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Abstract

Introduction: Estimating surface temperature from above-ground field measurements is important for

understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur

at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground,

leaving ground-surface microclimate not well characterized.

Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method

was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates

were derived from field temperature sensors and distributed across the landscape capturing differences in solar

radiation and cold air drainages modeled at a 30-m spatial resolution.

Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface

temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to

measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures

generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86,

0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson

regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were

significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m.

Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model

coupled with temperature lapse rates estimated from field measurements provides a method for modeling

temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range

shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow

species to redistribute locally as climate changes.
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Introduction
Microclimates at spatial scales of 1–1,000 m2 are the cli-

mates experienced by individual plants and thus are crit-

ical determinants of plant species distributions that must

be considered when evaluating plant species vulnerabil-

ity to climate change (Ashcroft 2010; Dobrowski 2011;

Keppel et al. 2012; Rosenberg et al. 1983). The diversity

of microclimates that occurs in mountainous terrain

may allow a species to re-distribute locally under a chan-

ging climate, thereby buffering a species’ exposure to re-

gional climate change (Williams et al. 2008). Localized

refugia can also provide stepping-stone connectivity for

gene flow, dispersal and migration (Ackerly et al. 2010;

Davis and Shaw 2001; Williams et al. 2008).

Although topographically related microclimate vari-

ation has been extensively documented and analyzed,

spatially explicit modeling of mountain microclimates

remains an active area of research (Ashcroft and Gollan

2012; Vanwalleghem and Meentemeyer 2009), as does

research to better understand how microclimate vari-

ation is related to plant extinction risk under climate

change (Ackerly et al. 2010; Keppel et al. 2012; Randin

et al. 2009). One challenge lies in interpolating climate

values across rugged topography from sparsely distrib-

uted weather stations that are usually located in level,

open sites (Ashcroft and Gollan 2012). A second chal-

lenge is estimating the microclimate near the ground

surface from weather station measurements typically

collected 2 m or more above the ground surface. Many

organisms, including plant seedlings, live on or near the

ground surface where temperature variation can be

much greater than the variation at 2 m (Kearney and

Porter 2009; Rosenberg et al. 1983). A third challenge is

that for most plant species we lack knowledge of which

aspects of microclimate are most important in control-

ling initial establishment, growth or reproduction.

In this study we are concerned with modeling fine-

scale variation of air temperatures close to the ground

surface and relating that variation to tree seedling re-

cruitment in mountain landscapes. The study is part of

a larger multi-year project integrating climate model

downscaling, microclimate measurement and modeling,

experimental studies of tree seedling recruitment, and

spatially explicit plant population models to link micro-

scale ecological processes to macro-scale species range

dynamics under climate change (Davis and Sweet 2012).

Our study region is in California, where hot and dry sum-

mer conditions associated with the Mediterranean climate

regime place strong abiotic controls on tree seedling es-

tablishment and sapling survival, and may factor import-

antly into population dynamics and species distributions

(Gomez-Aparicio et al. 2008; Zavala et al. 2000). Seedlings

must establish an adequate root system to survive a long sum-

mer drought (Mahall et al. 2009), and surface temperatures

near the ground can be lethally hot for small-stemmed

seedlings (Kolb and Robberecht 1996). For light-loving

tree species, recruitment of new individuals occurs in

clearings created by wildfires or other disturbances, and

the microclimates in such clearings can be especially ex-

treme and under strong topographic influence compared

to forested sites (Chen et al. 1999; Ma et al. 2010). Thus,

microclimate may influence seedling abundance and dis-

tribution differently or more so than is the case for adult

trees (Collins and Carson 2004; Tsujino and Yumoto

2007), depending on the scale of study (Stohlgren et al.

1998), and this topic is therefore particularly relevant to

the study of plant species recruitment. Studies of seedling

response to abiotic and biotic conditions will be key to

predicting range shifts, as populations may shift via seed-

ling establishment into new areas with climate change

(Lenoir et al. 2009).

We describe and test an approach for modeling land-

scape variation in an important microclimate variable—

maximum daily near-ground surface temperatures—based

on air temperature profiles measured in the field, 30-m

grids of modeled monthly solar insolation, and coarse

(4-km) spatial grids of air temperatures 2 m above the

surface. We then relate average maximum daily tempera-

tures to seedling recruitment (germination + survival to

end-of-summer) data from experimental field trials to

produce a seedling thermal niche model for California

black oak (Quercus kelloggii). We apply our near-ground

surface temperature model to map that seedling niche

across a study landscape in the southern Sierra Nevada.

Our results illustrate both the potential to model fine-scale

near-ground surface temperature variation and the import-

ance of doing so in order to describe spatial variation in

seedling establishment across mountain landscapes.

Methods
Study area

We are measuring microclimate and tree seedling re-

cruitment in foothill and montane sites in two neighbor-

ing ecoregions and seed zones, the southern Sierra

Nevada and the western Tehachapi Mountains in California

(Figure 1). Our Sierran sites comprise the San Joaquin Ex-

perimental Range (37°5´N, 119°43´W, 210–520 m ele-

vation, www.fs.fed.us/psw/ef/san_joaquin) and Teakettle

Experimental Forest (36°58´N, 119°1´W, 2,000–2,800 m,

www.fs.fed.us/psw/ef/teakettle). Our Tehachapi sites com-

prise landscapes at low (34°59´N, 118°43´W, 750–930 m)

and high (34°58´N, 118°35´W, 1,600–1,700 m) elevations

on the Tejon Ranch.

We tested our microclimate downscaling approach at

Teakettle Experimental Forest. The average annual pre-

cipitation here is 110 cm and falls predominantly in the

winter months as snow (North et al. 2002). Over the

period 1971–2000, the mean daily minimum temperature
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during January was −3.6°C and the mean maximum daily

temperature in August was 24°C (PRISM Climate Group

2012). The forest primarily consists of mixed-conifer

species, with occasional black oak (Quercus kelloggii). Na-

tive conifer species at lower elevations include white fir

(Abies concolor), sugar pine (Pinus lambertiana), incense

cedar (Calocedrus decurrens), and Jeffrey pine (Pinus

jeffreyi). Species such as red fir (Abies magnifica), lodge-

pole pine (Pinus contorta), and western white pine (Pinus

monticola) increase in abundance at higher elevations on

the site (North et al. 2002).

Microclimate measurements

At the Teakettle Experimental Forest we set up 17 indi-

vidual temperature sampling locations for calibration and

29 temperature sampling locations for verification using

HOBOW (Onset, www.onsetcomp.com) data loggers to

record temperature every 10 minutes beginning in August

2011. A dense array of 21 temperature sensors at 0.05 m

above ground was installed in a circular area 20 m in ra-

dius centered on each 5 × 5 m common garden (described

below; associated plant species planted together in another

environment). We deliberately sampled at high density to

ensure accurate estimation of mean near-ground surface

temperatures at these sites for calibration or validation of

30-m downscaled climate models. At each of six garden

sites, the sensor in the center was used for calibration and

the surrounding 20 sensors were used for validation by

averaging them into a monthly value of minimum and

maximum temperature. An additional 29 temperature re-

cording locations were allocated across the landscape

(hereafter, “landscape” sensors or locations) to capture

Figure 1 Location map of project study sites in California, USA. Temperature data recorded across the Teakettle landscape were partitioned into

two categories, modeled data and verified data. The modeled data sensors were used to calculate lapse rates needed for estimating surface temperature

from 17 individual locations. Verified data were collected at 29 separate locations to estimate the accuracy of the landscape surface temperature model.
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temperature variation related to hillslope orientation and

valley drainages (Figure 1). Of these 29 landscape sensors,

12 were used for calibration and the remaining 17 were

used for validation. At each experimental garden and at

several landscape locations, a stack of sensors recorded

temperature at three vertical distances above the ground

surface: 4, 2, and 0.05 m or 3, 1, and 0.05 m. One of these

two vertical arrangements of temperature sensors was used

to record temperature at each site and estimate the lapse

rate by adjusting the z-term, the height of recorded

temperature. We shielded the thermocouples (sensor

used to measure temperature) at 0.05 and 1 m from di-

rect sunlight by suspending them inside inverted white

styrene funnels 10 cm in diameter. Thermocouples at 2

and 4 m heights were suspended in Onset RS3 solar

radiation shields. The data loggers were tested in a climate-

controlled cold storage room prior to deployment. Quality

assurance and quality control methods from the National

Oceanic and Atmospheric Administration (NOAA) Me-

teorological Assimilation Data Ingest System (MADIS)

were used to filter out data that may have resulted from

sensor drift or spiking (http://madis.noaa.gov/madis_qc.

html). Where there were inadequate data for the month

due to sensor failure, data from that sensor were not used.

Spatial autocorrelation among the temperature sam-

pling locations was evaluated for dispersion and cluster-

ing patterns with respect to distance using Ripley’s K

function with 99 permutations (Bailey and Gatrell 1995;

Boots and Getis 1988). To determine the degree of auto-

correlation occurring at Teakettle among recorded tem-

peratures, the residuals of the near-ground surface

temperature (Campbell) predicted from measured near-

ground surface temperature (validation data) were calcu-

lated. Moran’s I was used to test if these residuals were

autocorrelated across Teakettle, that is, if they were

spatially clustered or statistically considered random,

suggesting the sampling locations could be treated as in-

dependent observations (Getis and Ord 1992).

Modeling the air temperature profile near the ground surface

We modeled the vertical temperature profile near the

ground using the equation from Campbell and Norman

(1998, p. 20), which is based on the theory of turbulent

heat transport and assumes a uniform surface with steady-

state conditions. Equation 1 from Campbell and Norman

(1998) was used to estimate coefficients needed to fit the

temperature profile at each of the 17 temperature record-

ing locations with a vertical mast containing the three

temperature sensors (as described above):

T zð Þ ¼ T 0−
H

0:4ρcpu�
ln
z−d

zH
ð1Þ

where T(z) is the estimated temperature at height z above

the soil surface, T0 is the surface temperature, H is the

sensible heat flux from the surface to the air, ρcp is the

volumetric specific heat of air (1,200 J m-3 C-1 at 20°C

and sea level), and 0.4 is von Karman’s constant, u* is

the frictional velocity, d ≈ 0.6h, where h is the vegeta-

tion height, and zH ≈ 0.02h, a roughness parameter for

heat transfer.

We applied this model using the vertical temperature

records to solve a system of three equations containing

three unknown variables: ground-surface temperature

(T0), lapse rate [A = H/(0.4pcpu*)], and vegetation

height (h). First, h was estimated across a range of

values ranging from 0 to 10 cm with an interval of 1

mm, and for each value of h we then solved for A and

T0, providing different estimates in temperature for

each h value. The best estimates of h, A, and T0 were

selected using a third temperature measurement by

matching the predicted temperature with the observed

temperature at the highest measurement height.

Downscaling regional climate grids

We applied Equation 1 to model monthly averages

of minimum and maximum temperature aggregated

from daily measurements near the ground sur-

face using 4-km resolution temperature grids ob-

tained from the PRISM Climate Group, Oregon State

University (http://prism.oregonstate.edu). The 4-km

grids were downscaled to 30 m using a two-stage

downscaling process, first downscaling to 800 m and

then from 800 m to 30 m using digital elevation

models (DEM) with 4-km, 800-m, and 30-m spatial

resolutions. The downscaling method, which is de-

scribed in detail by Flint and Flint (2012), fits local

climate gradients using multiple regression models to

predict temperature or rainfall from elevation along

bi-directional (north to south and east to west) gradi-

ents and weights the regression estimate for new lo-

cations using inverse-distance-squared weighting of

values from the coarser grid.

The PRISM Climate Group produces 4-km monthly

grids of average minimum and maximum temperature

by interpolating weather station temperature measure-

ments using a weighted regression approach based

on location, elevation, coastal proximity, topographic

orientation, and other terrain effects (Daly et al. 2008).

Given that the temperature measurements are typically

collected at 2 m above the surface, we treat our down-

scaled PRISM temperature grids as modeled tempera-

tures at a height of 2 m.

To derive 30-m grids of monthly minimum and max-

imum temperatures at the ground surface, we applied

our estimated lapse rates for 17 locations using the fol-

lowing relationship, a rearrangement and simplification

of Equation 1:
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T0 ¼ TPRISM þ A ln
z−d

zH
ð2Þ

where T0 is the monthly estimate for either minimum or

maximum ground surface temperature, TPRISM is the esti-

mated monthly minimum or maximum temperature at z =

2 m above ground obtained from the 30-m downscaled

PRISM grid for that month, A is the monthly lapse rate av-

eraged across 18 measurement locations, and z, d, and zH
are as defined above (Equation 1).

To estimate monthly minimum and maximum tem-

peratures near the ground surface at a height of 0.05 m,

we applied the following equation, a rearrangement of

Equation 2:

T 0:05ð Þ ¼ T 0−A ln
z−d

zH
ð3Þ

where T(0.05) is the monthly estimate for either mini-

mum or maximum surface temperature at z = 0.05 m,

T0 is as determined from Equation 2, and A, d, and zH
are as defined above (Equations 1 and 2).

We only considered snow-free months (September

and October 2011 and May through September 2012),

given that temperature sensors buried under snow

recorded a constant temperature of approximately 0°C.

We would have also included October 2012, but we

had incomplete field temperature data for this month.

Equations 2 and 3 assume that monthly lapse rates are

uniform across the landscape. We expected that lapse

rates could vary systematically on more open south-

facing slopes and ridges than in canyons and north-

facing slopes due to differences in surface thermal prop-

erties, local airflow patterns, daytime heating from solar

radiation, and other systematic terrain effects. To refine

our lapse rate estimates for modeling maximum monthly

temperatures, we adjusted local lapse rates based on

least-squares linear regression of lapse rates as a func-

tion of solar radiation. Modeled solar radiation was used

to estimate only maximum near-ground surface temper-

atures and not minimum temperatures due to the vari-

ability in solar heating among aspects during the day

from the sun’s thermal energy. Grids of monthly clear-

sky solar radiation were calculated as described in Flint

and Childs (1987). Their solar model accounts for both

direct and diffuse radiation and is based on solar geom-

etry, local slope angle and azimuth, and shading effects

of surrounding ridges. Average daily radiation load was

calculated by summing instantaneous radiation for 360

integration points per day, with 10° resolution of the

horizon for modeling shading from surrounding ridges.

Our monthly near-ground surface temperature models

were verified using independent surface temperature

measurements from 29 sampling locations. A least-

squares regression analysis was used to compare how

well the predicted model temperatures match those of

the independent observed measured temperatures.

Recruitment of Quercus kelloggii seedlings

We are studying the relationship of tree recruitment to

microclimate at 24 common gardens (6 gardens at each

of 4 sites). We located gardens in clearings to mimic

post-disturbance site conditions in two south-facing, two

north-facing, and two valley topographic settings longer

than 40 m across. Gardens were planted in the autumn

(2011) prior to snowfall: in October at Teakettle and the

Tehachapi high-elevation site, in November at the

Tehachapi low-elevation site, and in December at the

San Joaquin site. Jute netting was used to stabilize bare

soil surfaces created during garden installation in order

to reduce erosion and possible displacement of seeds.

Quercus kelloggii (black oak) seed was collected from

the USDA Forest Service seed zone 533 containing Tea-

kettle Experimental Forest and from zone 570 in the

Tehachapi Mountains. Acorns were collected by hand in

October 2011 from at least ten wild trees in each zone.

Seeds were gathered directly from the trees and the

ground, excluding seeds that were partially predated,

damaged, or appeared desiccated and those that could

not be detached from the cupule easily. After collection,

the seeds were placed into plastic containers with perlite

to prevent molding. Seeds collected at different locations

within a zone were combined and mixed to ensure a

consistent population-level sample when selected for

planting in the gardens. Seed was stored in ZiplocW bags

of perlite in groups of 50, first at 15°C and then changed

to 4°C after 1 week (to suppress germination and arrest

mold development). Bags of seed were monitored for

mold and decay until planted in the common gardens.

In late October 2011, 25 Q. kelloggii plots were planted

in a randomized complete block design in each of two

replicate mono-specific plots (0.5 × 1 m) as part of the

larger common garden experiment. Within the plots,

seeds were planted in a grid design, 10 cm apart (50

seeds per plot), just beneath the soil surface. Measure-

ments of height and basal diameter were made in June

and August for all emerged seedlings. Recruitment was

calculated as the number of seedlings alive in August.

The relationships between seedling recruitment (num-

ber surviving in August 2012) and temperature variables

were fitted using quasi-Poisson Generalized Linear Mo-

dels (R Core Team 2012). A quasi-Poisson model was

used because the mean was greater than the variance in

our recruitment data. Several temperature variables were

tested to investigate which monthly maximum tempera-

tures were most correlated with seedling recruitment, and

results are shown for July average maximum temperature

because this time period may include lethal temperatures

and occurred just prior to the mid-August assessment of
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seedling recruitment. To evaluate the difference in sig-

nificance of coefficients and variance explained from

modeling temperature regimes near the ground versus

at 2 m, we estimated and compared two simple GLMs

based on observed maximum temperatures at 0.05 and

2 m above the ground surface. We fit a second-order

polynomial for the temperature predictor because it

captures the hypothesized unimodal shape of the

temperature response curve over the range of measured

temperatures in the garden experiment (Austin 2002).

The dismo library (Hijmans et al. 2012) was used to

apply the resulting GLMs to 30-m resolution grids of

modeled maximum near-ground surface temperatures

at 0.05 and 2 m height. Maps created using ArcScene

(ESRI, www.esri.com) show these distribution models of

predicted Q. kelloggii seedling recruitment.

Results
Observed minimum and maximum temperatures

Peak maximum temperatures of 47°C were recorded on

July 9th near the soil surface on south-facing slopes at

Teakettle (Figure 2). Summer daytime maximum tem-

peratures were typically 8–12°C higher at 0.05 m than

at 2 m at the same location (Figure 2). Maximum daily

temperatures at 0.05 m were ~2°C warmer on south-

facing slopes and in valleys compared to those on

north-facing slopes (Figure 2). At 2 m, maximum tem-

peratures were relatively spatially uniform across the

landscape (Figure 2).

Site-wide estimates of near-surface lapse rates for

monthly maximum temperature averaged 1.20°C, but esti-

mates varied considerably by month, ranging from 0.10 to

1.36°C. Steepest lapse rates were generally recorded dur-

ing summer months. Lapse rates also varied considerably

among sites and at the same site between years (Table 1).

Compared to maximum daily temperatures, minimum

daily temperatures during the summer were much more

uniform across the landscape and the lapse rates were

closer to zero (Figure 3, Table 2). Mid-summer minimum

temperatures ranged from 5.8 to 15.6°C and were not sig-

nificantly different at 0.05 vs. 2 m above the soil surface

for north-facing slopes or valleys. South-facing slopes

were 0.75–1.5°C warmer at 2 m above the ground surface

compared to elsewhere on the landscape, often being the

warmest areas of minimum temperature (Figure 3). Site-

wide average lapse rate for monthly minimum tempe-

rature for all 7 months was approximately 0.15°C, ranging

from 0.12 to 0.16°C. Lapse rates did not vary systema-

tically with respect to topography, but lapse rates at

individual locations tended to be consistently higher or

consistently lower than site-wide averages.

Modeled landscape variation of near-ground

surface temperature

Downscaled 30-m grids of predicted monthly minimum

temperatures at 2 m above the ground surface were

strongly correlated with observed minimum near-ground

surface temperatures (Table 3). Similarly, estimates of

Figure 2 Representative daily mean maximum temperatures for the Teakettle Watershed study site during July 2012. Daily mean

maximum temperatures at 0.05 m (dashed lines) and 2 m (solid lines) are from three experimental gardens including north-facing (blue),

southwest-facing (red) and valley (green) locations.
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minimum daily near-ground surface temperatures were

strongly correlated (R2 = 0.80) with observed variation

across all topographic settings (Table 3). Model predictive

capacity was greatest for valleys (R2 =0.88) (Table 3). In

general, observed minimum temperatures recorded in the

field were found to be colder than modeled near-ground

surface minimum temperatures by approximately 0.83°C.

Estimated monthly maximum temperature lapse rates

were positively correlated with monthly solar radiation,

with steepest lapse rates observed at locations receiving

the highest insolation (R2 = 0.34, Figure 4). Downscaled

30-m grids of PRISM monthly maximum temperatures at

2 m above the ground surface were, as expected, not well

correlated with, and systematically cooler than, recorded

maximum temperatures at 0.05 m height (R2 = 0.61,

Table 3). The relationship improved after applying

Equations 2 and 3 to the downscaled PRISM grids using

site-wide monthly estimates of A (R2 = 0.73) and was

slightly further improved by adjusting lapse rate based on

monthly insolation (R2 = 0.75). Overall, the model was

best at predicting temperature along north-facing slopes

(R2 = 0.86, Table 3). Accuracy in terms of mean absolute

error between modeled and observed temperatures was

1.63°C for minimum and 3.57°C for maximum temperatures

(Table 4). The progression of modeled monthly maximum

surface temperatures for September-October 2011 and

May-September 2012 is shown for the Teakettle Water-

shed study (Figure 5); hottest surface conditions across

the landscape are predicted to have occurred in August

and on south-facing slopes.

While evaluating spatial autocorrelation among the

temperature sampling locations using Ripley’s K func-

tion, we found the sampled pattern of temperature to be

spatially random, falling within a 95% confidence enve-

lope. The observed K function with respect to distance

was neither clustered nor dispersed. The residuals, cal-

culated as the difference between the predicted and

measured near-ground surface temperatures, were not

spatially clustered in any of the seven months. Moran’s I

for model residuals ranged from −1.02 for October 2011

to 0.05 in September 2011. P-values fell between 0.22

and 0.88, suggesting that residuals calculated for each

month were neither significantly dispersed nor clustered.

Observed and modeled seedling recruitment

Maximum July temperature at 0.05 m (near the ground

surface) explained more variance in recruitment than

temperature measured at 2 m above the ground surface

Table 1 Estimated monthly averages of near-ground surface lapse rates (A in Equations 2 and 3; °C) used to model the

vertical profile of maximum monthly temperatures at the Teakettle Experimental Watershed for September-October

2011 and May-September 2012

Location Topographic position Sep-11 Oct-11 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Average

N1 North slope - - - - 1.59 1.53 1.01 -

N2 North slope 1.20 0.76 1.14 1.38 1.50 1.66 1.74 1.34

N3 North slope 0.56 0.09 1.22 1.38 1.24 1.39 0.72 0.94

N4 North slope 1.80 1.11 - - - - - -

N5 North slope 0.32 0.12 - 0.34 - - - -

N-average North slope 0.97 0.52 1.18 1.03 1.44 1.52 1.16 1.12

R1 Ridge 0.12 0.31 - - - - - 0.21

S1 South slope - - - - 1.87 1.66 1.98 -

S2 South slope 1.10 0.78 0.86 1.33 1.20 1.16 1.03 1.07

S3 South slope 0.60 0.17 1.76 1.82 - - 1.45 -

S4 South slope 1.23 0.60 1.42 0.62 - - - -

S5 South slope 1.31 1.62 - - - - - -

S-average South slope 0.97 0.52 1.18 1.03 1.44 1.52 1.16 1.12

V1 Valley - - - - 1.44 1.32 1.36 -

V2 Valley 0.69 0.02 1.18 1.61 1.43 1.41 1.34 1.10

V3 Valley 0.76 0.31 0.99 1.45 1.63 1.17 1.63 1.14

V4 Valley 1.21 0.89 1.76 2.15 - - - -

V5 Valley 1.17 0.79 1.67 1.85 - - - -

V6 Valley - - - - 2.46 2.33 2.07 2.29

V-average Valley 0.96 0.50 1.40 1.76 1.74 1.56 1.60 1.36

Dash marks represent months with incomplete data for that sensor.
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(adjusted R2 of 0.63 versus 0.41 respectively; Table 5).

Further, the estimated parameters were larger in magnitude

and were significant (at a significance level of alpha =

0.05) for the model based on 0.05 m temperature mea-

surements, versus 2 m (Table 5). The response curve

estimated for the temperature variable measured near

the ground also more completely characterized the

optimum and upper and lower limits of tolerance than

the curve estimated from 2 m data (Figure 6).

A predictive map of seedling recruitment as a func-

tion of July maximum temperature, generated by ap-

plying the quasi-Poisson regression model to the 2-m

gridded temperature dataset, shows a very smooth re-

cruitment surface with moderately high predicted re-

cruitment even in the upper elevation limits of the

study area (Figure 7a). The map generated using the

model of recruitment based on the 0.05 m tem-

perature data shows greater topographic variation in

modeled black oak seedling recruitment and generally

lower recruitment probability, especially at the upper

elevations of Teakettle, and higher predicted recruit-

ment in the lower elevation areas surrounding the

study area (Figure 7b).

Discussion
Evaluation of landscape-scale near-ground surface

temperature estimation

Modeling and estimating temperatures near the ground

surface has been important in understanding micro-

refugia and assessing species vulnerability to rising global

temperatures (Fridley 2009). Other studies have deployed

a dense grid of temperature sensors to record fine-scale

variability across the landscape among different topo-

graphic settings capturing the influence of nearby

streams, soil moisture, solar insolation, and vegetation

cover (Ashcroft 2010). Maps of surface temperatures have

then been produced based on statistical or geostatistical

modeling (Vanwalleghem and Meentemeyer 2009; Ashcroft

and Gollan 2012). We have used a different approach

that combines spatial downscaling of monthly PRISM

data to produce 30-m grids of air temperatures at 2 m,

followed by calculation of near-ground surface tem-

peratures using the observed temperature lapse rates

and modeled solar insolation. The Campbell and Nor-

man model used to estimate near-ground surface tem-

perature is based on a comprehensive model of surface

energy balance often used in climate forecasting to

Figure 3 Representative daily mean minimum temperatures for the Teakettle Watershed study site during July 2012. Daily mean

minimum temperatures at 0.05 m (dashed lines) and 2 m (solid lines) are from three experimental gardens including north-facing (blue),

southwest-facing (red) and valley (green) locations.
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estimate surface heat fluxes (e.g., Holtslag and Van

Ulden 1983).

Our findings demonstrate that landscape-scale estima-

tion of minimum and maximum near-ground surface

temperature is feasible through the combination of down-

scaled conventional climate datasets, vertical temperature

profile interpolation methods, and field calibration data.

Accuracy in terms of mean absolute error between mod-

eled and observed temperatures was generally better

for minimum than maximum temperatures, likely due to

greater fine-scale variability in maximum temperature

lapse rates. Lapse rates calculated from field temperature

sensors varied more, spatially and temporally, for monthly

maximum near-ground surface temperature than for

minimum near-ground surface temperature. Maximum

near-ground surface temperature is highly heteroge-

neous and varies not only by topographic aspect and

slope steepness, but is further complicated by soil and

ground cover albedo, which absorbs or reflects solar ra-

diation. Furthermore, gaps in canopy cover attenuate

Table 2 Estimated monthly averages of near-ground surface lapse rates (°C) used to model the vertical profile of

minimum monthly temperatures at the Teakettle Experimental Watershed for September-October 2011 and May-

September 2012

Location Topographic position Sep-11 Oct-11 May-12 Jun-12 Jul-12 Aug-12 Sep-12 Average

N1 North slope - - - - −0.04 −0.05 −0.06 -

N2 North slope −0.11 −0.19 −0.08 −0.08 −0.11 −0.12 −0.12 −0.12

N3 North slope −0.07 −0.06 −0.19 −0.02 −0.04 −0.04 −0.04 −0.07

N4 North slope −0.16 −0.12 - - - - - -

N5 North slope −0.64 −0.58 - −0.29 - - - -

N-average North slope −0.25 −0.24 −0.14 −0.13 −0.06 −0.07 −0.07 −0.14

R1 Ridge −0.12 −0.12 - - - - - −0.12

S1 South slope - - - - −0.29 −0.27 −0.32 -

S2 South slope −0.13 −0.09 −0.14 −0.11 −0.12 −0.01 −0.15 −0.11

S3 South slope −0.03 −0.02 −0.21 −0.04 - - 0.00 -

S4 South slope −0.25 −0.23 −0.18 −0.19 - - - -

S5 South slope −0.13 −0.37 - - - - - -

S-average South slope −0.25 −0.24 −0.14 −0.13 −0.06 −0.07 −0.07 −0.14

V1 Valley - - - - −0.24 −0.28 −0.27 -

V2 Valley −0.16 −0.16 −0.10 −0.12 −0.16 −0.17 −0.17 −0.15

V3 Valley −0.09 −0.07 −0.05 −0.07 −0.08 −0.08 −0.08 −0.07

V4 Valley −0.16 −0.07 −0.11 −0.10 - - - -

V5 Valley - - −0.48 −0.63 - - - -

V6 Valley - - - - −0.11 −0.13 −0.11 −0.12

V-average Valley −0.14 −0.10 −0.18 −0.23 −0.15 −0.17 −0.16 −0.16

Dash marks represent months with incomplete data for that sensor.

Table 3 Squared correlation coefficients (R2) between PRISM and observed (HOBO) minimum and maximum

temperatures (°C) and between observed and estimated minimum and maximum surface temperatures using various

lapse rate estimation methods

Analysis All aspects North South Valley Ridgeline

Minimum temperature

PRISM vs. HOBO 0.82 0.80 0.75 0.88 0.86

HOBO vs. average lapse rate 0.80 0.79 0.75 0.88 0.86

Maximum temperature

PRISM vs. HOBO 0.60 0.72 0.59 0.55 0.75

HOBO vs. average lapse rate 0.68 0.82 0.76 0.62 0.72

HOBO vs. regressed solar lapse rate 0.69 0.81 0.76 0.59 0.77

n: north: 18, south: 30, valley: 21, ridgeline: 18, total: 87.

Analysis points consisted of paired comparisons between monthly temperature datasets.
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solar radiation before it reaches the ground causing dif-

ferences in surface temperatures (Fridley 2009).

Model accuracy was highest on north-facing slopes. Al-

though Dobrowski (2011) reported that aspect has little

direct effect on minimum temperature, the increased solar

radiation on south-facing slopes and ridgelines may inter-

act with the dry soil conditions during summer months at

Teakettle and promote stronger divergence from the re-

gional temperature patterns characterized in large-scale

climate datasets. The ridgeline regions at Teakettle make

up a relatively small area compared to other sampled land-

scapes. Consequently, we had only one temperature re-

cording location that captured ridgeline variability, making

it more difficult to estimate near-ground surface tempera-

tures along mountain ridges. Locally, north-facing slopes

experience the smallest amount of solar radiation and

the most canopy shading and, therefore, the narrowest

fluctuations in temperature and lapse rates compared

to the other sites. To better understand patterns of

near-ground surface temperatures in mountainous re-

gions we plan to add temperature recording stations

that capture the vertical temperature profile at our

other three other research sites, San Joaquin Experi-

mental Range and Tehachapi low and high elevation

landscapes. With these additional temperature record-

ing sites, near-ground surface temperature models will

support models of tree seedling recruitment in all pro-

ject study areas, allowing us to better link topographic-

ally influenced micro-scale climate to macro-scale tree

species range dynamics.

Figure 4 Scatterplot of integrated monthly solar radiation (MJ m-2) vs. estimated lapse rate (°C) for the near-ground surface profile of

maximum daily temperatures. Linear regression equation (y = 0.002x + 0.367) with an R2 = 0.34.

Table 4 Mean absolute error between PRISM and observed (HOBO) minimum and maximum temperatures (°C) and between

observed and estimated minimum and maximum surface temperatures using various lapse rate estimation methods

Analysis All aspects North South Valley Ridgeline

Minimum temperature

PRISM vs. HOBO 1.59 1.58 1.44 1.24 2.24

HOBO vs. average lapse rate 1.63 1.58 1.66 1.20 2.15

Maximum temperature

PRISM vs. HOBO 9.92 7.48 10.47 9.61 11.80

HOBO vs. average lapse rate 3.82 1.92 4.22 4.55 4.18

HOBO vs. regressed solar lapse rate 3.57 1.92 3.62 4.71 3.79

n: north: 18, south: 30, valley: 21, ridgeline: 18, total: 87.

Analysis points consisted of paired comparisons between monthly temperature datasets.
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Figure 5 (See legend on next page.)
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Numerous studies have shown that including topo-

graphically based variables to account for cold air pooling,

particularly those pertaining to water drainage and accu-

mulation, improves estimation of temperature across the

landscape (Lookingbill and Urban 2003; Lundquist et al.

2008; Dobrowski et al. 2009). Bigg et al. (2012) demon-

strated that cold air pooling occurs throughout the year

and is strongest and most frequent during summer and

autumn in a study of the Peak District of central England.

Notably, these cold air pooling events occurred at small

scales, approximately 0.5–1 km. In mountainous land-

scapes such as Teakettle, knowledge of small-scale pat-

terns of cold air pooling could enable spatial predictions

of climate refugia, which in this case would act as small

sanctuaries decoupled from regional climate regimes for

more cold-adapted species (Daly et al. 2010).

Implications for species distribution modeling

Landscape-scale estimation of near-ground surface tem-

peratures makes possible microclimate modeling for

plant seedlings or other species that experience climate

at the ground surface. Plant seedlings must endure the

surface level microclimate to become established indi-

viduals, meaning exposure to considerably warmer tem-

peratures than those that are found at just a couple of

meters above ground. Conventional climate datasets

(e.g., PRISM) based on mean maximum temperatures

measured at 2 m insufficiently represent the magnitude

and variability of maximum temperatures at the ground

surface. Furthermore, hot and cold temperature spikes

may be lethal to certain species during critical life stages,

but inadequately described within mean temperature

datasets (Bateman et al. 2012; Reyer et al. 2013) regard-

less of temperature measurement height. Use of such

datasets to predict distributions of species that experi-

ence ground surface microclimate could produce mis-

leading results and misinform management strategies.

In the case of the black oak, for a seedling to survive

the first growing season, several ecophysiological require-

ments must be met: acorns require thermal stratification

(Burns et al. 1990); adequate moisture and temperatures

must occur in the springtime for germination and emer-

gence from the soil; enough nutrients and light energy

must be available for growth beyond seed stores; and

seedlings must survive possible late frosts or lethally hot

surface temperatures during a long summer drought

period. As a direct (e.g., thermal energy for chemical pro-

cesses; lethal stem temperatures) or indirect (proxy for

soil drydown) driver, it stands to reason that July maxi-

mum temperature would be an important predictive vari-

able in oak recruitment. Although black oak has been

studied in silvicultural settings (e.g., McDonald 1978), and

foundational research by Griffin (1971) documented life

history traits such as seed set and germination and differ-

ences in seedling emergence in foothill woodland micro-

habitats, the literature on black oak seedling ecology is

not extensive (Tyler et al. 2006). Our results are consist-

ent with prior findings, including those of Standiford

et al. (1991), that solar radiation (which covaries with

slope-aspect and temperature) is a significant factor in

explaining the probability of seedling regeneration.

Our experiment underscores the importance of near-

ground surface temperatures for black oak seedling re-

cruitment (Figure 7). Species distribution models (Franklin

2010) generally map suitable habitat for adult indi-

viduals of species, but it cannot be assumed that juve-

niles establish and survive under the same conditions

(Ibanez et al. 2007; Jackson et al. 2009; McLaughlin and

Zavaleta 2012), nor that the spatial distribution of suit-

able microhabitats for juveniles across landscapes is the

same as that of adults.

Conclusions
Our study demonstrates the importance of including

ground surface microclimate in predicting future species

distributions in response to climate change. Montane

landscapes contain considerable microclimatic variability

that could provide important refugia for species threat-

ened by climate change. Refugia are often identified as

areas of overlapping suitable habitat between existing and

projected future species distributions or sometimes as

areas outside current suitable habitat that are expected to

Table 5 Summary of results of simple quasi-Poisson GLMs of number of Quercus kelloggii seedlings recruited (response

variable) as a quadratic function of July average maximum temperature measured at two heights (temp. height)

Temp. height Parm poly1 P (poly1) Parm poly 2 P (poly2) Adj R2 Dispers parm

0.05 m 5.431 0.021 −0.070 0.018 0.63 3.90

2 m 2.661 0.359 −0.053 0.313 0.42 7.63

Parm poly1 is the estimated parameter for the linear term of the temperature variable, and parm poly2 is the estimated parameter for the squared term. P() are

the probabilities that those terms are not significantly different from zero. Dispers parm is the dispersal parameter of the quasi-Poisson model.

(See figure on previous page.)

Figure 5 Modeled mean daily maximum temperatures for the Teakettle Watershed study site, September-October 2011 and May-

September 2012, based on 4-km PRISM data that were downscaled to 30 m and extrapolated from 2 m to 0.05 m above the soil

surface using lapse rates calculated from Equations 2 and 3 and then adjusted based on modeled solar radiation.
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become suitable in the future (e.g., Franklin et al. 2013).

The concept of climate change refugia has drawn atten-

tion in recent discussions of conservation responses

to climate change (Ashcroft 2010; Keppel et al. 2012;

Keppel and Wardell-Johnson 2012). Yet despite this at-

tention, the role of climate-species relationships during

early life stages in identifying and conserving potential

refugia has received insufficient consideration due to

the common assumption that climate-species relation-

ships are static throughout the lives of individuals

(McLaughlin and Zavaleta 2012 is an exception). There-

fore, conservation of plant species under climate change

could depend on our ability to model the responses of

species to ground-surface microclimate. This study rep-

resents a step forward in both modeling ground-surface

microclimate at relatively fine scales and understanding

how this fine-scale variability may influence plant seed-

ling survival and govern landscape and regional patterns

of future species distributions.

Climate models, such as PRISM, that are based on

temperature measured at 2 m above the ground surface

require estimated lapse rates if they are to be used to

model ground-surface temperature. Temperatures near

the ground surface tend to be more extreme and hetero-

geneous than above-ground temperatures due to the dif-

ferences in albedo, soil moisture, and vegetation density

near the ground. Having a network of temperature sen-

sors that capture the vertical temperature profile and are

distributed among different topographic settings allows

us to better understand microclimate variability with re-

spect to near-ground surface temperature.

Modeling tree species recruitment as a function of

near-ground surface temperature provided insight on

how a species might establish across the landscape with

respect to fine-scale microclimate variability. Modeling

maximum temperatures at the ground surface, a poten-

tially harsh environment that acts as a fine filter through

which tree seedlings must pass to establish successfully,

Figure 7 Distribution models of the seedling thermal recruitment niche for Q. kelloggii for Teakettle Experimental Watershed

predicted by applying quasi-Poisson GLMs to 30-m grids of modeled July maximum temperatures at (a) 2 m and (b) 0.05 m.

Figure 6 Recruitment of Q. kelloggii seedlings (number of seeds surviving in August out of 50 planted) in experimental gardens as

predicted by measured average July daily maximum temperature at all study sites (a) 2 m and (b) 0.05 m above the soil surface.

Fitted lines are from 2nd-order polynomial quasi-Poisson GLMs based on number of recruits as the response variable. Abbreviations: TEF,

Teakettle Experimental Forest; SJER, San Joaquin Experimental Range; TRF, Tejon Ranch Foothill site; TRM, Tejon Ranch Montane site.
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can better explain the heterogeneity found in the re-

cruitment pattern of black oak compared to traditional

temperature measurements made at 2 m above the

ground surface.
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