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This paper describes the R package crqa to perform cross-recurrence quantification

analysis of two time series of either a categorical or continuous nature. Streams of

behavioral information, from eye movements to linguistic elements, unfold over time.

When two people interact, such as in conversation, they often adapt to each other, leading

these behavioral levels to exhibit recurrent states. In dialog, for example, interlocutors

adapt to each other by exchanging interactive cues: smiles, nods, gestures, choice of

words, and so on. In order for us to capture closely the goings-on of dynamic interaction,

and uncover the extent of coupling between two individuals, we need to quantify how

much recurrence is taking place at these levels. Methods available in crqa would allow

researchers in cognitive science to pose such questions as how much are two people

recurrent at some level of analysis, what is the characteristic lag time for one person to

maximally match another, or whether one person is leading another. First, we set the

theoretical ground to understand the difference between “correlation” and “co-visitation”

when comparing two time series, using an aggregative or cross-recurrence approach.

Then, we describe more formally the principles of cross-recurrence, and show with the

current package how to carry out analyses applying them. We end the paper by comparing

computational efficiency, and results’ consistency, of crqa R package, with the benchmark

MATLAB toolbox crptoolbox (Marwan, 2013). We show perfect comparability between

the two libraries on both levels.
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1. INTRODUCTION

We describe an analytic framework for studying how human

behavior is organized in time, with an emphasis on linguistic

interaction. Interaction, and perhaps all human behaviors, are

organized in systematic and interesting ways in time, and it is

important to explore new techniques to help researchers examine

this temporal organization.We introduce cross recurrence quan-

tification analysis (CRQA), a technique growing in use in many

fields. This analysis framework may contribute to areas of cogni-

tive science which have not always looked closely to behavioral

organization in time. Many studies utilize atemporal methods,

which aggregate over temporal dimensions of analysis, often

focusing instead on the magnitudes of behaviors that encompass

interaction. For this discussion, we refer to “aggregative” as any

analysis that averages behavior across time, thereby abstracting

over the temporal ordering of interactive behaviors, and focusing

instead on the rate, or magnitude, of occurrence.

This aggregative approach has borne considerable fruit for

some questions. For example, when two people interact they may

come to mimic each other as measured by behavioral frequen-

cies (Bargh and Chartrand, 1999), and they may utilize similar

sentence structures at opportune times as discerned by care-

ful experimental design (Haywood et al., 2005). Many papers

have shown that humans can coordinate syntactic structures

(Branigan, 2007), entrain on descriptions (Brennan and Clark,

1996), spatial perspective (Schober, 1993), and so on. Indeed,

this aggregative approach has been the dominant technique in

the language sciences for studying the convergence of human

interlocutors (we discuss prominent exceptions later in this

paper).

There is no doubt that such aggregative methods are impor-

tant, and often sufficient for rendering new insights into interac-

tion. But recent work has sought to characterize the manner in

which these aggregate scores unfold. Put simply, taking aggregate

measures and “unfolding them in time” offers both intriguing

methods, and also new questions: Does the temporal organization

of interaction show interesting patterns, beneath their aggrega-

tion? Do these patterns shed light on the mechanisms underlying

human interaction? How are different behavioral measures orga-

nized in time relative to each other? What variables impact the

shape of coordination between two people who are interacting?

By unfolding behavioral measures, and subjecting them to

temporal analysis, we can indeed find distinct dynamics between

two interacting people. For example, Richardson and Dale (2005)

find that when one person is speaking to a listener, they exhibit

coupled gaze patterns, but with the listener’s eye movements

lagged by a characteristic time of about 2 s. Interestingly, the

lag time of any one listener predicted their comprehension; the
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dynamics of coupling revealed comprehension. But as two peo-

ple talk bidirectionally (taking turns as speaker and listener),

this lag time approaches 0 s, suggesting tighter coupling occurs

during real-time interaction (Richardson et al., 2007; Dale et al.,

2011a). And beyond just eye movements, other behavioral aspects

of interaction exhibit this coupling, such as nods, gestures, and

conversational moves (Louwerse et al., 2012).

These basic insights were generated through what is called

cross-recurrence methods. It is a family of techniques mea-

suring how and the extent to which streams of informa-

tion come to exhibit similar patterns in time. This analy-

sis framework was developed, and is extensively employed, in

the natural sciences in such diverse domains as heart rate

variability, seismology, and chemical fluctuations (see Marwan

et al., 2007; Marwan, 2008, for reviews). In psychology, it

rapidly gained attention in the domain of motor control

(e.g., Richardson et al., 2005; Shockley and Turvey, 2005;

Stephen et al., 2009), being applied to both within- and

between-person dynamics, such as during precision-target tasks

(Balasubramaniam et al., 2000) and even conversation (Shockley

et al., 2003).

As we describe further below, the method is often referred to

as a “non-linear” technique that permits the researcher to avoid

certain assumptions that linear statistics make (see Riley and Van

Orden, 2005). This method can also reveal system characteristics,

phrased in the language of dynamical systems, permitting

researchers to describe their phenomena in new and potentially

interesting ways. A comprehensive review of the method can be

found in Marwan et al. (2007), an especially lucid introduction

to it in Webber and Zbilut (2005), and a description of the

method’s broader context in dynamical systems and psychology

in Richardson et al. (2014). An excellent MATLAB toolbox for

recurrence can be found in Marwan (2013)1.

In this paper, we present crqa, a package written in R
implementing basic methods to perform cross-recurrence anal-

ysis. Even if the crqa package can be technically used with

any stream of temporal data, we designed the crqa package

mainly to investigate human behavioral dynamics, such as eye-

movement patterns or conversational moves, emerging during

linguistic interaction. For this reason, we explain the theoretical

principles of cross-recurrence analysis, as well as demonstrate the

package’s functionalities, emphasizing the value of this technique

for studying linguistic interaction: finding temporal patterning

between two persons as they interact.

We start in an unusual but, we believe, helpful manner: by

motivating the importance of unfolding aggregate measures, and

showing how recurrence does this. To do so, we make use of

highly simplified simulated models as demonstration (cf. Beer,

2003), where hypothetical data are generated from known prin-

ciples. Then, we provide more formal details about CRQA and

the way it is computed, then explain the most important func-

tions implemented in the crqa library and briefly describe the

data available to test it. Finally, we compare the computational

accuracy and efficiency of our R package with the state of the art

1Readers can also consult Norbert Marwan’s http://recurrence-plot.tk/

programmes.php for additional resources and software tools.

MATLAB toolbox, crptoolbox (version 5.15) by Marwan et al.

(2007) on simulated dichotomous time series. We report tests of

the computational efficiency (user elapsed time) of the libraries as

a function of the length of the time series and consistency (abso-

lute difference and correlations) of the measures obtained by the

two libraries.

2. MOTIVATING RECURRENCE: AGGREGATION,

COVARIANCE, AND CO-VISITATION

In this section, we aim to briefly motivate cross-recurrence

methods, and relate them conceptually to statistical aggregation

(“atemporal” aggregation), and cross-correlation approaches. We

will not articulate the formal relationships among these analy-

ses, as they have been articulated elsewhere (see Marwan et al.,

2007; Bakeman and Quera, 2011; Dale et al., 2011b). However,

there are relatively few clear comparisons of these techniques that

explain where and when each would be useful. Aggregation and

correlation scores are highly useful and easy to compute, but they

are not a comprehensive characterization of two systems’ rela-

tive behaviors. By focusing on the path of a system’s behavior in

time, there may be other indices that describe how two systems

are exhibiting similar or dissimilar patterns. We hope this simple

section motivates the distinction between covariance-based and

“visitation-based” measures.

We use a simple toy model which derives from a common

experimental circumstance. Imagine having a confederate (C)

interact with 40 subjects (S) in the laboratory. In one condition

(high), you have the confederate amplify a particular pattern of

behavior, such as scratching the face or touching the foot. In

another condition (low) you have them minimize such behav-

iors. Doing an experiment much like this, Bargh and Chartrand

(1999) had confederates use non-salient and seemingly incidental

behaviors to induce this behavior in a communication partner.

By having a confederate engage in one or the other behavior,

they can induce the participant to increase their behavior along

the same dimension. Researchers aggregate the observed effect on

participants (how many times the participant engages in these

behaviors), and find that the rate can be amplified as a func-

tion of the confederate’s behavior (high vs. low rate of target

behavior).

Let us take up some purely hypothetical data for the sake of

demonstration, using precisely this setup. We designed a very

simple simulation of the kind just described, in which we sim-

ulate data about the occurrence of a specific behavioral event,

across time, between confederate and participant “agents.” We

use simts code, available in the crqa package, to specify the

behavior of confederate vs. participant along some dimension in

Table 1. In actual practice, these data may be the occurrence of

touching the face or foot (Bargh and Chartrand, 1999), looks to

certain characters on a computer screen (Richardson and Dale,

2005), or an entire array of behaviors from dialog moves to laugh-

ter events (Louwerse et al., 2012). Readers may consult detailed

advice and coding schemes for discrete behaviors in Bakeman

(1997). Here we will simply call this an “event” and track its

occurrence over time, for two agents, as shown in Figure 1.

The raw data that this study would use, presumably, is a pro-

portion, aggregated over time, of the behavioral event of interest.
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Table 1 | A simple algorithm for producing a system (C) that drives a

second system (S) for a binary time series (1 for event occurrence; 0

otherwise).

Variables Algorithm

P(X) = base rate of event

for person X

Produce a time series for C and S events:

P(X|Y) = rate of event for

X given Y did

P(X|X) = probability of

event repetition

Do 1000 times

If rand < P(C)

C outputs event (=1)

Else if rand < P(C|C) and C = 1

C outputs event

Otherwise

C outputs no event (=0)

If rand < P(S|C) and C = 1

S outputs event (=1)

Else if rand < P(S)

S outputs event

Else if rand < P(S|S) and S = 1

S outputs event

Otherwise

S outputs no event (=0)

The algorithm is available in the package crqa, as function simts. A practi-

cal explanation about implementation and usage of the function simts can be

found in the Supplementary Material of this paper.

Notes: In the algorithm, C = confederate agent, S = participant agent. 20 such

runs were conducted for 1000 iterations for each of conditions low P(C) =

0.05 and high P(C) = 0.25. Other parameters include: P(S) = 0.05, P(C|C) =

P(S|S) = 0.2, and P(S|C) = 0.25. Parameters were chosen to bring average

behavior to Supplementary Material in the low condition. This is merely for

demonstration and other parameter values would work fine.

FIGURE 1 | Two example experimental runs, in which we observe the

behavior of two simple conversational “agents,” a confederate (C) and

participant (S), over 1000 time steps. The confederate’s behavior is

experimentally setup to amplify the occurrence of the event. P(C) in the plot

reflects the raw probability that the confederate will emit the behavioral

event (see Table 1). As specified in the agent’s policies, an increase in the

behavioral event by the confederate should also increase it in the

participant, which analyses are meant to bear out.

In Figure 2, one can see that these events are then aggregated into

one rate score. The left side of the plot shows a relatively higher

incidence of the behavioral event by the participant agents, com-

pared to the right side of the plot. In our simplified conversational

FIGURE 2 | Data from 20 simulated interactions for each condition of

the confederate’s event occurrence rate (0.05 vs. 0.25). As expected,

one sees a relative increase in the event’s occurrence in agent S if it occurs

in agent C.

FIGURE 3 | Unfolding aggregate scores using cross correlation.

Cross-correlation functions between confederate and participant agents.

The high agent condition (red), reflecting the cross-correlation between C

and S agents at different time lags or shifts (scale: step increments), shows

maximal variance accounted for at lag −1, C leading S by one time step (as

set in the simulation). Smoothed profiles generated with ggplot2 in R,

with stat_smooth which uses standard error to define the width of the lines.

agents, this is a result of the fact that the confederate agents can

drive the probability of the event of interest in the participant

agent.

Another way of achieving this distinction between low and

high conditions is to observe the correlation between their behav-

ior and that of the confederate. This is shown in Figure 3, which

displays the Pearson correlation between interlocutors at differ-

ent time lags. Such a cross-correlation function gives a more

detailed picture of the temporal interaction between interlocu-

tors. The maximal correlation (≈0.2) occurs at a lag of −1,

which reflects the confederate agent leading the participant agent2

. Because a higher event occurrence P(C) generates more events

in agent S, the variance accounted for at that lag will also sig-

nificantly increase, as more events in the confederate will be the

driver of those in the participant. Recent exciting extensions of

this technique can use a windowed approach to visualize and

explore temporal relations, as shown by Boker et al. (2002) and

Barbosa et al. (2012). In general, cross-correlation informs about

2Note that the side on which this lag occurs is chosen by the experimenter,

and simply reflects the fact that one system is leading the other in some way.
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the relative covariation between event sequences (i.e., coupling),

and its maximal point (in our example, C leads maximally S at

lag −1).

This correlation measure has some similarities to aggrega-

tion, and be described as “co-aggregation,” i.e., observing how

the rate of a behavior co-varies with that of another time series.

Covariation methods are obviously useful and fruitfully applied

in many contexts, but even beyond correlation there are many

temporal patterns worthy of exploring. In the cross-recurrence

case, one may be said to be exploring co-visitation patterns: How

one time series is revisiting states that the other time series has

visited. This works by quantifying the pattern of visitation of the

two systems, rather than simply quantifying their relative rate of

occurrence. First, imagine plotting all points (iC, jS) where iC are

the time indices of the event in agent C’s time series, and jS are the

indices of the event in agent S. This produces a visualization of the

pattern of co-visitation over time between the two systems. This is

shown in Figure 4. These are referred to as cross-recurrence plots

(CRPs).

Cross-recurrence quantification analysis (CRQA) is the quan-

tification of the patterns of co-visitation taking place on these

plots. Already, one can simply see that there is a much greater den-

sity of points on the high condition plot than the low condition.

Here we show that quantification of the plots can obtain similar

information to cross-correlation, but under a different interpre-

tive scheme. In fact, as we show in the next section, there is a

whole range of measures that can be extracted from these plots,

and they can become quite sophisticated in their potential impli-

cations for the properties of cross recurrence taking place between

the two systems that are being compared.

The line of coincidence (LOC) on this plot is where iC = jS,

where the points reflect the systems doing the same thing at

the same time. By calculating the rate of the event recurrence

along the diagonals around the LOC, we obtain a diagonal-wise

recurrence rate (RR) measure that also provides a functional char-

acterization of coupling (again, maximized at −1). However, the

results will be more directly influenced by the rate of co-visitation,

or recurrence. So, while cross-correlation gives a general measure

of the co-variation between two series, cross recurrence shows a

co-visitation score that will vary across experimental conditions.

This is evident in the diagonal-wise RR profile shown in Figure 5,

right panel.

Though this simple diagonal-wise RR profile correlates with

cross-correlation (especially in these simple cases), the overall

measures will behave differently depending on the rate of occur-

rence of events in the time series. It is also important to note

that cross recurrence provides the researcher an option to remove

the non-event matches (0’s), whereas in cross-correlation they

are preserved and explicitly counted toward co-variation (for

discussion see Dale et al., 2011b)3.

Finally, and importantly, measures so far are descriptive in

nature, in the statistical sense that they are not inferential. In order

to draw inferences regarding the differences between conditions,

there are a variety of techniques that are relevant. In a research

context, one collects dozens of dyads or individual subjects from

whom time series are drawn. Comparing average recurrence pro-

files can be done by reference to certain baselines. Richardson

and Dale (2005) use both surrogate (“virtual pairs”) and shuffling

techniques to compare the observed profiles against these null

cases. Shockley et al. (2007) also use the surrogate approach, but

on continuous body-motion data. Another approach is simply

3It is important to note here that in practice, the 0 event codes are recoded

differently for two time series, as distinct “non-event” codes, such as 11 or 12

(for example) to make sure that these non-events do not produce recurrence

points on the plot.
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FIGURE 4 | Example cross recurrence plots (CRPs) of two sample runs of

the simulated data. Left shows a high condition run, right shows a low

condition run. Points reflect relative moments in time where C and S are

revisiting event states (=1), whereas 0’s (non-events) do not produce points

on the plot. Three black lines define the approximate location of the lag

calculations described in the text (from −5 to +5). The middle black line is the

line of coincidence (LOC), where lag = 0. Though difficult to see in this plot,

the points appear shifted slightly upwards (lagged +1), indicative of C leading

S. This pattern becomes more evident in Figure 5, when calculating

percentage recurrence over these diagonals.
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FIGURE 5 | By calculating the rate of points on diagonals around

the LOC (left side), we obtain a diagonal-wise recurrence that

reflects the relative co-visitation, as a function of lag (right side).

The line superimposed on both panels shows the approximate region

over which percentages are calculated. Like cross-correlation we get a

maximization at −1, reflecting C driving S. However, the difference

between the conditions is larger, proportional to the relative rate of

occurrence. Recurrence does not count non-events (0’s), so the y -axis

levels will be determined by the frequency of the events in the time

series (1’s). Smoothed profiles (on the right) were generated with

ggplot2 in R, with stat_smooth which uses standard error to define

the width of the lines.

to compare aggregate measures between two or more experi-

mental conditions (e.g., Shockley et al., 2003). In general, with

categorical time series of the kind we show here, shuffling the

time series produces approximately the same expected mean as

surrogate pairing (Dale et al., 2011a). In continuous time series

(discussed further below) shuffling should never be the basis of a

baseline, and a random pairing of virtual pairs is the preferred

approach. Recently, growth-curve analysis may afford a way of

modeling these profiles that would avoid problems of the baseline.

For example, by testing the significance of various coefficients in a

polynomial time model, one can determine whether a significant

quadratic trend is present. We would endorse this as an important

next step in establishing an inferential basis for these profiles, and

the reader can consult (Mirman, 2014)4.

Below we go beyond this simple diagonal-wise RR measure,

showing that CRQA also affords an array of other measures to

characterize coupling between time series. And in fact, most of

these other measures have no obvious analog with the cross-

correlation function. These properties have led some to refer to

CRQA as a “generalization of the linear cross-correlation func-

tion” (Marwan et al., 2007, p. 256).

Here we have used a simple toy system to compare and con-

trast aggregation, co-variation, and co-visitation analyses. If one

is simply interested in raw rates of occurrence, then aggregation

is adequate. However, if the researcher wishes to explore func-

tional relationships between systems, cross-correlation or cross-

recurrence methods may shed detailed temporal light on their

relationship. Cross-correlation measures aggregate co-variation

between the two systems, and the maximal correlation observed

reflects a stable coupling function between the two systems.

However, it does not preserve relative rate of “co-visitation” of

4Below we also discuss contingency table analysis, and the importance of

lag sequential analysis as in Bakeman and Quera (2011); this provides more

information about inferential contexts, such as the log-linear functions. It

historically precedes and is a very strong basis for doing event-based lag anal-

ysis, and, at present, it still offers a more developed statistical basis for making

inferences in the categorical case.

event states by the two systems. A similar source of information

about coupling can be obtained by calculating diagonal-wise RR

from cross-recurrence plots, providing both a coupling function

and a relative rate of occurrence of one system visiting the events

of another. As just noted, this is just one simple measure among

many provided by CRQA.

Now that we have motivated the basic interpretive frame-

works afforded by these analyses, we delve into CRQA in the next

sections and detail how to use the R library.

3. PRINCIPLES OF CRQA

As sketched in the last section, cross-recurrence quantification

analysis has been developed to capture the recurring proper-

ties and patterns of a dynamical system, which results from two

streams of information interacting over time (Zbilut et al., 1998).

In behavioral sciences, such streams of information can either

be as “concrete” as body sways or eye-movement trajectories,

and even heart rate (Shockley et al., 2003; Richardson and Dale,

2005; Wallot et al., 2013), but they can also be more “abstract”

sequences of linguistic information, such as the words exchanged

by two interlocutors during a dialog (for a recent review see

Fusaroli et al., in press).

CRQA may thus shed light on the information-feedback

dynamics occurring while actions (non-linguistic, linguistic) are

transmitted, received, and responded to incrementally by partici-

pants in dialog. So, in the context of a communicative task, CRQA

quantifies, for example, how much delay is needed for a listener to

be maximally aligned to the instruction delivered by the speaker,

how much alignment is observed overall, and so on.

Usually CRQA is explained by reference to concepts from

dynamical systems. We assume to have measured a time

series—one measurement sampled over time—from two systems.

Though this single measurement is probably a one-dimensional

scalar, CRQA starts by overlaying delayed copies of this time

series, for each system separately (displayed in the top row of

Figure 6, illustrating this process for one time series). CRQA com-

pares two time series by calculating the degree of their recurrence
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FIGURE 6 | A basic sketch of how recurrence is constructed from

one time series (top left). The time series is lagged (by 10), copied (3

times), and overlaid with itself (top right). If we use 3 dimensions

(copies), then it is possible to visualize this reconstructed phase space

(bottom left). By drawing a radius of a given size around parts of this

reconstructed phase space (thick line, bottom left), one can determine

when recurrence is taking place. The time indices of these recurrence

points can be used to construct the recurrence plot (bottom right).

Cross recurrence is done in almost exactly the same way, except two

time series are used.

when these delays are introduced with different numbers of

copies, or “embedding dimensions.” Specifically, from an orig-

inal time series X(t), delayed copies X(t + τ ) are generated by

introducing a lag τ into the original time series. The different

dimensions of embedding are obtained by considering multiple

lags X(t + mτ ).

If in 2 or 3 dimensions, we can plot this delay/copy process, as

shown in the bottom-left of Figure 6. This is often referred to as

a system’s “reconstructed phase space.” The phase space consists

of the different intervals over which the delays are assigned. We

can carry out what is known as “autorecurrence analysis” on this

single time series, as shown in the bottom-right recurrence plot

in Figure 6. From the plot, measures are based on the number of

contiguous points, aligned along the diagonals or along the ver-

tical lines. These lines reflect how the system is revisiting regions

of its reconstructed phase space, and points are drawn on the plot

when the system is within a certain threshold (illustrated by the

circle in Figure 6). “Cross” recurrence uses precisely this process

of delaying and embedding, but it is done with two time series.

In other words, we reconstruct the phase space for two time series

separately, then see where each respective series’ trajectories are

nearing each other.

This more complex process is most meaningful in the continu-

ous case. A visualization of this is shown in Figure 6. As seen here,

a continuous signal is being projected into a higher-dimensional

space by taking delayed copies of itself. This can also be done with

two time series, and observing where these co-visit each other.

Typically researchers set a threshold for determining whether the

proximity between the time series is “recurrence” (visualized as a

sphere in Figure 6). Proximity is calculated as distance between
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points, and two points are considered as recurring if they fall

within a certain radius. When dealing with continuous informa-

tion, in fact, recurrence cannot be calculated just by looking at

the match/mismatch between states for every lag, as distances

between points results in continuous values. Thus, the additional

step involves the evaluation of a radius, which is a threshold

constant used to define whether the distance between points is

sufficiently small to consider the two points as recurrent. Setting

up an optimal radius is not an easy task, as it strongly depends

on the type of dataset analyzed, and helpful best practices can be

found in Webber and Zbilut (2005).

In the previous section, we calculated cross-recurrence for the

simulated dichotomous event series in quite a simple way. The

embedding dimension was set to 1, which essentially projects the

event series into the same (one) dimension. In addition, we set a

threshold to 0, meaning that an event had to match. Though we

extracted RR measures across the diagonals, here we describe that

many measures can be computed from these plots. These mea-

sures are derived from the patterns on the plot, often in the form

of the diagonal lines reflecting sequences of revisited trajectory

regions.

As shown in Figure 4, any individual CRP reveals an array of

curious characteristics or “textures” (Eckmann et al., 1987) which

can be quantified in various ways (Zbilut and Webber Jr, 1992). In

particular, researchers utilize the diagonal line structures to define

further measures, because they indicate a sequence of revisita-

tions. The measures that are implemented in our crqa package

are as follows:5

• recurrence rate (RR), the density of recurrence points in a

recurrence plot

• percentage determinism (DET), the percentage of recurrence

points forming diagonal lines in the recurrence plot given a

minimal length threshold

• the length of the longest diagonal (Lmax)

• the average of the diagonal length (L)

• the entropy of the diagonal line length distribution (ENTR)

From the vertical lines, two more measures can be derived:

• laminarity (LAM) is the percentage of recurrence points which

form vertical lines given a minimal length threshold

• trapping-time (TT) is the mean length of vertical lines

As noted, CRQA can be computed on categorical as well as on

continuous-valued time series. In the categorical case, such as a

sequence of words, a point recurs when the two series share the

same state (i.e., the same word) at two points in time. Recurrence,

in this case, can be obtained by means of contingency tables, mak-

ing cross-recurrence analysis equivalent to lag sequential analysis

(Dale et al., 2011b; see also Bakeman, 1997; Bakeman and Quera,

2011 for foundational discussions on the topic). At each lag τ ,

a contingency matrix CT is constructed, where each element of

the matrix represents the number of times the pair of objects

(i, j) co-occurs between the two series of events x and y. More

5Formal definitions of these measures can be found in Marwan et al. (2007).

formally: CTi,j(τ ) =
∑t = T − τ

t = 1 q(t), where T is the length of the

event series and q(t) = 1 if x(t) = i and y(t + τ ) = j, and q(t) =

0 otherwise. So, if interlocutor C is uttering the word cat, and

interlocutor S is instead uttering the word dog, we fill the CT at

the corresponding i, j position. From CT, recurrence RR is com-

puted along the diagonal of CT by adding the frequencies of looks

to the same objects. Obviously a CT has the advantage of mea-

suring co-occurrences between all objects at every lag, making it

possible to track how different word co-occurrence contributes to

recurrence.

Our crqa package implements methods to visualize cross-

recurrence patterns on a CRP’s diagonal, extract measures from

the whole recurrence plot, as well as compute recurrence on cat-

egorical time series by means of a contingency table. In what

follows, we describe the functions available in crqa and show

their application to example trials taken from published datasets

of eye-movement scan-patterns (i.e., a categorical series of fix-

ated objects, Richardson and Dale, 2005) and body movement

(i.e., a continuous series representing the overall intensity of

body movement of two conversant, Paxton and Dale, 2013). In

Figure 7, we show the two example trials data available in crqa
(data(crqa)), in simplified form, and provide a visualiza-

tion of how changing the radius influences the recurrence rate

observed when dealing with continuous time series data.

4. FUNCTIONS

In Table 2, we summarize the most important functions avail-

able in crqa, their objective, and the output returned. In the

Supplementary Material for this paper, we provide the reader with

detailed descriptions of each of the functions, their input argu-

ments, output values and a practical R script (testcrqa.R)

to replicate all plots and analyses reported below. Exhaustive

explanations of each function can also be obtained by using the

help() command

Overall, the library provides the user with two main methods

of computing cross-recurrence between two time series. First, it

includes a faster and simpler calculation of only the diagonal-

wise recurrence profile, as demonstrated in the section motivating

recurrence above, which contains information both about relative

co-visitation and coupling.

The library also includes a second, more detailed method,

where a cross-recurrence plot is built for all possible lags, across

all states, and several measures of cross-recurrence, e.g., percent-

age determinism, are extracted. Put simply, this second approach

extracts all common CRQA measures.

To compute only the diagonal-wise recurrence profile of the

two series, we implemented two functions: drpdfromts and

windowdrp. The function drpdfromts extracts the diagonal-

wise recurrence profile of two time series. It returns the recurrence

observed for different delays, the maximal recurrence observed,

and the delay at which it occurred (as demonstrated in the section

above).

In Figure 8, we show the diagonal-wise recurrence profile for

the two series RDts1,RDts2. Each time series is 2000 dat-

apoints (33 ms each) and are from one pair of a speaker and

a listener, respectively, of the dialog dataset by Richardson and

Dale (2005). The recurrence profile has the typical leader-follower
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FIGURE 7 | Data available in crqa. Eye-movement responses of dyads

(speakers and listeners) engaged in dialog from Richardson and Dale

(2005) (left panel, RDts1, RDts2). Body-movement intensity of the

interlocutors engaged in a conversation from Paxton and Dale (2013)

(right panel, leftmov, rightmov). In the bottom row of the figure,

we illustrate the concept of recurrence in categorical and continuous

time series, and the role played by the radius parameter when the

series are not lagged.

Table 2 | List in alphabetic order of the most important functions implemented in the crqa package together with a synthetic explanation of

their objectives, and the measures outputted.

Code Objective Output

CTcrqa Recurrence calculated by means of contingency

tables on categorical series

Diagonal-wise cross-recurrence profile of the two time series with length

equal to the number of delays considered, the maximal recurrence observed,

and the delay at which it occurred

calcphi Recurrence between two categorical time series

on a specific state k (Phi-coefficient)

The phi-coefficient profile for state k for all delays considered

crqa Core cross recurrence function, which examines

recurrent structures between time series, which

are time-delayed and embedded in higher

dimensional space

Several measures (e.g., recurrence rate) computed along the diagonal and

vertical lines of the recurrence plot

drpdfromts Diagonal-wise cross-recurrence of two time series A diagonal cross-recurrence profile of the two time series with length equal to

the number of delays considered, the maximal recurrence observed, and the

delay at which it occurred

optimizeParam Optimal parameters value for CRQA on continuous

time series data

Suggested values for radius, number of embedding dimensions and delays

runcrqa Convenience function wrapping all different

methods implemented to compute CRQ

Returns the measures for the method requested

windowdrp Diagonal-wise cross-recurrence in overlapping

windows of a specified size

Windowed cross-recurrence diagonal profile of the two time series, the

maximal recurrence observed, and the time-point at which it occurred

wincrqa Build a cross-recurrence plot in overlapping

windows of a specified size

For each window, it returns measures computed along the diagonal and

vertical lines of the recurrence plot
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FIGURE 8 | Diagonal-wise recurrence profile for two eye-movement

series (RDts1, RDts2) taken from Richardson and Dale (2005).

pattern, where the follower needs a lag of a couple of seconds to

be maximally aligned with the speaker’s eye movements. Note,

all plots are done using functions external to the crqa package.

We refer the reader to the function testcrqa.R available as

Supplementary Material of this paper.

When using drpdfromts, for categorical sequences, the

radius should be set to a very small value (near 0, e.g., 0.001).

As the categories in the sequence (e.g., one of the six possible

character being looked at) are recoded into numbers (e.g., 1), set-

ting the radius to very small value would make only the distance

between the same category, i.e., 0, be accepted. By changing the

datatype argument to “continuous,” the function would com-

pute cross-recurrence between time series of continuous data,

so the series will be maintained as numerics. Also for contin-

uous data, we would need a value for the argument radius.

However, the value of the radius would have to be tailored to

the data observed, because each dataset has its own idiosyncratic

properties, e.g., body movement vs. eye movements. Below, we

discuss this issue further, namely choosing starting parameter val-

ues for continuous data. We show an early alpha version of a

function that can perform an optimization routine to estimate

these parameters, based on phase-space reconstruction principles

(Marwan et al., 2007) (see function optimizeParam).

The function windowdrp, instead, has similarity to win-

dowed cross-correlation analysis as in Boker et al. (2002),

and tracks how cross-recurrence values evolve over the time

course. In particular, CRQA measures are calculated in over-

lapping windows of a specified size for a number of delays

smaller than the size of the window. In every window, the

recurrence value for the different delays is calculated. A mean

is then taken across the delays to obtain a recurrence value

in that particular window. Tracking recurrence over the time

FIGURE 9 | Window cross-recurrence of the two eye-movement series

(RDts1, RDts2) from Richardson and Dale (2005).

course helps us establishing how the agreement between the two

interlocutors develops, as the interaction progresses. We reuse the

eye-movement categorical responses RDts1, RDts2, to dis-

play how windowed cross-recurrence between a speaker and a

listener evolves as a function of time.

In Figure 9, we can see that about half the time course,

the amount of overall recurrence increases, and then fluctuates

around the same value till almost the end where it drops. The

dyads became more coupled, then recurrence quickly drops as the

speaker concludes. Also windowdrp can be applied to continu-

ous data by setting up the appropriate datatype and radius
argument, as just described.

More detailed measures characterizing the cross-recurrence of

the two time series can be obtained by using crqa. crqa is

the core function of the package, and examines recurrent struc-

tures between time series, which are time-delayed and embedded

in higher dimensional space. The approach compares the phase

space trajectories of two time series in the same phase-space when

delays are introduced. A Euclidean distance matrix between the

two series, delayed and embedded is calculated6. On the distance

matrix, a recurrence plot is derived by taking all points below

a certain radius threshold as recurrent (refer to Figure 7 for a

simplified illustration of the radius). The function implements a

Theiler window parameter (tw), which is used to specify the diag-

onal lines of the recurrence plot to be ignored, with 1 indexing the

main diagonal. This parameter is particularly useful when auto-

recurrence is computed, as there can be autocorrelation structure

of the time series with itself around the main diagonal (e.g.,

slow-moving continuous time series). However, thetw parameter

6The current version of the package only implements the Euclidean distance,

but other metrics can be used.
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should be set to 0 in CRQ, as two time series are different and

they are especially synced along the main diagonal (i.e., the LOC).

Several measures representative of the interaction, e.g., recurrence

rate (RR), are extracted from the recurrence plot (as explained in

Principles, above).

In Figure 10, we show the cross-recurrence plot obtained using

the two-time series (RDts1, RDts2) from Richardson and Dale

(2005). On the diagonal lines, we observe the pattern of interac-

tion between the two series. The measures characterizing it are

RR, percentage determinism (DET), average and maximal diag-

onal length (L and Lmax), and entropy are calculated. On the

vertical lines, we observe the stability of the two series, and relative

independence of recurrence over a particular state. The measures

characterizing this information are laminarity and trapping-time

(LAM and TT).

A challenging aspect of computing CRQA is finding appropri-

ate values for the three parameters radius, delay, embed,

especially when dealing with continuous time series. The func-

tion optimizeParam implements an iterative procedure that

in three steps attempts to find such values. In particular, the func-

tion first identifies a delay that accommodates both time series by

finding the local minimum where mutual information between

them drops, and starts to level off (Shockley, 2005; Marwan et al.,

2007). When one time series has a considerably longer delay than

the other, the function selects the longer delay of the two to

FIGURE 10 | Recurrence Plot of the two eye-movement series (RDts1,

RDts2) from Richardson and Dale (2005). The recurrent points are

marked with blue color, whereas the non-recurrent points are left blank.

The values obtained on the measures for this plot are: REC = 12.52;

DET = 98.95; Lmax = 124; L = 11.3; ENTR = 3.2; LAM = 99.7; TT = 20.6.

Usually, these values are interpreted relatively, by comparing one condition

to another condition in an experiment. In general, DET will be higher than

REC, with DET often quite high (90% or higher) and REC considerably

lower (10% or less), so 12% would be considered relatively high.

ensure that new information is gained for both. When the delays

are close to each other, the function computes the mean of the

two delays. Then, as a second step, the function determines the

optimal number of embedding dimensions by using false nearest

neighbors, and checking when it bottoms out (i.e., there is no gain

in adding more dimensions). If the embedding dimensions for

the two time series are different, the algorithm selects the higher

embedding dimension of the two to make sure that both time

series are sufficiently unfolded. Finally, it determines the radius

to use for recurrence by selecting the first radius that yields 2–5%

RR. In particular, in order to explore an exhaustive range of values

while keeping the computation tractable, the algorithm gener-

ates a sample of equally spaced possible radius values, returning

from ≈25–0% RR. The radius is iteratively explored till RR

between 2–5% is found. The algorithm includes parame-

ters to modify the granularity of the radius being generated,

as well as, the size of the sample. Applied on the con-

tinuous body-movement intensity z-score of two conversant

(leftmov, rightmov) taken from the dataset of Paxton and

Dale (2013), we obtain: radius = 5.74, embedding dimension = 4,

delay = 127. Obviously, this procedure should be iterated over a

consistent sample of the data, such that a more precise estimate

for the values of the parameters can be obtained.

The crqa package also provides the user with a wrapper,

runcrqa, which calls all the methods implemented, such as the

simple profile recurrence (drpdfromts) or the more extensive

analysis of the cross-recurrence plot (crqa) both when delays are

introduced (method = ’profile’) and for a time-course

analysis of recurrence (method = ’window’). The different

methods are called using a list par of arguments, according to

the type of analysis to be performed (refer to the Supplementary

Material, R code 5, for more details about the arguments and

output).

The last function described in this paper is CTcrqa, which

is used to compute cross-recurrence on categorical sequences by

means of contingency tables (Bakeman, 1997; Dale et al., 2011b).

First, it finds the common states, or categories, shared by the two

time series, then it builds up a contingency table (CT) count-

ing the co-occurrences of different sets of states between the two

series. For example, in Richardson and Dale (2005) six possible

characters could be fixated on the visual array during the task.

These are nominally coded 1–6. This contingency-table approach

builds a 6 × 6 table, the cells of which count the number of

times speaker/listener were looking at the characters correspond-

ing to that row/column for a given portion of the time series

(or, alternatively, the entire time series). The diagonal of the CT

is where the recurrence profile is calculated, as along the diag-

onal, the states are identical.The advantage of this method is to

be able to track co-occurrences of all states involved for each

delay introduced. Such values could be potentially used to esti-

mate probability distribution of co-occurrences between states of

the two series analyzed, drawing bridges to other sophisticated

analytic frameworks, such as lag-sequential analysis (Bakeman,

1997).

7As this procedure involves sampling the result for the radius might slightly

vary for different runs.
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When computing recurrence between categorical sequences,

we might be specifically interested in a certain object or state.

In an eye-tracking dialog experiment, for example, we might be

interested in how looks to a specific target object recur between

speakers and listeners. Likewise, in the speech produced by the

dyads as they interact, we might be interested in the usage of a

specific word referring to that object. The function calcphi
precisely calculates how recurrence on a specific object between

two-series changes when the series are delayed. In particular, the

phi(k) coefficient increases with the frequency of matching recur-

rence on the same state (k; k) and away from this state (not k;

not k) between the two time series. On the other hand, phi(k)

decreases with the frequency of mismatching objects (k; not k,

and vice versa).

In Figure 11, we show the phi-coefficient for a particular

object, coded as 5, looked at in the two series (RDts1, RDts2)

from Richardson and Dale (2005). This object was one of six

quadrants depicting TV-series characters, that participants had to

discuss (refer to Figure 7 for a visualization of the type of data). In

line with Figure 8, we observe the characteristic speaker-leading

pattern, whereby the listener takes about one-second to look at

object 5, after the speaker has mentioned it.

5. TEST OF EFFICIENCY AND CONSISTENCY

We ran 20 iterations and generated two dichotomous time series

with parameters P(C) = 0.08, P(S) = 0.05, P(C|C) = P(S|S) =

0.05, and P(S|C) = 33 (refer to Table 1 for details) of increas-

ing size (from 250 to 3000, steps of 250; 11 different unique

size). In a total of 220 simulations, we measure the elapsed

user time taken to build a CRP and extract from it the fol-

lowing seven measures: RR (recurrence rate), DET (percentage

FIGURE 11 | Phi-coefficient plot of a particular object for the two

eye-movement series (RDts1, RDts2) from Richardson and Dale (2005).

determinism), Lmax (length of longest diagonal line), L (aver-

age diagonal length), ENTR (entropy of diagonal lengths above

line cutoff, min > 2), LAM (laminarity of vertical lines) and

TT (trapping time). For each of the measures, normalized to

range between 0 and 1, we compute mean and standard devi-

ation for the absolute distance between the values obtained by

R and MATLAB code. Moreover, in order to assess whether

the measures obtained with R and MATLAB account for the

same variance in the data, we test for correlation and report

the p-values observed. Obviously, both packages are tested on

the same dataset of simulated time series. Simulations using

R (3.0.2, “Frisbee Sailing”) and MATLAB (2012) were run

with a standard PC laptop machine equipped with an Intel

dual core (32 bit), 2.20 GHz, 2.8 GiB RAM, on a Linux OS

(Ubuntu 12.04). When calling crqa from the crqtoolbox
(version 5.15) in MATLAB by Marwan (2013), we sup-

pressed GUI and other outputs from being printed (i.e., “silent,”

“nogui”)8.

In Figure 12, we plot mean elapsed user time (y-axis) as a

function of sequence lengths. As expected, both libraries demand

more time to finish the computation as the time series get longer.

However, the R implementation outperforms the MATLAB ver-

sion for increasing size. Crucially, when comparing their perfor-

mance, we obtain a mean absolute difference of 0.0002 across all

measures over 220 simulations. Moreover, all measures correlated

at ρ = 1 with a significance of p < 0.00001.

8Note, even silencing all outputs, a waiting box was automatically launched,

and could not be suppressed.
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FIGURE 12 | Elapsed user time to extract CRQ measures on simulated

dichotomous time series of increasing lengths using crqa in R and

crqtoolbox in MATLAB. Means over 20 iterations are shown as lines.

The programming language of the library is identified using line type.
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These results show that the performance and results obtained

with the crqa library in R are 100% comparable to the

benchmark MATLAB crptoolbox toolbox by Marwan (2013).

Obviously, the consolidated MATLAB toolbox provides the user

with an extremely handy GUI, as well as numerous other

functionalities to visualize the results and compute alternative

measures from the recurrence plots. In this respect, the MATLAB

toolbox by Marwan, et al., can still be considered the benchmark

for recurrence analyses. However, we believe that our library can

be expanded in the future to integrate more functionalities; and

as R is a free software for statistical computing, such effort would

be certainly sustained by its community of committed users.

6. GENERAL DISCUSSION

Humans are complex systems, dynamically and interactively

exchanging information with their surrounding environment.

The most prominent manifestation of such dynamism is observed

when humans talk with each other, where the behavior of a sin-

gle individual engaged in the interaction adapts and aligns with

the behaviors of the other individuals that are taking part to the

interaction (e.g., Pickering and Garrod, 2004).

The alignment occurring between two interacting individuals

has been classically quantified using an aggregative approach, i.e.,

by correlating frequencies of occurrences of a certain behavior

(Bargh and Chartrand, 1999). In language science, the aggrega-

tive approach has been the most prominent, where alignment has

been measured as the number of common linguistic structures

(e.g., lexical, syntactic) used by two interlocutors engaged in a

communicative task (Brennan and Clark, 1996; Haywood et al.,

2005; Branigan, 2007).

However, alignment has an intrinsic temporal structure, as it

unfolds over a sender-receiver feedback mechanism, e.g., turn-

taking in dialog. Such temporal dependence of alignment has

been clearly observed taking place on several “macro” behaviors,

such as postural sways (e.g., Shockley et al., 2003; Louwerse et al.,

2012), “micro” behavior, such as eye-movement (e.g., Richardson

and Dale, 2005), as well as linguistic analyses such as words or

letters (e.g., see Orsucci et al., 2006).

The statistical modeling approach used to capture how a

dynamical system interactively evolves over time is recurrence

analysis (Zbilut et al., 1998; Marwan and Kurths, 2002). This

approach aims at quantifying the temporal organization of inter-

acting signals by uncovering the phases where such signals are

recurring, i.e., they are on the same state; and the delays over

which recurrence develops.

In this paper, we first empirically motivated the crucial dif-

ference between correlation (typically used in the aggregative

approach), and co-visitation (typically used in the recurrence

approach), and demonstrated that the latter offers a distinct ana-

lytic framework. Cross-recurrence quantification analysis is an

approach to investigate alignment on a large range of behav-

ioral phenomena, quantifying a range of dynamic relationships

that hold between two time series. In particular, we generated

binary dichotomous time series, where the probability of certain

event to occur in one time series is conditioned to the probabil-

ity that the event will occur in the other time series. In practice,

we simulated an extremely simple interactive system, which can

resemble statistical characteristics of real behaviors, such as nod-

ding, or smiling. By using cross-recurrence quantification anal-

ysis, we demonstrated that we can capture the same patterns as

an aggregative approach, and go beyond that by uncovering the

temporal phases during which the interaction takes place.

The advantages of cross-recurrence analysis over more clas-

sic approaches to the study of dynamical systems have called the

attention of many researchers across different fields in cognitive

science. Such attention is, in fact, reflected by the amount of

recently published work, spanning several topics, where cross-

recurrence quantification analysis is used (e.g., Fusaroli et al.,

in press).

The most frequently used software to perform this type of

analysis is the MATLAB toolbox crptoolbox by Marwan

(2013). Even though crptoolbox is an excellent tool to per-

form cross-recurrence analysis, the research community still lacks

an efficient open-source package for the R platform. In the second

part of this paper, we explained more formally the principles of

CRQA analysis, and described the R package crqa, which pro-

vides to a broad audience several basic, and more advanced, tools

to carry out cross-recurrence quantification analysis.

Our package contains functions to quantify cross-recurrence

at different levels of analyses. In particular, drpdfromts con-

structs diagonal-wise recurrence profiles of the two time series

across different lags, while windowdrp returns a windowed

cross-recurrence analysis where recurrence is tracked over the

time-course. These two functions just look at the overall cross-

recurrence shape. crqa instead performs a complete analysis

of the cross-recurrence plot returning several measures, such as

recurrence rate, percentage determinism, etc. characterizing the

dynamics of interaction taking place in the system. By using prin-

ciples of phase-space reconstruction (Marwan et al., 2007), our

library also includes an alpha function, optimizeParam, to

estimate “optimal” values for the parameters of radius, delay, and

number of embedding dimension. Moreover, the library makes

available a function to compute cross recurrence analysis on

categorical data by means of contingency tables CTcrqa. The

advantage of this function, yet to be fully exploited, is that it

potentially returns a co-occurrence matrix of all states of the

two series at each delay. Such co-occurrence statistics might be

integrated in future development of the crqa to better estimate

recurrence properties of categorical series.

After presenting the most important functions included in our

package, we compared its computational efficiency and consis-

tency with the benchmark MATLAB toolbox (crptoolbox)

developed by Marwan (2013). By using simulated dichotomous

time series, we demonstrated that our library can be computa-

tionally more efficient than its MATLAB rival. In particular, we

observed that our R library maintained a better elapsed user time

as a function of increasing set sizes. Besides being computation-

ally efficient, our package returns measures, which are completely

consistent with those generated by crptoolbox.

Even though our crqa package achieves remarkable per-

formance, it cannot yet substitute the older and proven

crptoolbox by Marwan (2013). In fact, crptoolbox imple-

ments a very handy GUI, integrates many functionalities for plot-

ting, and it includes additional recurrence measures. Thus, our
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package will complement rather than substitute crptoolbox,

by providing the open-source alternative for computing cross-

recurrence to the wide community of researchers using R as their

statistical programming language. Moreover, we believe that the

functionalities available in the package will expand in the future

with the contribution of its community of users.
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