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Abstract
Natural Killer T (NKT) cells generally recognize lipid-antigens presented in the context of the
MHC class I-like molecule CD1d. CD1d-restricted NKT cells consist of two broad subsets: Type
I, which express an invariant T cell receptor (TCR) and type II, which utilize diverse TCR gene
segments. A major type II NKT subset has been shown to recognize a self-glycolipid, sulfatide.
Both subsets play important roles in autoimmune diseases, tumor surveillance, and infectious
diseases. While type I NKT cells protect from tumor growth by enhancing tumor surveillance,
type II NKT cells may suppress anti-tumor immune responses. In a murine autoimmune hepatitis
model, type I NKT cells contribute to pathogenesis, whereas activation of sulfatide-reactive type II
NKT cells protects from disease. Sulfatide-mediated activation of type II NKT cells results in
modification of dendritic cells and induction of anergy in type I NKT cells. Elucidation of this
novel pathway of cross-regulation among NKT cell subsets will provide tools for intervention in
autoimmune diseases and for designing strategies for effective anti-tumor immunity.
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Natural Killer T (NKT) cells bridging innate and adaptive immunity have biological features
of natural killer cells and conventional T cells. NKT cells express the markers NK1.1 or
CD56/CD161 as well as the T cell receptor (TCR) (Bendelac et al., 2007; Gumperz et al.,
2002; MacDonald, 1995; Prussin and Foster, 1997). Most NKT cells recognize antigens
presented by the MHC class I-like and β2-microglobulin-associated molecule CD1d
(Bendelac et al., 1994; Brigl and Brenner, 2004; Ohteki and MacDonald, 1994). The CD1
proteins can be classified into three groups (Barral and Brenner, 2007): Group 1 comprises
CD1a, CD1b and CD1c; group 2 consists of CD1d and group 3 comprises CD1e. Humans
and many other mammalian species express all CD1 isoforms (CD1a-e), while mice express
only CD1d (Barral and Brenner, 2007; Brigl and Brenner, 2004; Godfrey et al., 2008).
Interestingly, CD1d is highly conserved among the species and between humans and mice
(Brossay et al., 1998). While CD1a-c are involved in presenting (mostly microbial) lipid
antigens to conventional T cells, CD1d presents lipids, glycolipids and lipoproteins, which
can be of self or foreign origin, to NKT cells (Barral and Brenner, 2007). CD1e is involved
in intracellular lipid trafficking, as it lacks a transmembrane domain and is exclusively
found in intracellular compartments (De Libero and Mori, 2006). CD1d is expressed on
dendritic cells, macrophages (including the liver resident Kupffer cells), subsets of B cells,
thymocytes, hepatocytes (Bendelac et al., 2007) and tumor cells (Fais et al., 2004; Fiedler et
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al., 2002; Metelitsa et al., 2003). Hence these cells are also potentially capable of presenting
lipid antigens to NKT cells.

CD1d-restricted NKT cells can be broadly categorized into two groups: Type I and type II
(see figure 1). Type I NKT cells are also named invariant NKT (iNKT), because they
express an invariant TCR encoded by the Vα14Jα18 gene segment paired with one of a
limited number of Vβ chains (mainly Vβ8.2, Vβ7 or Vβ2) in mice (Godfrey and
Kronenberg, 2004;Kronenberg and Gapin, 2002) and, correspondingly, by the Vα24Jα18
gene segments and the Vβ11 chain, in humans (Dellabona et al., 1994;Porcelli et al., 1993).
Stimulation of type I NKT cells with the superantigen-like marine sponge-derived glycolipid
αgalactosylceramide (αGalCer) results in a cytokine burst, TCR downregulation, and
apoptosis (Crowe et al., 2003;Kawano et al., 1997;Wilson et al., 2003). Depending on their
context and the antigen involved in their stimulation, they may express different cytokine
secretion profiles, either a Th1-type, secreting IFN-γ and TNF-α, a Th2-type, secreting IL-4
and IL-13 (Godfrey and Kronenberg, 2004), or a combination of the two. Additionally, both
the self-glycolipid isoglobotrihexosylceramide (iGb3) and bacterial-derived lipids are
recognized by these cells (Kawano et al., 1997;Kinjo et al., 2005;Mattner et al., 2005;Zhou
et al., 2004). Type I NKT cells can be identified using αGalCer/CD1d-tetrameric reagents.
Type II NKT cells have variable TCR V-gene rearrangements that are distinct from those
used by type I NKT cells (Behar et al., 1999;Cardell et al., 1995;Chiu et al., 1999). A major
type II NKT cell subset recognizes the self-glycolipid 3-sulfated galactosylceramide, called
sulfatide, and can be identified by sulfatide/CD1d-tetramers (Jahng et al., 2004).

In this review, we will focus on the role of both type I and type II NKT cell subsets in
autoimmunity and anti-tumor immunity. We will also discuss a novel mechanism of immune
regulation resulting in anergy in type I NKT cells following activation of sulfatide-reactive
type II NKT cells and how this pathway can be exploited to manipulate immune responses
against tumors and in autoimmune disease.

Type I NKT cells in autoimmunity and in anti-tumor immunity
In autoimmune disease models, type I NKT cells have been shown to play either a
potentiating or a protective role, depending on the disease, the administration of an
activating stimulus (αGalCer or its analogs), and the resulting cytokine secretion profile
(Th1 vs. Th2). Thus in the absence of type I NKT cells a milder course of disease has been
found in a murine allergen-induced airway hypersensitivity model for asthma (Akbari et al.,
2003) and in Concanavalin A (ConA)-induced hepatitis, a model for autoimmune hepatitis
(Kaneko et al., 2000; Takeda et al., 2000). Notably, adoptive transfer of type I NKT cells
restores disease susceptibility in these models, and in both cases these cells have been shown
to produce Th2 cytokines (Akbari et al., 2003; Kaneko et al., 2000; Takeda et al., 2000),
suggesting their involvement in pathogenesis. Consistently, a high frequency of type I NKT
cells secreting Th2 cytokines has been detected in the lungs of human bronchial asthma
patients (Akbari et al., 2006). Protective or regulatory role for type I NKT cells has also
been suggested in diabetes-prone NOD mice (Godfrey et al., 1997; Gombert et al., 1996).
Following adoptive transfer of NKT cells into NOD mice, it is the Th2 cytokines which are
responsible for protection from diabetes, (Hammond et al., 1998). Conversely, a skewing of
type I NKT cells towards Th1 has been shown to correlate with the manifestation of type I
diabetes in human (Wilson et al., 1998), although a protective role for type I NKT cells in
human type I diabetes remains controversial (Lee et al., 2002).

Several studies have used administration of the foreign glycolipid αGalCer to activate type I
NKT cells in order to determine their effect in disease models. It has to be kept in mind, that
the immune consequences following activation by αGalCer may not represent a
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physiological event, since αGalCer is not a mammalian ligand and in many ways acts as a
superantigen for type I NKT cells. In some disease models, stimulation of type I NKT cells
results in disease exacerbation, while in others protection from disease is observed. The role
of the cytokine profile following stimulation is inconsistent, as in some cases Th2 cytokines
are found to be pathogenic, although they are protective in most models. In experimental
autoimmune encephalomyelitis (EAE), a murine model for multiple sclerosis, activation of
type I NKT cells with αGalCer modulates the course of disease, depending on the MHC
haplotype and on the timing of activation (Jahng et al., 2001; Singh et al., 2001).
Coimmunization with αGalCer and disease-inducing myelin antigen potentiates disease in
B10.PL mice, mediated by Th1 cytokine secretion, while it prevents EAE in C57BL/6 mice
via Th2 cytokines (Jahng et al., 2001). Prior immunization (before induction of disease),
however, prevents EAE in both strains, mediated by Th2 cytokines (Jahng et al., 2001). In
dextran sulfate sodium-induced cholangitis, a murine model for primary sclerosing
cholangitis, single administration of αGalCer results in disease exacerbation, involving Th1
cytokines, whereas repetitive stimulation is protective, skewing the cytokine profile towards
Th2 (Numata et al., 2005). This could be explained by observations of Parekh et al., that
repeated stimulation with αGalCer is followed by long-term anergy in type I NKT cells,
which become unable to proliferate and produce IFN-γ, but which retain the ability to
secrete IL-4 (Parekh et al., 2005). Protection from autoimmune disease following
stimulation of type I NKT cells has further been observed following αGalCer administration
in NOD mice (Hong et al., 2001; Sharif et al., 2001), although it is not clear whether
protection is mediated by Th2 cytokines. Administration of OCH, a synthetic analog of
αGalCer, results in Th2 cytokine release from type I NKT cells and protection from both
EAE and collagen-induced arthritis (Chiba et al., 2004; Miyamoto et al., 2001).

Disease exacerbation after stimulation with αGalCer occurs in allergen-induced airway
hypersensitivity (Meyer et al., 2006) and in the early stage of autoimmune cholangitis,
resembling primary biliary cirrhosis (PBC) in the dominant-negative TGF-β receptor II
mouse model (Chuang et al., 2008). The first involves Th2 cytokine secretion, whereas the
later is associated with Th1 cytokine production. Of note, in human PBC, a role for type I
NKT cells has been suggested, since their frequency is increased in livers of PBC patients,
while they are decreased in the peripheral blood (Kita et al., 2002).

Type I NKT cells exert an anti-tumor effect following their activation with αGalCer
(Kawano et al., 1997; Kobayashi et al., 1995; Morita et al., 1995; Motoki et al., 1995). Thus
activated type I NKT cells induced rejection of several experimental tumor lines, including
carcinoma, sarcoma, melanoma and thymoma (Hayakawa et al., 2004; Kawano et al., 1997;
Smyth et al., 2002). Protection without exogenous stimulation has been found in the murine
methylcholanthrene-induced sarcoma model (Smyth et al., 2000). Furthermore, adoptive
transfer of NKT cells into type I NKT-deficient mice protects animals from sarcomas
(Crowe et al., 2002).

Examinations of the mechanism involved in type I NKT cell-mediated tumor surveillance
has revealed a pivotal role for IFN-γ, subsequently enhancing NK cell and cytotoxic CD8+T
cell activity against the tumor (Berzofsky and Terabe, 2008). Recently, an anti-tumor role
for type I NKT cells has also been confirmed in a murine B cell lymphoma model
(Renukaradhya et al., 2008). This protection was dependent on CD1d expression by the
tumor, involved IFN-γ and IL-12 secretion and reduction of CD11b+Gr1+ myeloid
suppressor cells capable of suppressing anti-tumor immunosurveillance. Anti-tumor
immunity is further enforced by DC maturation and activation following stimulation of type
I NKT cells with αGalCer in vivo (Fujii et al., 2003). Thus activated DC produce IL-12,
upregulate costimulatory molecules, and induce a more effective adaptive immune response
mediated by conventional class II and class I MHC-restricted CD4+ and CD8+ T cells,
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respectively (Fujii et al., 2003). NKT and NK responses are also enhanced following
intravenous injection of αGalCer–loaded tumor cells, resulting in tumor cell lysis by NK
cells, subsequent uptake of αGalCer by DC and its presentation in the context of CD1d,
leading to DC maturation and prolonged adaptive immunity (Fujii et al., 2007).
Consistently, αGalCer-pulsed DC have been shown to expand and activate human type I
NKT cells and induce their IFN-γ secretion in vitro (van der Vliet et al., 2003).

Collectively, these findings led to to the design of a few clinical trials in cancer patients,
using either soluble αGalCer (Crul et al., 2002; Giaccone et al., 2002), in vitro-expanded
αGalCer-pulsed dendritic cells (DCs) (Chang et al., 2005; Ishikawa et al., 2005; Nieda et al.,
2004; Okai et al., 2002; Uchida et al., 2008) or adoptively transferred autologous NKT cells
activated in vitro with αGalCer and IL-2 (Motohashi et al., 2006). Although biological
effects like expansion of type I NKT cells and increased IFN-γ production were observed in
the patients, none of the clinical trials so far have shown significant efficacy in terms of a
partial or complete remission of tumors. This may relate to the small number of type I NKT
cells in humans and insufficiency of their expansion to reach the tumor environment. For
detailed information on type I NKT cells, please see comprehensive reviews on this topic by
Godfrey et al..

Type II NKT cells in autoimmunity and in anti-tumor immunity
Although type II NKT cells have not been as extensively studied as type I NKT cells, these
cells have been shown to play an important role in a number of autoimmune diseases. A
majority of reports have revealed a potential protective role for type II NKT cells in
autoimmunity. Thus, overexpression of a type II NKT cell subset, described as Vα3.2+Vβ9+,
resulted in the protection from development of autoimmune diabetes in transgenic NOD
mice (Duarte et al., 2004). Importantly, activation of a major subset of type II NKT cells by
administration of the self-glycolipid sulfatide prevents EAE (Jahng et al., 2004) and Con A-
induced hepatitis (Halder et al., 2007), murine models for multiple sclerosis and
autoimmune hepatitis, respectively. It may be significant that during EAE, sulfatide-reactive
type II NKT cells are increased several-fold in central nervous tissue, but not type I NKT
cells. Furthermore, it has been shown in human active multiple sclerosis patients that NKT
cells, secreting INF-γ, are significantly more frequent than in normal individuals (Shamshiev
et al., 1999). In patients with autoimmune hepatitis and multiple sclerosis, the prevalence of
anti-sulfatide antibodies has been demonstrated (Ilyas et al., 2003; Toda et al., 1990).
Sulfatide-mediated protection from autoimmunity involves regulation of type I NKT cells,
inhibition of effector functions of conventional T cells and modification of DC functions
(Halder et al., 2007). We propose that anergized type I NKT cells behave like regulatory T
cells and further control autoimmunity and anti-tumor immunity, as discussed below.
Interestingly, a pathogenic role for type II NKT cells, involving an atypical Th2 response,
has been suggested in ulcerative colitis, since these cells are present among the lamina
propria T cell population from patients with ulcerative colitis, secreting high levels of IL-13
(Fuss et al., 2004).

It appears that, in contrast to the role of type I NKT cells enhancing anti-tumor responses,
type II NKT cells are able to suppress tumor immunosurveillance in some tumor models
(Ambrosino et al., 2007; Terabe et al., 2005). Thus, CD1d-deficient mice, lacking both type
I and type II NKT cells, display enhanced anti-tumor immunity resulting in reduced tumor
growth, whereas tumors in wild type mice and Jα18−/−mice, lacking only type I NKT cells,
developed equally (Terabe et al., 2005). These findings indicated a suppressive role for type
II NKT cells in tumor surveillance and are consistent with an earlier observation that
indicated enhanced anti-tumor immunity in CD1d−/−mice vs. Jα18−/−mice by CpG
oligodeoxynucleotides (Sfondrini et al., 2002). A significant increase in tumor growth
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following stimulation of type II NKT cells with sulfatide further indicates cross-regulation
of type I NKT cells by type II NKT cells and suppression of tumor immunosurveillance
(Ambrosino et al., 2007). The suppression of anti-tumor immunity by type II NKT cells
appears to be associated with elevated levels of the anti-inflammatory cytokines IL-13 and
TGF-β as well as CD11b+Gr1+ myeloid-derived suppressor cells (Renukaradhya et al.,
2008; Terabe et al., 2003). Notably, a subset of type II NKT cells has been identified in
humans with malignant disease: Chang et al. found a higher frequency of type II NKT cells
reactive to lysophosphatidylcholine species and skewed towards IL-13 secretion in the
plasma of multiple myeloma patients (Chang et al., 2008).

Cross-regulation among NKT cell subsets
In three different experimental models, including anti-tumor immune responses,
autoimmune hepatitis, and in immunity against parasites, opposing roles for type I vs. type II
NKT cells have been suggested. In murine infection with Trypanosoma cruzi, causing
Chagas’ disease in humans, CD1d−/− and wild-type mice exhibited milder disease in
comparison to Jα18−/−mice that developed more severe disease and died more frequently
(Duthie et al., 2005). Thus, type II NKT cells seem to play a pathogenic role, involving Th1
cytokines, in this disease, while type I NKT cells might counteract by down-regulating the
response. In contrast, in murine acute schistosomiasis, type I NKT cells contribute to Th1
responses and type II NKT cells might promote Th2 responses (Mallevaey et al., 2007). We
have demonstrated the opposing roles for type I and type II NKT cells in autoimmunity as
well as in anti-tumor immunity (Ambrosino et al., 2007; Halder et al., 2007). Thus, anergy
induction in type I NKT cells occurs following activation of sulfatide-reactive type II NKT
cells, resulting in subsequent protection from autoimmune disease (Halder et al., 2007).
Since adoptive transfer of purified dendritic cells from sulfatide-treated animals into naïve
recipients can induce anergy in type I NKT cells and prevent disease, these findings reveal a
novel immune-regulatory axis in which sulfatide-reactive type II NKT cells are able to
regulate type I NKT cells by modulating the function of dendritic cells (Figure 2). Currently,
we are investigating the role of distinct DC subsets (e.g. plasmacytoid vs. myeloid) in this
immune regulatory mechanism.

Summary and Perspectives
NKT cells appear to play an important role in autoimmune diseases, tumor surveillance,
infectious diseases and several other pathological conditions. It is likely that involvement of
different NKT subsets and their cytokine secretion profile (Th1-like vs. Th2-like) will
account for their differential role in various disease settings. Interestingly, type I and type II
NKT cell subsets seem to have opposing roles and functionally cross-regulate each other in
experimental settings of autoimmunity, anti-tumor immunity and in responses to parasitic
infections (Ambrosino et al., 2007; Duthie et al., 2005; Halder et al., 2007; Mallevaey et al.,
2007). While type I NKT cells predominate in mice, type II NKT cells predominate in
humans. Characterization of distinct type II NKT cell subsets and their self-lipid ligands will
be important in understanding important biological and physiological roles of these cells in
health and disease. Furthermore, a detailed understanding of the mechanisms involved in
cross-regulation of type I and type II NKT cells subsets will have crucial implication for
manipulating the outcome of immune responses against cancer, autoimmune and infectious
diseases. Since the CD1d-dependent antigen-recognition pathway is highly conserved from
mice to humans, findings in experimental models can be relatively easily translated to the
clinical setting.
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Figure 1.
A broad category of NKT cell subsets
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Figure 2.
A model for the type II NKT cell-mediated regulation of type I NKT cells: Following
activation of sulfatide-reactive type II NKT cells, dendritic cells (DC) are modified and
mediate anergy in type I NKT cells.
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