverse effects, which may sometimes originate in

their insufficient selectivity 61. The physicochemical similarity between highly conserved

ATP-binding sites in protein kinases, one of the most important drug targets, has rendered

the challenge of designing selective inhibitors difficult. Nevertheless, the discovery of

selective kinase inhibitors demonstrate that there is enough conformational and chemical

diversity in and around the active site that can be explored to design compounds with

sufficient selectivity 14, 15. Thus, particularly in the early stages of drug development, the

knowledge of alternate kinase targets with significant potential for cross-reactivity is critical.

One common strategy in inhibitor design involves differential lead optimization to increase

the selectivity toward a particular drug target; such efforts are typically oriented towards the

development of highly specific inhibitors acting on single protein kinases. Later on, with the

approval of multi-target inhibitors, such as imatinib, sunitinib or lapatinib, an alternate

strategy has emerged, where drug-resistance can be overcome by simultaneously targeting

multiple kinase pathways 62. Multikinase inhibitors with highly tuned selectivity profiles

are currently of particular interest in pharmaceutical research 63. The functional

classification of the entire human kinome is of paramount importance in the development of

both highly selective as well as selectively unselective novel inhibitors.

Due to the sparse and non-uniformly distributed structural data 64, cross-interactions are still

poorly defined atthe kinome level. To maximize the coverage of kinase functional space, we

developed X-ReactKIN, a Chemical Systems Biology approachfor in silico cross-reactivity

profiling that does not require high-resolution structural data. X-ReactKIN employs a state-

of-the-art protein structure prediction algorithm followed by the recently developed Ligand

Homology Modeling approach to model kinase-drug interactions 34. Subsequently, the

modeling of individual kinase members is now extended to construct a cross-reactivity

virtual profile for the entire human kinome. This proteome-wide analysis represents a

significant improvement over other methods, which are generally confined to high-

resolution structures solved by protein crystallography.

In addition to the traditional sequence and structure similarity measures, our method also

uses a novel type of the binding site comparison by means of virtual screening ranks. A high

correlation between ligand rankings for two binding sites, referred to as a chemical

correlation, indicates that these sites not only exhibit specific binding affinity toward similar

molecules, but also do not bind similar compounds. Here, the accuracy of ligand docking

and ranking is essential. Particularly, using predicted receptor structures requires reliable

docking techniques capable of dealing with structural inaccuracies in protein models. It has
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been demonstrated that even moderate structural distortions of the modeled binding pockets

drastically interfere with the ability of the all-atom docking approaches to identify correct

docking geometries and to rank ligands 39, 65. Our virtual screening protocol that provides

compound ranking for the estimation of the chemical correlation employs evolution-based

ligand docking 38 followed by low-resolution binding pose refinement 39, 45. Such a

docking/ranking procedure is well suited for virtual screening applications using modeled

receptor structures since it exhibits significant tolerance to receptor structure deformation

39.

Modern drug discovery is routinely supported by computational techniques, such as virtual

screening, which prioritize drug candidates and increase the hit rate by restricting screening

libraries to compounds that likely exhibit the desired bioactivity. At the system level, the

functional classification of the human kinome expands our understanding of the structural,

chemical and pharmacological aspects of the kinase space and provides a practical strategy

that should prove useful for the design of more selective therapeutics.

Availability

The cross-reactivity virtual profile of the human kinase space is available at

http://cssb.biology.gatech.edu/kinomelhm/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

ROC plot for the prediction of kinase inhibitor cross-reactivity using X-ReactKIN.

Compounds from Bioassays #1, #2 and #3 are shown as dark gray circles, black triangles

and light gray squares, respectively.
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Figure 2.

Individual ROC plots for selected inhibitors: (A) dasatinib, (B) erlotinib, (C) gefitinib, (D)

imatinib, (E) motesanib and (F) sorafenib. In each graph, the solid black line, the gray area

and the dashed line show the ROC curve for the CR-score, its 95% confidence bounds and

the accuracy of a random classifier, respectively. The cut-off point that maximizes the

sensitivity and specificity is represented by a black triangle. Chemical structures of the

inhibitors are also displayed.
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Figure 3.

Classification of the human kinome by X-ReactKIN: (A) sequence similarity matrix and (B)

cross-reactivity matrix. In both plots, kinase proteins are grouped according to the subfamily

classification displayed on both axes. Within each group, kinase members are clustered

using sequence identity and the resulting dendograms are shown on the top of each graph.

Color scale expressing the sequence similarity (A) as well as the potential cross-reactivity

(B) is displayed on the right.
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Figure 4.

Comparison of the X-ReactKIN virtual profiles to the SAR similarities on a set of 203

protein kinases. (A) Similarity between pairs of kinases ordered according to the Sugen

phylogenetic tree (available at http://kinase.com). Upper right and lower left triangles

represent the CR-score values and SAR similarities, respectively. The color scale expressing

both similarities is displayed in the right corner. (B) Histogram of the distribution of the

Pearson correlation coefficients between SAR similarities and CR-score values calculated

for 203 kinase targets. Inset: Correlation between SAR similarities and CR-score values for

the leukocyte-specific protein tyrosine kinase, Lck.
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Figure 5.

Selectivity profile for the pyrimidine carbamate inhibitor reported in 56: (A) experimental

inhibition constant values in μM with the IC50≤1 μM (>1 μM) in turquoise (yellow); (B)

pairwise CR-score matrix for the tested kinases, CR-score scale is given at the bottom; (C)

chemical structure of the inhibitor. In B, kinase pairs with a pairwise sequence identity of

>60% are marked with an X.
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