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Abstract

Cross-scene crowd counting is a challenging task where

no laborious data annotation is required for counting peo-

ple in new target surveillance crowd scenes unseen in the

training set. The performance of most existing crowd count-

ing methods drops significantly when they are applied to

an unseen scene. To address this problem, we propose a

deep convolutional neural network (CNN) for crowd count-

ing, and it is trained alternatively with two related learning

objectives, crowd density and crowd count. This proposed

switchable learning approach is able to obtain better lo-

cal optimum for both objectives. To handle an unseen tar-

get crowd scene, we present a data-driven method to fine-

tune the trained CNN model for the target scene. A new

dataset including 108 crowd scenes with nearly 200,000

head annotations is introduced to better evaluate the ac-

curacy of cross-scene crowd counting methods. Exten-

sive experiments on the proposed and another two existing

datasets demonstrate the effectiveness and reliability of our

approach.

1. Introduction

Counting crowd pedestrians in videos draws a lot of at-

tention because of its intense demands in video surveil-

lance, and it is especially important for metropolis secu-

rity. Crowd counting is a challenging task due to severe

occlusions, scene perspective distortions and diverse crowd

distributions. Since pedestrian detection and tracking has

difficulty when being used in crowd scenes, most state-of-

the-art methods [6, 4, 5, 17] are regression based and the

goal is to learn a mapping between low-level features and

crowd counts. However, these works are scene-specific, i.e.,

a crowd counting model learned for a particular scene can

only be applied to the same scene. Given an unseen scene

or a changed scene layout, the model has to be re-trained

with new annotations. There are few works focusing on

cross-scene crowd counting, though it is important to actual

applications.

In this paper, we propose a framework for cross-scene

crowd counting. No extra annotations are needed for a new

target scene. Our goal is to learn a mapping from images

to crowd counts, and then to use the mapping in unseen tar-

get scenes for cross-scene crowd counting. To achieve this

goal, we need to overcome the following challenges. 1) De-

velop effective features to describe crowd. Previous works

used general hand-crafted features, which have low repre-

sentation capability for crowd. New descriptors specially

designed or learned for crowd scenes are needed. 2) Dif-

ferent scenes have different perspective distortions, crowd

distributions and lighting conditions. Without additional

training data, the model trained in one specific scene has

difficulty being used for other scenes. 3) For most recent

works, foreground segmentation is indispensable for crowd

counting. But crowd segmentation is a challenging problem

and can not be accurately obtained in most crowded scenes.

The scene may also have stationary crowd without move-

ment. 4) Existing crowd counting datasets are not sufficient

to support and evaluate cross-scene counting research. The

largest one [8] only contains 50 static images from differ-

ent crowd scenes collected from Flickr. The widely used

UCSD dataset [4] and the Mall dataset [6] only consist of

video clips collected from one or two scenes.

Considering these challenges, we propose a Convolu-

tional Neural Network (CNN) based framework for cross-

scene crowd counting. After a CNN is trained with a fixed

dataset, a data-driven method is introduced to fine-tune

(adapt) the learned CNN to an unseen target scene, where

training samples similar to the target scene are retrieved

from the training scenes for fine-tuning. Figure 1 illustrates

the overall framework of our proposed method. Our cross-

scene crowd density estimation and counting framework has

following advantages:

1. Our CNN model is trained for crowd scenes by a

switchable learning process with two learning objectives,

crowd density maps and crowd counts. The two different

but related objectives can alternatively assist each other to
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Figure 1. Illustration of our proposed cross-scene crowd counting method.

obtain better local optima. Our CNN model learns crowd-

specific features, which are more effective and robust than

handcrafted features.

2. The target scenes require no extra labels in our frame-

work for cross-scene counting. The pre-trained CNN model

is fine-tuned for each target scene to overcome the do-

main gap between different scenes. The fine-tuned model

is specifically adapted to the new target scene.

3. The framework does not rely on foreground segmenta-

tion results because only appearance information is consid-

ered in our method. No matter whether the crowd is mov-

ing or not, the crowd texture would be captured by the CNN

model and can obtain a reasonable counting result.

4. We also introduce a new dataset 1 for evaluating cross-

scene crowd counting methods. To the best of our knowl-

edge, this is the largest dataset for evaluating crowd count-

ing algorithms.

2. Related work

Counting by global regression. Many works have been

proposed to count the pedestrians by detection [29, 14, 27]

or trajectory-clustering [3, 21]. But for the crowd count-

ing problem, these methods are limited by severe occlu-

sions between people. A number of methods [1, 6, 4, 5, 11]

tried to predict global counts by using regressors trained

with low-level features. These approaches are more suitable

for crowded environments and is computationally more effi-

cient. Loy et al. [17] introduced semi-supervised regression

and data transferring methods to reduce the amount of train-

ing data needed, but it still needs some labels from the target

crowd scene. Idrees et al. [8] estimated the number of indi-

1http://www.ee.cuhk.edu.hk/∼xgwang/expo.html

viduals in dense crowds based on multi-source information

from images but not surveillance videos.

Counting by density estimation estimation. Counting

by global regression ignores spatial information of pedes-

trians. Lempitsky et al. [12] introduced an object counting

method through pixel-level object density map regression.

Following this work, Fiaschi et al. [7] used random forest

to regress the object density and improve training efficiency.

Besides considering spatial information, another advantage

of density regression based methods is that they are able to

estimate object counts in any region of an image. Taking

this advantage, an interactive object counting system was

introduced in [2], which visualized region counts to help

users to determine the relevance feedback efficiently. And

Rodrigueze [22] made use of density map estimation to im-

prove the head detection results. These methods are scene-

specific and not applicable to cross-scene counting.

Deep learning. Many works introduced deep learning

into various surveillance applications, such as person re-

identification [13], pedestrian detection [30, 31, 20], track-

ing [28], crowd behavior analysis [9] and crowd segmenta-

tion [10]. Their success benefits from discriminative power

of deep models. Sermanet et al. [25] showed that the fea-

tures extracted from deep models are more effective than

hand-crafted feature for many applications. To the best of

our knowledge, however, deep models have not yet been

explored for crowd counting.

Data-driven approaches for scene labeling. As many

large-scale and well-labeled datasets published, nonpara-

metric, data-driven approaches [15, 26, 23] are proposed.

Such approaches can be scaled up easily because they do

not require training. They transfer the labels from the train-

ing images to the test image by retrieving the most sim-
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ilar training images and match them with the test image.

Liu et al. [15] proposed a nonparametric image parsing

method looking for a dense deformation field between im-

ages. Inspired by the data-driven scene labeling methods,

for a unseen target scene, we retrieve similar scenes and

crowd patches from the training scenes. However, instead

of directly transferring labels to the target scene like exist-

ing methods, we propose to use the training samples that fits

the estimated crowd density distribution to fine-tune (adapt)

the pre-trained CNN model to the target scene.

3. Method

3.1. Normalized crowd density map for training

The main objective for our crowd CNN model is to learn

a mapping F : X → D, where X is the set of low-level

features extracted from training images and D is the crowd

density map of the image. Assuming that the position of

each pedestrian is labeled, the density map is created based

on pedestrians’ spatial location, human body shape and per-

spective distortion of images. Patches randomly selected

from the training images are treated as training samples, and

the density maps of corresponding patches are treated as the

ground truth for the crowd CNN model. As an auxiliary ob-

jective, the total crowd number in a selected training patch

is calculated through integration over the density map. Note

that the total number will be a decimal, but not an integer.

Many works followed [12] and defined the density map

regression ground truth as a sum of Gaussian kernels cen-

tered on the locations of objects. This kind of density

maps is suitable for characterizing the density distribution

of circle-like objects such as cells and bacteria. However,

this assumption may fail when it comes to the pedestrian

crowd, where cameras are generally not in a bird-view. An

example of pedestrians in an ordinary surveillance camera

is shown in Figure 2. It has three visible characteristics: 1)

pedestrian images in the surveillance videos have different

scales due to perspective distortion; 2) the shapes of pedes-

trians are more similar to ellipses than circles; 3) due to

severe occlusions, heads and shoulders are the main cues

to judge whether there exists a pedestrian at each position.

The body parts of pedestrians are not reliable for human

annotation. Taking these characteristics into account, the

crowd density map is created by the combination of several

distributions with perspective normalization.

Perspective normalization is necessary to estimate the

pedestrian scales. Inspired by [4], for each scene, we ran-

domly select several adult pedestrians and label them from

head to toe. Assuming that the mean height of adults is 175

cm, the perspective map M can be approximated through a

linear regression as shown in Figure 2 (a). The pixel value

in the perspective map M(p) denotes that the number of

pixels in the image representing one meter at that location

� �

(a)

(b)

Figure 2. (a) Estimating the perspective map. Hot color indicates

a high value in the perspective map. (b) The crowd density map

and the red box show some training patch randomly cropped from

image and density map. The patches cover the same actual area.

The ones in the further away regions are smaller and the ones in

the closer regions are larger.

in the actual scene. After we obtain the perspective map and

the center positions of pedestrian head Ph in the region of

interest (ROI), we create the crowd density map is created

as:

Di(p) =
∑

P∈Pi

1

‖Z‖
(Nh(p;Ph, σh) +Nb(p;Pb,Σ)) (1)

The crowd density distribution kernel contains two

terms, a normalized 2D Gaussian kernel Nh as a head part

and a bivariate normal distribution Nb as a body part. Here

Pb is the position of the pedestrian body, estimated by the

head position and the perspective value. To best represent

the pedestrian contour, we set the variance σh = 0.2M(p)
for the term Nh, and σx = 0.2M(p), σy = 0.5M(p) for the

term Nb. To ensure that the integration of all density values

in a density map equals to the total crowd number in the

original image, the whole distribution is normalized by Z.

The crowd density distribution kernel and created density

map are visualized in Figure 2 (b).

3.2. Crowd CNN model

An overview of our crowd CNN model with switchable

objectives is shown in Figure 3. The input is the image

patches cropped from training images. In order to obtain

pedestrians at similar scales, the size of each patch at differ-

ent locations is chosen according to the perspective value

of its center pixel. Here we constrain each patch to cover a

3-meter by 3-meter square in the actual scene as shown in

Figure 2. Then the patches are warped to 72 pixels by 72

pixels as the input of the Crowd CNN model. Our Crowd

CNN model contains 3 convolution layers (con1-conv3) and
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Figure 3. The structure of the crowd convolutional neural network.

At the loss layer, a density map loss and a global count loss is

minimized alternatively.

three fully connected layers (fc4, fc5 and fc6 or fc7). Conv1

has 32 7×7×3 filters, conv2 has 32 7×7×32 filters and the

last convolution layer has 64 5 × 5 × 32 filters. Max pool-

ing layers with a 2× 2 kernel size are used after conv1 and

conv2. Rectified linear unit (ReLU), which is not shown in

Figure 3, is the activation function applied after every con-

volutional layer and fully connected layer.

We introduce an iterative switching process in our deep

crowd model to alternatively optimize the density map es-

timation task and the count estimation task. The main task

for the crowd CNN model is to estimate the crowd density

map of the input patch. Because two pooling layers exist in

the CNN model, the output density map is down-sampled

to 18× 18. Therefore, the ground truth density map is also

down-sampled to 18 × 18. Since the density map contains

rich and abundant local and detailed information, the CNN

model can benefit from learning to predict density map and

can obtain a better representation of crowd patches. The

total count regression of the input patch is treated as the

secondary task, which is calculated by integrating the den-

sity map patch. Two tasks alternatively assist each other and

obtain a better solution. The two loss functions are defined

as:

LD(Θ) =
1

N

N∑

i

‖Fd(Xi; Θ)−Di‖
2
, (2)

LY (Θ) =
1

N

N∑

i

‖Fy(Xi; Θ)− Yi‖
2
, (3)

where Θ is the set of parameters of the CNN model and

N is the number of training samples. LD is the loss be-

tween estimated density map Fd(Xi; Θ) (the output of fc6)

and the ground truth density map Di. Similarly, LY is the

loss between the estimated crowd number Fy(Xi; Θ) (the

output of fc7) and the ground truth number Yi. Euclidean

distance is adopted in these two objective losses. The loss

is minimized using mini-batch gradient descent and back-

propagation.

The switchable training procedure is summarized in Al-

gorithm 1. We set LD as the first objective loss to minimize,

since the density map can introduce more spatial informa-

tion to the CNN model. Density map estimation requires

the model to learn a general representation for crowd. Then

after the first objective converges, the model switches to

minimize the objective of global count regression. Count

regression is an easier task and its learning converges faster

than the task of density map regression. Note that the two

objective losses should be normalized to similar scales, oth-

erwise the objective with the larger scale would be dominant

in the training process. In the experiment, we set the scale

weight of density loss to 10, and the scale weight of count

loss to 1. The training loss converged after about 6 switch

iterations. Our proposed switching learning appoarch can

achieve better performance than the widely used multi-task

learning approach (see experiments in the Section 5).

Algorithm 1: Training with iterative switching losses

Input: Training set: size-normalized patches with

their counts and density maps from the whole

training data

Output: Parameters Θ for crowd CNN model

1 set LD as the first objective;

2 for t = 1 to T do

3 BP to learn Θ, until the validation loss drop rate

∆L is less than the threshold ε

4 Switch the objective loss function

5 end

4. Nonparametric fine-tuning for target scene

The crowd CNN model is pre-trained based on all train-

ing scene data through our proposed switchable learning

process. However, each query crowd scene has its unique

scene properties, such as different view angles, scales and

different density distributions. These properties signifi-

cantly change the appearance of crowd patches and affect

the performance of the crowd CNN model. In order to

bridge the distribution gap between the training and test

scenes, we design a nonparametric fine-tuning scheme to

adapt our pre-trained CNN model to unseen target scenes.

Given a target video from the unseen scenes, samples with

similar properties from the training scenes are retrieved and

added to training data to fine-tune the crowd CNN model.

The retrieval task consists of two steps, candidate scenes

retrieval and local patch retrieval.

4.1. Candidate scene retrieval

The view angle and the scale of a scene are the main

factors affecting the appearance of crowd. The perspec-

tive map can indicate both the view angle and the scale

as shown in Figure 2 (a). To overcome the scale gap be-
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Figure 4. Illustration of retrieving local patches similar to those

in the test scene to fine-tune the crowd CNN model. (a) Retriev-

ing candidate scenes by matching perspective maps of the training

scenes and the test scene. (b) Local patches similar to those in the

test scene are retrieved from the candidate scenes. The color bars

indicate the density distributions of patches from the test scene,

and those patches selected from the train scenes

tween different scenes, each input patch is normalized into

the same scale, which covers a 3-meter by 3-meter square

in the actual scene according to the perspective map. There-

fore, the first step of our nonparametric fine-tuning method

focuses on retrieving training scenes that have similar per-

spective maps with the target scene from all the training

scenes. Those retrieved scenes are called candidate fine-

tuning scenes. A perspective descriptor is designed to rep-

resent the view angle of each scene. Since the perspective

map is linearly fitted along the y axis, we use its vertical

gradient ∆My as the perspective descriptor.

Based on the descriptor, for a target unseen scene, the

top 20 perspective-map-similar scenes are retrieved from

the whole training dataset as shown in Figure 4 (a). The

retrieved images are treated as the candidate scenes for lo-

cal patch retrieval.

4.2. Local patch retrieval

The second step is to select similar patches, which have

similar density distributions with those in the test scene,

from candidate scenes. Besides the view angle and the

scale, the crowd density distribution also affects the appear-

ance pattern of crowds. Higher density crowd has more se-

vere occlusions, and only heads and shoulders can be ob-

served. On the contrary, in sparse crowd, pedestrian appear

with entire body shapes. Some instances of input patches

are shown in Figure 4 (b). Therefore, we try to predict the

density distribution of the target scene and retrieve similar

patches that match the predicted target density distribution

from the candidate scenes. For example, for a crowd scene

with high densities, denser patches should be retrieved to

fine-tune the pre-trained model to fit the target scene.

With the pre-trained CNN model presented in Sec-

tion 3.2, we can roughly predict the density and the total

count for every patch of the target image. It is assumed

that patches with similar density map have similar output

through the pre-trained model. Based on the prediction re-

sult, we compute a histogram of the density distribution for

the target scene. Each bin is calculated as

ci = ⌊ln(ŷi + 1)× 2⌋ . (4)

where ŷi is the integrating count of estimated density map

for sample i. Since there rarely exist scenes where more

than 20 pedestrians stand in a 3-meter by 3-meter square,

when ŷi > 20, the patch should be assigned to the sixth bin,

i.e. ci = 6. Density distribution of the target scene can be

obtained from Equation (4). Then, patches are randomly se-

lected from the retrieved training scenes and the number of

patches with different densities are controlled to match the

density distribution of the target scene. In this way, the pro-

posed fine-tuning method is adopted to retrieve the patches

with similar view angles, scales and density distributions.

The fine-tuned crowd CNN model achieves better perfor-

mance for the target scene. The results will be shown in the

following section.

5. Experiment

We evaluate our method in three different datasets in-

cluding our proposed the WorldExpo’10 crowd count-

ing dataset, the UCSD pedestrian dataset [4] and the

UCF CC 50 dataset [8] . The details of the three datasets

are described in Table 1 and example frames are shown in

Figure 5.

5.1. WorldExpo’10 crowd counting dataset

We introduce a new large-scale cross-scene crowd count-

ing dataset. To the best of our knowledge, this is the largest

dataset focusing on cross-scene counting. It includes 1132

annotated video sequences captured by 108 surveillance

cameras, all from Shanghai 2010 WorldExpo2. Since most

of the cameras have disjoint bird views, they cover a large

variety of scenes. We labeled a total of 199,923 pedestrians

at the centers of their heads in 3,980 frames. These frames

are uniformly sampled from all the video sequences. The

details are listed in Table 1 and some instances are shown

in Figure 5.

2Since most exhibition pavilions have been deconstructed, and no video

corresponding to those pavilions still in use is included, the data is ap-

proved to be released for academic purposes.
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Table 1. Statistics of three datasets: Nf is the number of frames; Nc is the number of scenes; R is the resolution; FPS is the number

of frames per second; D indicates the minimum and maximum numbers of people in the ROI of a frame; Tp is total number of labeled

pedestrians

Dataset Nf Nc R FPS D Tp

UCSD 2000 1 158*238 10 11-46 49885

UCF CC 50 50 50 – image 94-4543 63974

WorldExpo 4.44 million 108 576*720 50 1-253 199923

(a) (b)

(c)

Figure 5. (a) Example frames of the UCSD dataset. (b) Example frames of the UCF CC 50. (c) Example frames of the WorldExpo dataset.

The region within the blue polygons are the regions of interest (ROI) and positions of pedestrian heads are labeled with red dots

Our dataset is splitted into two parts. 1,127 one-minute

long video sequences out of 103 scenes are treated as train-

ing and validation sets. The test set has 5 one-hour long

video sequences from 5 different scenes. There are 120 la-

beled frames in each test scene and the interval between two

frames is 30 seconds. The pedestrian number in the test set

changes significantly over time ranging from 1-220. The

existence of large stationary groups makes it hard to de-

tect the foreground area. Thus, most of the proposed count-

ing methods are not applicable to our dataset, because their

methods heavily rely on the segmentation of foreground.

The quantitative results of cross-scene crowd counting

on our dataset are reported in Table 2. The Mean Absolute

Error (MAE) is employed as the evaluation metric. Firstly,

we attempt to extract LBP features and use the ridge regres-

sor (RR) to estimate the crowd number, and the results are

listed at the top row. The results predicted from our CNN

crowd model without fine-tuning are shown at the second

row. Then the results of our proposed method with data-

driven fine-tuning are listed at the third row. These three

methods do not use any data from the test scene. Our crowd

CNN model can estimate density maps and crowd counts ef-

fectively. The data-driven fine-tuning method improves the

performance in some test scenes. Similar samples retrieved

from training data can help the model to better fit the test

data. The density estimation results are shown in Figure 6.

We also observe that some auxiliary labeling in the tar-

get scene could boost the performance of our method. As

scene-specific information is introduced, most background

noise could be eliminated. Our predicted density map can

be treated as feature and ridge regression is used to fit the

pedestrian number. For comparison, we test two scene-

specific methods in [6] and [7]. [6] is a global regres-

sion method using various hand-crafted features including

area, perimeter, edge and local texture feature, while [7]

adopts the random regression forest to predict the density

map. The compared methods are trained with the first

60 labeled frames for every test scene, and the remain-

ing frames are used as the test set. A GMM-based back-

ground modeling method is adopted to extract the fore-

ground segments. Since a mount of stationary crowds exist

in scene 2, it is hard to obtain foreground accurately. Our

cross-scene crowd counting method outperforms the scene-

specific methods. The results are further improved for test

scene 1, scene 3 and scene 4 shown in Table 2. However, for

scene 2, the ridge regression leads to a worse result, because

the density distribution in the first 60 training frames have

significantly differences with the remaining test frames.

We also compare our iterative switchable learning

scheme with the joint multi-task scheme. The joint multi-

task loss LJ is defined as:

LJ(Θ) = LD(Θ) + λLY (Θ) (5)

The average mean absolute errors of the two different

losses in the proposed cross-scene WorldExpo’10 dataset

are shown in Table 3. Our iterative switchable training pro-

cess achieves better performance than the joint multi-task

loss. Different but related objectives can help each other to

6



Table 2. Mean absolute errors of the WorldExpo’10 crowd counting dataset

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average

LBP+RR 13.6 58.9 37.1 21.8 23.4 31.0

Crowd CNN 10.0 15.4 15.3 25.6 4.1 14.1

Fine-tuned Crowd CNN 9.8 14.1 14.3 22.2 3.7 12.9

Luca Fiaschi et al. [7] 2.2 87.3 22.2 16.4 5.4 26.7

Ke et al. [6] 2.1 55.9 9.6 11.3 3.4 16.5

Crowd CNN+RR 2.0 29.5 9.7 9.3 3.1 10.7

Table 3. Average mean absolute errors (AMSE) on WorldExpo’10

crowd counting dataset via switching training scheme and the

multi-task training scheme

t 1 2 3 4 5 6

AMSE 17.4 15.5 14.9 14.3 14.1 14.3

λ 10 1 0.1 0.05 0.01 0.005

AMSE 50.8 50.8 18.5 15.5 15.3 15.5
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Figure 6. Our density estimation and counting results on the

WorldExpo’10 crowd counting dataset. (Left) result curve for each

test scene, where X-axis represents the frame index and Y-axis rep-

resents the counting number. (Middle) one sample selected from

the corresponding test scene. (Right) density map and crowd esti-

mated on the sample. Best viewed in color.

obtain better local optima through switching training objec-

tives. In contrast, the joint multi-task scheme requires more

computation to obtain a optimal λ than our switchable train-

ing process, and the results are also sensitive to the choice

of λ.

5.2. UCSD dataset

Our second experiment focuses on crowd counting for

a single scene. Our crowd CNN model is compared with

scene-specific methods. A 2000-frame video dataset [4] is

chosen from one surveillance camera in the UCSD campus.

The video in this dataset was recorded at 10 fps with a frame

size of 158 × 238. The labeled ground truth is at the cen-

ter of every pedestrian. The ROI and perspective map are

provided in the dataset.

We follow the dataset setting in [4] and employ frames

601-1400 as the training data and the remaining 1200

frames as test set. 72 × 72 patches are extracted from the

image without normalization. 800 patches are randomly

cropped from each image to train the model. For the test

set, the patches are extracted in a sliding window fashion

with 50% overlap. The density estimation of each pixel is

obtained by averaging all the predicted overlapping patches.

Our predicted density map from the CNN model can be

treated as feature. The ridge regression is used to fit the

training set.

Table 4. Comparison with global regression methods for crowd

counting on the UCSD dataset

Method MAE MSE

Kernel Ridge Regression [1] 2.16 7.45

Ridge Regression [6] 2.25 7.82

Gaussian Process Regression [4] 2.24 7.97

Cumulative Attribute Regression [5] 2.07 6.86

Our Crowd CNN Model 1.60 3.31

Table 4 reports the errors with our methods and four

other methods based on global regression. Two metrics,

the MAE and Mean Squared Error (MSE), are employed

for evaluating the performance of compared methods. Our

proposed crowd CNN model outperforms all the global re-

gression based approaches for both metrics. Note that our

method does not rely on any foreground information and

is tested on the whole area of ROI. Yet other compared

methods rely on the foreground segmentation features. The

methods we compared in Table 4 adopt similar hand-crafted

features including segmentation features (area and perime-

ter), edge features obtained with the canny operator and lo-

cal texture features (such as LBP [19] and GLCM [18]).

The experiment results show that by incorporating the ad-

ditional density information, our crowd CNN model boosts

the accuracy of crowd counting significantly.
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Figure 7. Density estimation results in the UCSD dataset and the UCF CC 50 dataset. (Left) the input frame. (Middle) the predict result

through our method. (Right) the density map ground truth

We compare our method with other density regression

based methods in Table 5. Following the experiment set-

tings in [12] and [24], we split the data into four dif-

ferent training and test sets: 1) ‘maximal’ :training on

frames 600:5:1400; 2) ‘downscale’: training on frames

1205:5:1600; 3) ‘upscale’ : training on frames 805:5:1100;

4) ‘minimal’ : training on frames 640:80:1360. The frames

outside the training range are tested. The four splits differ

in the number of training images and the average number of

pedestrians. Our method is comparable with state-of-the-

arts. Again, unlike other density regression methods, our

method does not require foreground segmentation. Some of

our results are shown in Figure 7.

Table 5. Mean absolute errors of density regression methods and

our approach on the UCSD dataset

Method ‘max’ ‘down’ ‘up’ ‘min’

Density + RF [7] 1.7 2.16 1.61 2.2

Density + MESA [12] 1.7 1.28 1.59 2.02

Codebook + RR [2] 1.24 1.31 1.69 1.49

Our Crowd CNN Model 1.70 1.26 1.59 1.52

5.3. UCF CC 50 dataset

The UCF CC 50 dataset [8] contains images collected

from Internet. It is a challenging dataset, because there are

only 50 images in the dataset with pedestrian numbers rang-

ing between 94 and 4543. The authors provided the labeled

ground truth, which can be used to generate the ground truth

density map as the right column of Figure 7.

Following by the dataset setting in [8], we split the

dataset randomly and perform 5-fold cross-validation.

MAE and MSE are employed as the evaluate metrics. Sim-

ilar to the experimental setting in the USCD dataset, 1600

patches are randomly cropped from each image for train-

ing. The patch size is 72 × 72. The test patches are

densely selected with 50% overlaps. The predicted density

at each pixel is calculated by averaging overlapping predic-

tion patches.

Table 6. Comparision results in UCF CC 50 dataset

Method MAE MSE

Rodriguez et al [22] 655.7 697.8

Lempitsky et al. [12] 493.4 487.1

Idrees et al. [8] 468.0 590.3

Our Crowd CNN Model 467.0 498.5

We compared three methods on the UCF CC 50 dataset.

The methods presented in [12] proposed the MESA-

distance to learn a density regression model using dense

SIFT features [16] on randomly selected patches. Ro-

driguez et al. [22] made use of density map estimation to

improve the head detection results in crowd scenes. Idrees

et al. [8] relied on multi-source feature, including head

detection, SIFT and Fourier analysis. There is no post-

processing for all the compared methods. The experimental

results are shown in Table 6. Our proposed method achieves

the best MAE and is effective on cross-scene counting, even

with the very tough test set. Some experimental results are

shown in Figure 7. Still, our method can generate a reason-

able density map and obtain a reasonable counting result

close to the ground truth.

6. Conclusion

In this work, we propose to solve the cross-scene crowd

counting problem with deep convolution neural network.

The learned deep model specifically has better capabil-

ity for describing crowd scenes than other hand-craft fea-

tures. We propose a switchable training scheme with two re-

lated learning objectives, estimating density map and global

count. With the proposed alternative training scheme, the

two related tasks assist each other and achieve lower loss.

Moreover, a data-driven method is proposed to select sam-

ples from the training data to fine-tune the pre-trained CNN

model adapting to the unseen target scene.
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