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Many environmental problems cannot be adequately
addressed by viewing them through a single lens,

be it narrow or broad, because ecological interactions
often cross boundaries of scale or levels of organization
(Peters et al. 2011). Cross-scale interactions (CSIs) occur
when driver and response variables in cause–effect rela-
tionships operate at different characteristic spatial and
temporal scales, sometimes producing nonlinear patterns
and dynamics (Carpenter and Turner 2000; Gunderson
and Holling 2002; Peters et al. 2007). Understanding
these relationships is necessary to predict likely outcomes
of alternative management strategies intended to miti-
gate complex environmental problems (Miller et al. 2004;
Peters et al. 2004; Tranvik et al. 2009). Because practi-

tioners of macrosystems ecology study such multi-scaled
interactions (Heffernan et al. 2014), this relatively new
subdiscipline of ecology includes the study of CSIs.

Macrosystems are made up of biological, geophysical,
and sociocultural components that exhibit variation at
the scale of regions to continents (Heffernan et al. 2014).
For simplicity, we use the term “macrosystems” here to
include three dominant spatial “scales” (interpreted as
spatial extents, but which can be interchanged with tem-
poral extents), and we depict the potential interactions
that make up a macrosystem as arrayed along a gradient of
complexity (Figure 1). Unidirectional interactions from a
broader- to a finer-scaled driver or explanatory variable
(green and orange arrows in Figure 1, a–d) and interac-
tions that are bidirectional between two variables within
a scale (black arrows in Figure 1, a–d) are perhaps the two
most studied interaction types.

There are a growing number of examples in the litera-
ture describing the more complex relationships that
occur when driver variables interact across scales (blue
and red arrows in Figure 1, c and d). The first type of CSI
occurs when there is an interaction among driver vari-
ables at different spatial scales that influences a focal
response variable (Figure 1c; the CSI is depicted as a one-
way arrow from the interaction between the driver vari-
ables to the focal response variable). For instance, con-
sider a case in which a broad-scale regional driver such as
anthropogenic disturbance affects the degree to which a
local driver variable influences a focal response variable
(eg Peters et al. 2007). Later sections of this paper present
a case study documenting this type of CSI between
regional agriculture and wetland patches connected to
and affecting nutrient concentrations in a downstream
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lake. Other examples include tropical forest gastropod
diversity being influenced by the interaction between
broad-scale hurricane-induced disturbance and fine-scale
historical land use (Willig et al. 2007), and the interac-
tions between broad-scale forest fragmentation and local-
scaled habitat variables that prevent some Chilean bird
species from responding to local features that are known
to affect bird abundance (Vergara and Armesto 2009). 

A second type of CSI is defined by interactions between
transport processes that link fine- and broad-scaled
processes as described in Peters et al. (2007). This CSI is
depicted in Figure 1d as a two-way arrow between the CSI
among driver variables and the feedback from the focal
response variable (referred to as cross-scale emergence in
Heffernan et al. [2014]). For example, this type of CSI
occurs when fire within patches interacts with regional
heterogeneity and connectivity among forest patches to
influence fire spread at broad scales, and even the climate
system in the case of a very large fire (Peters et al. 2007).

Other cases of this kind of CSI are the propagation of fine-
scaled land-use effects that influence regional climate
(Pielke et al. 2007), and patch configuration in semi-arid
grazed catchments causing unexpected broad-scale sedi-
ment loss that was not equivalent to the sum of the indi-
vidual finer-scaled sediment losses (Ludwig et al. 2007).
Failure to account for the CSIs present in each of the
above examples would result in a misunderstanding of the
controlling factors regulating the focal response variable. 

In this paper, we offer an approach that uses Bayesian
hierarchical models to explicitly model the CSIs that are
depicted in Figure 1c as an interaction term between a
regional and a local driver variable. We illustrate the
approach using 2100 north temperate lakes in which lake
phosphorus (P) is the focal response variable, the local
watershed characteristics of each lake are the local driver
variables, and the characteristics of the 35 regions that
the lakes are nested within are the regional driver vari-
ables. We end with a discussion of how such results can be

Figure 1. A description of four types of cause–effect relationships between driver variables and response variables within

macrosystems, ranging from the simplest (a), to the more complex (c and d), in which there are cross-scale interactions (CSIs). For

simplicity, we depict three main spatial extents of a macrosystem: the “focal response variables” are the fine-scale processes that

ecologists typically study, the “local driver variables” (orange boxes) are the variables that are measured at a coarser scale and that

influence the focal response variables, and finally the “regional driver variables” (green boxes) are measured at macroscales (sub-

continental to continental scales in the range of 100s to 1000s of kilometers; Heffernan et al. 2014). The green and orange arrows

depict the one-way effect of regional and local driver variables, respectively, on the focal response variable. We define “driver” variable

in the most general case as any explanatory variable measured at any scale that directly influences a focal response variable. Real

macrosystems can include additional extents that may exhibit a combination of different interaction types influencing the focal

response variables. Some components of the figure are modified from Peters et al. (2008).
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applied in a management or policy con-
text.

n Steps to quantify CSIs among

driver variables

CSIs can be quantified using this
approach (Figure 2) for any macrosystem
and set of multi-scaled drivers with the
following minimum requirements: (1)
hypotheses of the important cause–effect
relationships linking multi-scaled driver
variables to focal response variables in
the macrosystem(s), (2) data on the focal
response variables across broad spatial
and/or temporal extents, and (3) data on
the multi-scaled and multi-thematic dri-
ver variables of the macrosystem(s).
With these components, one can test for
multi-scaled relationships using appro-
priate models. These steps are iterative
and many are not unique to the study of
macrosystems or CSIs. However, for
some steps, particular challenges arise
that are a consequence of the multi-
scaled scope of macrosystems ecology
research and may require tools or
approaches that have not been widely
used by ecologists (eg Levy et al. 2014).
In addition, for almost all of the steps dis-
cussed here, ecoinformatics (the use of
software tools to manipulate, store, and
distribute ecological data) is integrally
linked in all aspects of the research, from
database design and management to analytical operations,
and ultimately to database documentation and sharing
(Michener and Jones 2012; Rüegg et al. 2014).

Step 1: conceptual model

The first and most important step when quantifying CSIs
among drivers is to translate current understanding of the
macrosystem and its important multi-scaled cause–effect
relationships into a conceptual model. We argue that this is
one of the more challenging steps because it requires a solid
working understanding of macrosystems. Four key compo-
nents of conceptual model development are: (1) identifying
the relevant spatial and temporal extents and resolutions of
the driver variables, (2) considering what types of CSIs are
expected, (3) determining whether relationships are likely
to be linear or nonlinear, and (4) identifying the critical
assumptions and uncertainties that may generate additional
testable hypotheses (Figure 2). Our approach to quantifying
CSIs is iterative. The cause–effect relationships (including
CSIs) identified in this first step can be refined or new
cause–effect relationships can be added during subsequent
iterations and as new information becomes available.

Step 2: database design and development

Rarely are there preexisting databases that span the spatial
and temporal extents necessary to conduct macrosystems
ecological research. Therefore, these next steps include
discovering and acquiring datasets that are distributed
across space and time and integrating them into a multi-
scaled, multi-thematic database. When more than a hand-
ful of datasets are incorporated into a database, numerous
ecoinformatics challenges may arise (Michener and Jones
2012; Rüegg et al. 2014). Essential steps in database devel-
opment are to identify credible data sources, to perform
quality-assurance and quality-control checks, and to pro-
duce detailed documentation in the form of metadata for
each dataset and the final integrated database (see Rüegg
et al. [2014] for further details).

Step 3: analytical approaches

The analytical steps begin with translating the conceptual
model into a set of models that each represents competing
hypotheses to be evaluated and compared (Burnham and
Anderson 2002; Stow et al. 2009). Such models can take

Steps
• Identify the relevant spatial and temporal scales of

the macrosystem
• Identify the hypothesized types of cross-scale

interactions (CSI) that may exist (see Figure 1)
• Identify which of the CSI and non-CSI

relationships are likely to be linear or nonlinear
• Identify critical uncertainties

Steps
• Identify and compile data sources
• Summarize explanatory variables (ie drivers) at

multiple scales (eg local, regional, monthly, annual)
• Integrate datasets across space, time, and theme,

accounting for differences in data resolution
• Perform quality control of all datasets
• Document metadata of all individual data sources

Steps
• Translate candidate model(s) into BH models
• Address the computational costs associated with

parameter estimation when using large datasets
(~10 000s of observations)

• Fit BH models to quantify CSIs (Figure 1c) as
interaction terms between a regional and local
driver (or any two different scales)

• Assess implications of uncertainties in parameters
and variables for making predictions and inferences

Figure 2. The three main steps used to quantify CSIs through a multi-thematic,

multi-scaled database and Bayesian hierarchical models. We focus on the compilation

of especially large and spatially distributed datasets to characterize the within- and

across-region heterogeneity in the study area by fitting region-varying models with

sufficient data to support the models.
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many forms, including process, statistical, and/or simula-
tion. For statistical modeling, the parameter estimation
and model inference can be Bayesian or non-Bayesian.
We present modeling steps using Bayesian hierarchical
models, which are well suited for analyzing multi-thematic
and multi-scaled data (Qian et al. 2010) as well as data
across broad spatial (and temporal) extents with variable
sample sizes and associated with unbalanced sampling
designs (Gelman and Hill 2007; Cressie et al. 2009).
Hierarchical models allow model coefficients (eg slopes
and intercepts) to vary by region, which provides an ele-
gant way to measure one type of CSI (as depicted in Figure
1c) by simultaneously modeling both the local-scale vari-
ability in the response variable of interest and the variabil-
ity in regional-scale coefficients. Here, we model a CSI as
an interaction term between two driver variables mea-
sured at different scales (eg orange and green boxes in
Figure 1c) which influences the response variable in addi-
tion to the individual effects of the two driver variables
(in Figure 1c, this interaction is depicted by the blue
curved arrows; see below for further details).

Once a model or model set has been developed and
estimated from the data, the ecological importance of the
resulting parameter estimates and/or predictions is evalu-
ated within the context of the hypotheses, the concep-
tual and analytical model(s), and the degree of uncer-
tainty in variables or parameters. In some cases, candidate
models that are not computationally feasible will have to
be simplified. Once all the models have been evaluated,
revisions to the conceptual model can be made and addi-
tional models created and tested iteratively. 

n Case study – understanding drivers of lake

nutrients at subcontinental scales

Using lakes as model ecosystems to study CSIs

We illustrate the approach described above by modeling
lake P concentrations at the subcontinental scale in 35

regions, using multi-scaled driver variables to test for a
hypothesized CSI. There are strong conceptual and prac-
tical reasons for focusing on lakes for macrosystems ecol-
ogy research and specifically to study CSIs. First, lakes are
influenced by multiple well-studied spatial extents
including the watershed, the lake network, and the fresh-
water region (Figure 3), as well as multiple temporal
extents including daily, seasonal, interannual, decadal,
and centurial scales. Although the land–water boundary
of lakes is less functionally distinct than originally
assumed (Cole et al. 2002), the physical boundary of the
lake shoreline does represent a shift from aquatic to non-
aquatic habitats and therefore facilitates easy map-based
measurements of macrosystem variables across broad spa-
tial extents. Second, as gathering points of water and
nutrients, lakes integrate the effects of hydrologic, land-
use, and climatic changes at a range of spatial and tempo-
ral scales (Williamson et al. 2009). Third, a wealth of data
and knowledge exist for lakes, including single-scaled
studies that provide the possible mechanisms needed to
understand how driver variables of lake nutrients may
interact across scales. Fourth, a hierarchical conceptual
framework, such as that found in landscape limnology, is
needed to understand the complex suite of driver vari-
ables and possible CSIs that influence lake response vari-
ables, such as nutrients (Soranno et al. 2010). Finally,
lakes and their nutrients have the advantage that reliable
data, obtained by standard methods, are widely available
across broad geographic and temporal extents and can be
integrated into a single database. 

Does a CSI between regional agriculture and local

wetland cover affect lake nutrient concentrations?

In many regions of the world, an increase in the amount of
agricultural land use directly around lakes (ie local scale)
has been shown to increase aquatic P concentrations
(Taranu and Gregory-Eaves 2008). However, the same can-
not be said for the effect of local wetland cover on lake P

Figure 3. Images showing the different spatial extents that are relevant for multi-scaled studies of lakes, including (a) the lake and its

watershed, (b) the lake network, and (c) the freshwater region. The freshwater region classification that we use in this example is

Ecological Drainage Units (Higgins et al. 2005). There are many driver variables that can be quantified at each of these important

spatial extents (eg land cover, connectivity among freshwater ecosystems and groundwater, geology, soils) based on the conceptual

framework of landscape limnology (Soranno et al. 2010). Images from The National Map – Orthoimagery, US Geological Survey,

http://nationalmap.gov/ortho.html.

(a)                         (b) (c)
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concentrations. Wetland cover surrounding lakes
has been found to both increase (Prepas et al.
2001) and decrease (Weller et al. 1996) the con-
centration of lake P, depending on the region
studied. We hypothesized that these divergent
relationships could be explained by a CSI, in
which regional agriculture (a measure of regional
anthropogenic disturbance) influences the
degree to which local wetlands affect lake P con-
centrations. Regions dominated by agriculture
also have modified hydrological, nutrient, and
material connectivity that likely influence the
effect that local wetlands (many of which have
also been altered) have on downstream lake
nutrients. Therefore, a lake in close spatial prox-
imity to intensive agriculture (ie within its water-
shed boundaries), in an otherwise “low agricul-
ture” region, will be less affected by anthro-
pogenic modifications overall (at both the local
and regional scales) than a lake whose watershed
and region both have intensive agriculture. The steps
(and results) to test for the presence of this CSI, and its
effects on lake nutrients, are described as follows.

Step 1

Our conceptual model of the multi-scaled spatial driver
variables of lake total P is informed by the theory and
concepts of landscape limnology. Landscape limnology
views lakes and other freshwater systems as one piece of
the multi-scaled aquatic, terrestrial, and human land-
scape mosaic (Soranno et al. 2010), all of which makes
up the macrosystem. Using this framework and findings

from past studies, we identified the multi-scaled driver
variables that we hypothesized to affect the focal
response variable, lake P. Our conceptual model of the
local and regional features that were most likely to be
related to P (Figure 4a) included: lake depth (Taranu and
Gregory-Eaves 2008), the ratio of the watershed-to-lake
area (ie drainage ratio; Prepas et al. 2001), groundwater
potential (Devito et al. 2000), local and regional agricul-
ture (Taranu and Gregory-Eaves 2008), local urban
cover (Frost et al. 2009), and the CSI between regional
agriculture and local wetland effects. Given the results
from past studies, we did not expect the driver variables

Figure 4. The conceptual and analytical results of the

case study. (a) A conceptual model of the driver variables

for the Bayesian hierarchical model, in which the focal

response variable is lake P; the local driver variables are:

local % wetland cover around the lake, lake depth (mean

depth), drainage ratio (the ratio of watershed-to-lake

area), groundwater potential (measured as the %

groundwater contribution to stream baseflow near the

lakes), local % agriculture around the lake, and local %

urban land around the lake; the CSI is an interaction

term between regional % agriculture and local % wetland

cover. The slope of the effect of local % wetland cover

was not different from zero, so is represented by a dashed

line in this conceptual figure. The model is the type of

CSI depicted in Figure 1c. (b) The relationship between

local % wetland cover and lake P, modeled for each

region. Black lines represent region-specific relationships

and the bold blue line is the population average

relationship across all regions, which is not different from

zero. (c) The relationship between regional % agriculture

and the 35 region-specific slopes. Solid circles are region-

specific slope estimates, shown with the multilevel

regression line, and dark- and light-gray shaded regions

are 95% and 80% credible intervals, respectively.

(a)

(b)

(c)

Local % wetland cover

Regional % agriculture
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to exhibit nonlinear relationships with the response
variable.

Step 2

We compiled lake nutrient data for 2100 lakes across the
Midwest and northeastern US into a single database
(Figure 5). Data came from six state management agencies
(Iowa, Wisconsin, Michigan, Ohio, New Hampshire, and
Maine) that followed federally approved laboratory and
field protocols and represent single-point measures of
nutrients during summer stratification (individual datasets
are described in Webster et al. [2008] and Wagner et al.
[2011]). We also gathered aquatic, terrestrial, and human
landscape information from national-scale geographic
information systems (GIS) datasets (eg National
Hydrography Dataset, National Land Cover Dataset) and
integrated them with the lake nutrient database.
Landscape data were quantified at two spatial scales: local
and regional. Local features were quantified within a 500-
m buffer around lakes, a measure that is strongly correlated
with landscape features in the watershed (Fergus et al.
2011). Regional features were quantified within the
Ecological Drainage Unit, a regionalization framework

developed to classify freshwater ecosystems based on
hydrologic, physiographic, and climatic features (Higgins
et al. 2005). This database captured sufficient spatial het-
erogeneity in terms of P within and across the 35 regions
so we could address our multi-scaled research questions
(Cheruvelil et al. 2013).

Step 3

We translated the conceptual model in Figure 4a into a
Bayesian hierarchical model. The response variable was
loge-transformed P concentration in 2100 lakes in the 35
different regions (Figure 5). The driver variables were fea-
tures measured at local, regional, or both scales (Figure
4a), as well as an interaction term between local % wet-
lands and regional % agriculture (ie the hypothesized
CSI). We hypothesized that the slope estimates from the
local % wetland–lake P relationship would differ by
region and that regional % agriculture would explain
some of the variation in these slopes. 

We found good evidence in support of the hypothe-
sized CSI (Figure 4c). There was substantial variation in
the slopes of the relationship between local % wetlands
and P across the regions, with slopes that were either

Figure 5. Map of the lakes used in the case study, the boundaries of the 35 regions defined by Ecological Drainage Units. These regions

range in area from 2800 to 49 000 km2 (mean: 18 500 km2; standard deviation: 10 300 km2). Lakes are shown as dots, with the color

representing P concentration. The six states in the study area include Iowa, Wisconsin, Michigan, Ohio, New Hampshire, and Maine.
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positive, negative, or zero (Figure 4b). In regions with
low % agriculture, local wetlands were positively associ-
ated with P; whereas, in regions with high % agricul-
ture, local wetlands were negatively associated with P
(Figure 4c). The differential effects of local % wetlands
on P were not due to an interaction between local %
agriculture and local % wetlands (CEF unpublished
data); rather, it was the interaction across scales that
mattered (Figure 4c). Regional % agriculture accounted
for some of the variation in the wetland–P slope differ-
ences across regions, with the 95% credible interval for
the CSI parameter in the model not overlapping zero
(posterior mean = –1.19, 95% credible interval = –2.34,
–0.02; 80% credible interval = –2.17, –0.22). This CSI
between local wetlands and regional agriculture was lin-
ear, as expected; the data show a linear relationship
between regional agriculture and the region-specific
wetland–P slope (Figure 4c). If we had ignored the
regional variation in this relationship, we would have
detected no effect of local wetlands on P because the
overall slope of the relationship across the entire dataset
was weak, with a 95% credible interval including zero
(blue line in Figure 4b).

We can use these results to develop additional hypothe-
ses to help explain variations in P and improve our under-
standing of these macrosystems. One interpretation of
the results is that in regional settings dominated by agri-
culture, wetlands act as a P “sink” on the landscape,
retaining excess P before it enters lakes (Figure 6).
However, the spatial arrangement and hydrological con-
nectivity of wetlands in the watershed are likely to be
important at the local scale. Therefore, future work
should examine the importance of connectivity in wet-
land–P relationships by developing freshwater connectiv-
ity metrics that better capture mechanistic P–water trans-
port relationships at the local scale. For instance, we
hypothesize that freshwater connectivity differs in
regions with different levels of human disturbance and
could be important in better understanding fine-scaled
relationships across regions.

n Applying CSI research to management and policy 

As macrosystem ecologists identify and quantify interac-
tions underlying environmental problems, many of which
are multi-scaled, they will be able to play an increasingly
important role in developing sound policy and manage-
ment strategies (Carpenter and Turner 2000; Peters et al.
2008). By identifying the most important environmental
gradients and CSIs driving valued ecosystem response
variables (as per steps described in Peters et al. [2008]),
researchers can, by logical extension, determine in what
contexts modeled relationships can be translated from
one region or time period to another. Improved under-
standing of CSIs may facilitate better identification of
individual ecosystems and regions that are particularly
vulnerable to human impacts, and therefore might need
stronger protection or different management approaches
than less vulnerable systems or regions. Finally, because
knowledge of CSIs defines the spatial and temporal
bounds within which particular modeled relationships
apply, management agencies can strive to align policy
with the spatial/temporal structures defined by CSIs.

Our results demonstrate how a CSI between regional
land use and local wetlands affects lake water quality,
showing that one-size-fits-all management decisions will
often be ineffective. Such an approach inappropriately
assumes that cause–effect relationships between system
response variables and driver variables are the same across
broad geographic extents and through time. Our example
shows that local understanding (eg identifying the rela-
tionship between local wetlands and lake nutrients) and
decisions within a region (eg which wetlands to prioritize
for protection) can be informed by incorporating
regional-scale attributes (eg regional agricultural land
use) into a multi-scaled framework that uses information
from a broad geographic area.

Looking to the future, we anticipate many management
scenarios that will benefit from considering environmen-
tal problems at broader spatial (and temporal) extents
than have conventionally been used by researchers and
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Figure 6. Images from our study area showing the different landscape settings of (a) low and (b) high regional % agriculture. Images

from The National Map – Orthoimagery, US Geological Survey, http://nationalmap.gov/ortho.html.

(a)                         (b)
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resource managers. Although criteria for managing fresh-
water nutrients in the US are mainly determined at the
state level, results from our six-state analysis highlight the
usefulness of considering extents beyond individual state
(political) boundaries. For instance, P within Michigan
lakes, one of the states included in our study, varies rela-
tively little among regions (Cheruvelil et al. 2008); yet
across multiple states, there is much more among-region
variation in P (Cheruvelil et al. 2013). Thus, region-spe-
cific management of P may not be warranted at the state
level but recognition of broader-scale variation, effec-
tively captured at the regional scale, could aid coordina-
tion among states and with federal agencies, with the aim
of fostering consistent management approaches, criteria,
and evaluation across the country. 

Considering and measuring CSIs could also substan-
tially contribute to research and management efforts to
assess ecosystem health through the use of biological
monitoring. To date, many such efforts have been con-
ducted in a way that is specific to a particular region and
ecosystem type, with little capacity to synthesize across
studies. More explicit studies, both within and across
regions, could improve our understanding of the spatial
variation of biotic responses to hydrogeomorphic fea-
tures, anthropogenic stressors, and CSIs among these dri-
vers. Ultimately, our approach for investigating CSIs can
serve as a basis for efforts to understand a wide variety of
multi-scaled problems, such as climate change, land-
use/land-cover change, and invasive species.

n Conclusions

We live in a rapidly changing world, yet our understand-
ing of the ecological consequences of broad-scale changes
in land use, biogeochemical cycles, and climate is still
incomplete. CSIs related to these changes are one of the
key knowledge gaps in macrosystems ecology. We need to
identify the conditions or the environments prone to
CSIs, so it will be possible to anticipate, manage, and
respond to current environmental change. Unfortunately,
because ecologists have only just begun to quantify CSIs,
there are too few examples to generalize about the
ecosystem properties and the important scales that lead
to them. To do so, ecologists must promote initiatives to
coordinate any type of data-gathering efforts that pro-
vide multi-scaled, open-source data at broad spatial
extents for relevant drivers and response variables
needed to quantify CSIs. 

Macrosystems, by definition, are multi-thematic, multi-
scaled, and have processes that operate across space and
time (Heffernan et al. 2014). Such macrosystem charac-
teristics, along with their CSIs, can be difficult to incor-
porate into conceptual models, database design and
development, and analytical approaches. Because indi-
vidual scientists cannot have all of the technical skills
and disciplinary expertise required for such work (Levy et
al. 2014), it will be commonplace for these types of stud-

ies to be conducted by relatively large, interdisciplinary,
collaborative teams. Although generally experienced in
the use of analytical tools such as modeling and statistics,
ecologists only rarely receive training in the ecoinformat-
ics tools needed to work with such large and complex col-
lections of data (Rüegg et al. 2014) or in the skills essen-
tial to operate in the highly collaborative environments
necessary to study macrosystems (Cheruvelil et al. 2014);
even more rarely do they obtain sufficient credit for par-
ticipating and contributing to such efforts (Goring et al.
2014). More cross-disciplinary education programs and
changes in our institutions are needed to train and sup-
port the next generation of macrosystems ecologists.
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