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Abstract

We review several approaches to optical invisibility designed using transformation optics (TO)

and optical conformal mapping (CM) techniques. TO is a general framework for solving inverse

scattering problems based on mimicking spatial coordinate transformations with distributions of

material properties. There are two essential steps in the design of TO media: first, a coordinate

transformation that achieves some desired functionality, resulting in a continuous spatial

distribution of constitutive parameters that are generally anisotropic; and, second, the reduction

of the derived continuous constitutive parameters to a metamaterial that serves as a stepwise

approximation. We focus here on the first step, discussing the merits of various TO strategies

proposed for the long-sought ‘invisibility cloak’—a structure that renders opaque objects

invisible. We also evaluate the cloaking capabilities of structures designed by the related CM

approach, which makes use of conformal mapping to achieve index-only material distributions.

The performance of the various cloaks is evaluated and compared using a universal

measure—the total (all-angle) scattering cross section.

Keywords: transformation optics, optical conformal mapping, cloak, scattering cross section,

eikonal approximation, geometrical optics, metamaterials

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Transformation optics (TO) is a recently appreciated tool for

the design of complex media with unique wave propagation

properties [1, 2]. Introduced in the present context as

a computational technique to extend the utility of finite-

difference [3] and finite-element codes [4], TO has become

widely appreciated for its generality and ability to design

structures that manipulate waves with unprecedented control.

The main tool associated with TO is that of coordinate

transformations, in which isotropic space is conceptually

warped or otherwise distorted as a means of guiding the

trajectories of waves. The coordinate transformation that

results in some desired functionality can then be used to

determine the properties of a physical medium in which

waves will behave as if they were propagating in the warped

space. The TO method can be applied to any linear waves

for which the underlying equations exhibit form invariance

under coordinate transformations. Maxwell’s equations, for
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example, are generally form-invariant, so that coordinate

transformations can equivalently be implemented as spatially

varying, anisotropic constitutive parameters (i.e. the electric

permittivity and the magnetic permeability) [5–8].

Coordinate transformations can be considered the primary

tool of TO, in analogy to the use of ray tracing for geometrical

optics (GO). However, the tools are quite different in many

aspects, since TO is exact to the level of Maxwell’s equations,

while geometrical optics ignores the wave-like properties. Ray

tracing allows one to determine the trajectory of rays incident

on or through a medium; a medium or device that accomplishes

some function can then be arrived at, for example, by

optimization. In contrast, coordinate transformations allow one

to start from the desired functionality and arrive immediately

at the medium properties that will accomplish the goal. TO

designs are not unique; not only can a TO solution always

be found that achieves a desired function, usually an infinite

set of transformations exist, each corresponding to a different

hypothetical medium. The TO media that ensue from a

transformation are generally anisotropic [8], spatially varying

and possess both an electric as well as magnetic response. That

is, the TO approach inherently assumes no constraints on the

complexity of the material. Whether a material can actually

be manufactured that corresponds to a given transformation

is uncertain, and usually optimization and simplification steps

would be needed to arrive at a feasible design.

The complexity of the materials needed to achieve TO

designs will typically exceed what can be obtained from

naturally occurring media. Fortunately, the last decade

of research into artificially structured media—often termed

metamaterials—has shown that a much wider range of material

response is available through engineered composites [9–13].

Metamaterials have been constructed to have electromagnetic

or acoustic responses that do not exist in nature, such as

negative refractive index [9]. The promising results that have

emerged from the metamaterials community have fueled the

investigation of novel design approaches such as TO, since it

is now possible to realize the actual specified media—even if

only in a stepwise or other approximate manner.

The TO approach can be used to design exotic and unusual

structures in an entirely intuitive process. Perhaps one of the

most thought-provoking examples of a TO structure has been

that of the invisibility cloak, a device that would prevent light

or electromagnetic waves from scattering from an enclosed

object. The transformation for a radially symmetric cloak is

relatively simple and has been presented in numerous places:

it compresses the space contained in some volume into a shell

about that volume [1]. The continuous material resulting from

such a transformation must seamlessly guide light around an

enclosed object placed in the central concealment volume. An

external observer would thus be unable to distinguish between

the presence of the object (and the cloak), and empty space.

A natural and appropriate description for such situations is to

consider the object as ‘cloaked’, or invisible to an observer.

Real materials or metamaterials can only approximate

the continuous, spatially varying material parameters required

by the transformation. In the context of cloaking,

any physical realization will involve materials that exhibit

some degree of material losses, frequency dispersion,

magnetoelectric coupling, discreteness or a myriad of other

undesired properties. These factors will render the cloak

imperfect, leading to some amount of scattering of the

incident waves. In 2006, an approximate TO cloak

constructed using metamaterial elements was demonstrated

at microwave frequencies that manifested the expected traits

of the TO design, but revealed considerable reflection and

shadowing [14]. The amount of residual scattering provides

a natural measure by which to quantify the success of an

implementation of a cloaking transformation. Although a

cloak is hardly the only type of device of interest via the TO

approach, it lends itself particularly well to characterization

and can be utilized as a means of quantifying successive

improvements in TO implementations [15]. Alternatively,

the efficacy of different cloaking transformations and their

approximations can be evaluated by the degree of unwanted

scattering.

The performance of a cloak can be conveniently quantified

by its scattering cross section (SCS). The SCS is defined as

the total energy in the scattered fields divided by the energy

per unit area (per length in two dimensions) in the incident

field, and can be thought of as an effective size associated

with the scattering object. The SCS has units of area in three

dimensions and length in two. The expected function of all

cloaking transformations is to cause an object to appear smaller

than its actual physical extent, as defined according to its SCS.

A perfect cloak can be defined as a structure that shrinks the

apparent size of an object to zero. The SCS is not a unique

figure-of-merit for cloaking efficacy, but it is a reasonable

quantity by which to compare various cloaking strategies.

Numerous proposals for implementations of cloaking have

appeared in the literature over the past few years, in parallel

with the overall development of TO structures. Given that there

are advantages and difficulties associated with every method, it

is useful to compare a variety of approaches using a common

quantitative measure, such that trade-offs in performance

versus potential ease in realization can be understood. In

section 2, we consider a variety of exact and approximate TO

approaches to cloaking, using the SCS as the figure-of-merit.

In section 3, we focus on cloaking via the related technique of

optical conformal mapping (CM) [12]. The CM approach can

be distinguished from the TO approach in that it is restricted

to the geometrical optics limit, so that the full properties of a

wave are not managed by the CM material. The CM approach

is advantageous in that it requires media that can be formed

from isotropic, inhomogeneous dielectric materials. However,

such media can never provide complete cloaking, which would

violate the uniqueness theorem [16–18]. The degree to which

certain proposed CM designs can achieve cloaking is explored

in section 3.

2. Transformation optics approach

TO transformations are entirely general, being able to map

nearly any volume with an arbitrary bounding surface into any

other arbitrarily shaped volume. For convenience, we restrict

our attention here to radially symmetric transformations, which
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typically are easily expressed as analytical expressions. In

two dimensions, for example, a cylindrically symmetric perfect

cloak can be derived for a coordinate transformation r ′ = q(r)

that maps an annulus a < r < b onto the region 0 <

r ′ < b [1, 14]. For such transformations, the constitutive

parameters in the physical space (with radial coordinate r )—

corresponding to ǫ ′ = µ′ = 1 in the transformed space—

should be chosen as follows [14, 19]:

ǫr = µr = (q/r)/q ′, ǫθ = µθ = q ′/(q/r),

ǫz = µz = q ′(q/r),
(1)

where q ′ ≡ dq(r)/dr . Note that we are using the

transformation that is inverse to what is used in some of the

literature [14, 19].

For radial transformations in three dimensions, the

following material parameters within the shell a < r < b are

needed to accomplish perfect invisibility [1, 20]:

ǫr = µr = n2
θ/nr = (q/r)2/q ′,

ǫθ = µθ = ǫφ = µφ = nr = q ′.
(2)

The transformation function q(r) must obey the two

boundary conditions: q(a) = 0 ensures that the cloak interior

is transformed to a point in r ′ space and q(b) = b guarantees

continuity of transformation, which must continue as q(r) = r

at r > b. The simplest, linear function satisfying these

boundary conditions is [1, 14, 21, 22]

q(r) = b(r − a)/(b − a). (3)

Imperfect cloaks with a less restrictive requirement q(r =
a) = qmin ≪ a have also been proposed as a realistic

approximation to the perfect cloak [23, 24].

To simulate the operation of cloaking structures and

assess their performance, we make use of COMSOL

Multiphysics, a commercial finite-element analysis package.

The accuracy of COMSOL for such studies has been

documented in prior works [14, 21]. Throughout this paper,

we neglect the effect of electromagnetic losses by assuming

real-valued constitutive tensor elements; in addition, all

material properties are assumed non-dispersive (frequency-

independent). Consequently, all calculations of this section can

be scaled to arbitrary wavelengths by rescaling of the cloak

dimensions. Reference [25] offers an interesting analysis of

dispersive properties of cylindrical cloaks.

2.1. Role of interior boundary of the cloak

It is well known [26] that cloaks may allow partial field

penetration into their interior cavity (the region r < a),

mostly due to various imperfections of their implementation.

Imperfections might include the finite size of metamaterial

elements; the bounding of divergences in one or more of the

constitutive tensor elements; and eikonal approximations (see

section 2.4). In numerical simulations, the penetration of fields

into the interior of the cloak—where they would otherwise

undergo scattering—are blocked through the use of insulating

boundary conditions frequently imposed at r = a. Two of

the most common insulating conditions are the so-called hard

(Dirichlet) and soft (Neumann) conditions. For instance, a

perfect electric conductor (PEC) boundary can be inserted on

the r = a layer, which for transverse electric (TE) waves will

serve as a hard insulating boundary (Ez = 0). A perfect

magnetic conductor (PMC) on the inner layer will serve as a

soft boundary (∂ Ez/∂n = 0); the boundary conditions switch

roles for transverse magnetic (TM) waves.

The scattering properties of infinitely long cylinders are

somewhat peculiar due to the long-range nature of the Green’s

function in two-dimensional space. For instance, the total

scattering cross section (SCS) of a circular PEC cylinder in

TE polarization (hard boundary) diverges as [27]

σsc ≈
λ ln

(

a
λ
πeγ

)

ln2
(

a
λ
πeγ

)

+
(

π
2

)2
∼

λ

ln(a/λ)
(4)

in the long-wavelength limit (λ → ∞); here, a is the cylinder

radius and γ is the Euler constant. This divergence is evident

from the finite-element calculation of the SCS of a cloaked

cylinder, shown in figure 1(a). In the simulation, the meshed

cloak ‘shrinks’ its interior object to a finite size, proportional to

the size of mesh elements near its interior boundary; therefore,

the SCS diverges in the electrostatic limit no matter how small

the mesh elements are. On the other hand, with a fixed λ the

SCS (4) converges to zero in the limit a → 0. Therefore, a

perfect cloak would still eliminate the SCS of a hard scatterer,

since it compresses the electromagnetic width of the cylinder

to zero.

However, the convergence of the SCS versus a is so

slow (logarithmic) that, in practice, or even in numerical

simulations, perfect cloaking may never be accomplished with

a hard boundary due to either the granularity of metamaterials

or the finite size of the simulation mesh. The poor convergence

of the SCS of a cloaked hard scatterer with respect to mesh

size is illustrated by figure 1(a). In contrast to the cloaked

hard scatterer, a 2D cloak with a soft boundary condition has a

much smaller SCS to begin with and a much faster convergence

with the mesh size (figure 1(b)). This issue is particular to two

dimensions; three-dimensional spherical cloaks (figure 2) are

not sensitive to the choice of interior boundary condition.

Unless specified otherwise, we will use the soft boundary

condition in this section to decouple this issue from all other

effects. Throughout this section, the SCS is normalized relative

to the geometric cross section of the cloaked region, σgeom =
2a.

2.2. Role of continuum discretization

Mathematically, the continuous distributions of equation (1)

substituted into the Helmholtz equation lead to zero

scattered fields outside the cloak. All suggested practical

implementations, however, involve approximating these

continuous distributions with finite-size metamaterial cells.

For cloaks obtained by radial transformations, such cells

are typically arranged into concentric layers to retain the

cylindrical symmetry of the device. Realistic cloak designs

will inevitably include further discretization of each layer

into unit cells; this would reduce the continuous rotational

3
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Figure 1. Two-dimensional perfect cloak defined by equation (1) with the linear transformation (3). The graphs show the total scattering cross
section assuming (a) hard and (b) soft boundary conditions on the inner surface of the cloak, as a function of the wavelength. The images
underneath the graphs show the electric field distributions at the wavelength λ = 0.4. The cloak inner and outer radii are a = 0.2 and b = 0.4,
respectively. The normalized SCS is defined as the ratio σsc/σgeom, where σgeom = 2a is the geometric width of the cloaked region. Numerical
simulation performed with COMSOL Multiphysics.

(a) (b)

Figure 2. Three-dimensional perfect cloak defined by equation (2) with the linear transformation (3). Plots show (a) field profile and
streamlines of electromagnetic flux at the wavelength λ = 0.4 and (b) the total SCS with hard (PEC) and soft (PMC) boundary conditions, as
a function of the wavelength. The cloak inner and outer radii are a = 0.2 and b = 0.4.

symmetry of the cloak (point group D∞) to discrete rotational

symmetry (group Dn), or even lesser symmetry. Here, we

study only the effect of radial discretization, assuming that

the effective medium parameters are stepwise functions of the

radius and independent of the azimuthal angle. We show that,

although all choices of the transformation function q(r) may

be equivalent in the continuum limit, the performance of a

cloak based on those choices will depend on the particular

discretization applied. Figure 3 demonstrates monotonic

convergence of the total SCS of a layered cloak to zero in the

limit of the large number of layers (N → ∞); this behavior

is expected and it exists at any wavelength-to-diameter ratio of

the cloak.

Figure 4 shows the results of numerical simulations of a

layered cloak that uses a family of transformation functions:

q(r) = b(r − a)(1 + p(r − b)/b)/(b − a), (5)

4
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Figure 3. The layered version of the perfect 2D cloak shown in figure 1(b). The continuum transformation is discretized by evaluating the
material parameters at the center of each layer and applying them uniformly to that entire layer. All layers have identical thickness. Plots show
(a) field profile and streamlines of electromagnetic flux at the wavelength λ = 0.5 for the number of layers N = 5 and (b) the total SCS with a
soft boundary condition on the interior, as a function of N , for two different wavelengths, λ = 0.5 and 0.2. The cloak inner and outer radii are,
again, a = 0.2 and b = 0.4.

Figure 4. The layered version of the perfect 2D cloak corresponding to the family of transformations (5), as a function of the parameter p, at
a fixed wavelength λ = 0.2. Plots show (a) field profile and streamlines of electromagnetic flux at the parameter value p = 0.7 and number of
layers N = 5, and (b) the total SCS as a function of the parameter p, for N = 5, 10 and 20. The SCS converges to zero in the limit N → ∞
regardless of the value of p. However, for any finite number of layers it can be minimized by choosing a transformation function different
from linear. The optimized value of p depends on N , as well as the wavelength λ.

with fixed cloak dimensions a and b, and one adjustable

parameter p. At p = 0, the usual linear radius transformation

is obtained. Our parametric analysis shows that the total SCS

of a layered cloak can be improved by optimizing the value

of p. The optimized value of p depends on N , as well as

the wavelength λ. The optimum value of p is typically quite

different from zero, meaning that the linear transformation is

not the optimum. For example, in a cloak with N = 5 layers,

the SCS at λ = a = 0.2 can be reduced by a factor of

two, compared to its value at p = 0, by choosing p = 0.7.

Similar improvement is observed for layered cloaks with larger

N . Worth mentioning is the convergence of the SCS towards

zero with increasing values of N , which happens at any value

of p. This behavior confirms that all transformations in the

family (5) are equivalent in the continuum limit, though they

are not quite the same for any finite N . Further improvement

of the SCS can be obtained by general optimization of material

properties in each layer, without restriction to any particular

class of transformations [28].

2.3. Exploring transformation freedom

The freedom of choice of the transformation function q(r) can

be exploited to make one or more material properties constant

throughout the cloak. For example, a transformation that leads

to a perfect TM-wave cloak with µz = const is

q(r) = b
√

r 2 − a2/
√

b2 − a2,

µz = b2/(b2 − a2), ǫr = 1/ǫθ = (r 2 − a2)/r 2.
(6)

Even more curious is the fact that two parameters can be

kept constant simultaneously: the family of transformations

5
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from [23]

q(r) = b
( r

b

)C

, µθ = 1/µr = C,

ǫz = C
( r

b

)C−1

,

(7)

where C > 1 is an arbitrary constant, implements TE-

wave cloaks with constant magnetic permeability tensors. We

observe, however, that a cloak given by equations (7) is

imperfect for any finite value of shape aspect ratio b/a: it

compresses the apparent size of the cloaked region to a cylinder

of finite radius qmin = b( a
b
)C > 0. Fortunately, this radius

decreases exponentially as a function of C; thus (7) is a good

approximation to a perfect cloak, as long as C ≫ 1 and a/b <

1 is not too close to unity. In practice, due to divergence of

material properties of a perfect cloak at r = a, a cutoff radius

is always introduced; in this sense, there is little difference

between the ‘perfect’ cloak given by (6) and the ‘imperfect’

cloak (7).

In both cases (6) and (7) there are inequalities constraining

the values of the constants µz > 1 and µθ > 1; most

unfortunately, they cannot be unity. The latter choice is,

however, possible if an additional approximation is introduced,

as described in section 2.4.

2.4. Eikonal approximation and the role of boundary

conditions

Controlling all six of the constitutive tensor elements for a

three-dimensional cloak, or three of the elements for a two-

dimensional cloak, may be difficult to achieve in practice.

Controlling magnetic parameters is particularly challenging,

especially in the optical frequency range [22, 19]. An

approximation to the perfect cloak based on the geometrical

optics (GO) limit was introduced to facilitate the experimental

demonstration [14]. Monochromatic light propagation in the

GO limit is well described by the eikonal equation [29]

and ray tracing [30]. In the GO (short-wavelength) limit,

the streamlines of electromagnetic flux are approximately

coincident with the ray trajectories obtained via ray-tracing

techniques, and the surfaces of constant phase of non-

vanishing field components are approximated by the constant-

phase surfaces calculated with the optical eikonal equation.

Neglecting the difference between those approximately equal

quantities in the limit λ → 0 is known as the eikonal

approximation. We refer to the cloaks that rely on the eikonal

approximation as eikonal cloaks. The eikonal approximation to

the perfect cloak is obtained through the following procedure.

First, note that the refractive indices corresponding to

radial (nr ) and azimuthal (nθ ) propagation in the perfect

cloak (1) are

nr = q ′, nθ = q/r, (8)

for both TE and TM polarizations in 2D. For TM-polarized

in-plane waves, the refractive indices are nTM
r,θ = √

ǫθ,rµz ,

whereas for TE waves nTE
r,θ = √

µθ,rǫz .

Interestingly, the relationships (8) also hold for 3D cloaks

with parameters (2). This is so because, in the limit

λ → 0, planar rays do not feel the gradient of refractive

index transverse to the plane of propagation; any cross section

of a 3D cloak passing through its center is equivalent to a

cylindrical (2D) cloak in the GO limit.

By definition, an eikonal cloak uses the less restrictive set

of requirements (8) instead of the full set (1) or (2). When

light propagation is governed by the eikonal equation, wave

impedance is relatively unimportant (to the extent described

below) and the refractive index defines the ray trajectories, as

well as the streamlines of electromagnetic flux.

The eikonal equation is, however, unable to describe

the dynamics of light at an interface where wave impedance

has a discontinuity. Reflection and transmission on such a

discontinuity is governed mostly by impedance, which does

not play a role in the eikonal equation. The perfect cloak may

introduce a discontinuity in ǫ and µ at r = b (if q ′(b) �= 1):

however, the relevant wave impedance Zθ , defined as
√

µz/ǫθ

or
√

µθ/ǫz depending on the polarization, is always continuous

in a perfect cloak: Zθ = q/r matches unity at r = b.

There are infinitely many ways to reduce a perfect cloak

that uses a given transformation function q(r) to an eikonal

cloak with the same q(r). Depending on how the eikonal

approximation is introduced, and what q(r) is used, Zθ

may or may not be continuous at r = b. The most

common way of reducing a perfect cloak to an eikonal cloak

is to assume that one of the three material parameters is

prescribed by an arbitrary function of radius; then the other two

material properties are expressed through that function using

equations (8). The most natural choice of such an arbitrary

function is a constant; for instance, unity. The TE-wave cloak

from [14, 26, 15] (case A) assumes µθ (r) = 1 for a < r < b,

and consequently

ǫz = n2
r /µθ → n2

r = (q ′)2,

µr = n2
θ/ǫz = µθn2

θ/n2
r → n2

θ/n2
r = (q/r)2/(q ′)2.

(9)

The TM cloak of [22, 19] (case B) uses µz(r) = 1 for

a < r < b; other parameters become

ǫr = n2
θ/µz → n2

θ = (q/r)2,

ǫθ = n2
r /µz → n2

r = (q ′)2.
(10)

We emphasize that eikonal cases A and B are fundamentally

different from the perfect cloak given by (6).

Cases A and B, though distinct, are quite similar in terms

of their overall performance. With a linear transformation

function (3), case A has impedance mismatch on the surface:

Zθ (b) =
√

µθ/ǫz = 1/q ′(b) = (b − a)/b; (11)

case B has the same mismatch:

Zθ (b) =
√

µz/ǫθ = 1/q ′(b) = (b − a)/b. (12)

Case A has been studied extensively in [14, 15, 26]; our

calculations for case B are shown in figure 5.

The simulations in figure 5 confirm our suspicion that

eikonal cloaks with impedance mismatch at the surface do

not operate very well, even in the limit λ ≪ a where the

6
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Figure 5. Two-dimensional eikonal cloak for TM polarization corresponding to the linear transformation of radius. The eikonal approximation
is obtained by setting the out-of-plane magnetic permeability µz to one. A soft (Neumann) interior boundary condition is used (∂ Hz/∂n = 0);
this corresponds to a PEC boundary. Wave impedance at the exterior boundary is Zθ (b) = µz(b − a)/b = (b − a)/b < 1. Plots show (a) field
profile and streamlines of electromagnetic flux at the wavelength λ = 0.6 where SCS has a minimum and (b) the total SCS as a function of the
wavelength. For comparison, graph (b) also shows SCS of an eikonal cloak with surface impedance matched to free space, Zθ(b) = 1; this is
done by choosing µz = b/(b − a). The arrow at λ = 0.22 indicates the regime (λ/a = 1.107, b/a = 2) in which eikonal cloaking was
demonstrated in [30, 15]. Direct comparison of SCS value with [15] cannot be made as it used the hard boundary (PEC for TE waves) with a
much larger uncloaked SCS. The total SCS of an ideal cloak (not shown here, see figure 1 (b)) is less than 10−3 for all wavelengths depicted.

eikonal approximation is expected to be valid. One way

to alleviate this problem is to choose the value of µz =
b/(b − a) such that Zθ (b) = 1; the transformation function

need not change. The eikonal cloak with corrected impedance

performs very well; this was shown in [19] where a different

approach (making the transformation function q(r) continuous

along with its first derivative) was suggested for impedance

matching. The surface-impedance-matched eikonal cloak

shows a linear decrease of the total SCS in the limit λ → 0, as

seen from figure 5(b).

This finding may seem to contradict the earlier claim [26]

that eikonal cloaks are not invisible in the GO limit. The

apparent contradiction can be better understood by considering

the multipole contributions to the SCS, which can be readily

found for cylindrically or spherically symmetric structures.

It was found in [26] that, for a cylindrical cloak, at least

one scattering coefficient in the Bessel expansion formalism

remains non-zero and finite in the limit b/λ → ∞. This poses

no contradiction to the findings of this work and of [22]. The

total SCS expression through the scattering coefficients [27]

has an overall factor of the order of λ:

σsc =
2λ

π

∞
∑

m=−∞
|bm|2. (13)

Here, bm are the complex-valued scattering coefficients for TE

polarization.

For the eikonal cloak with corrected surface impedance,

the sum in equation (13) remains finite (does not diverge) in

the limit λ → 0; the SCS thus converges to zero as O(λ), as is

evident from figures 5(b), 6(b) and 7(b). In simple terms, such

a cloak is almost invisible to an observer who can only measure

the far fields. In contrast, when the cloaking shell is removed

and the scattering object (a perfectly reflecting cylinder) is

exposed to a plane wave in free space, the sum in equation (13)

diverges as 1/λ at λ → 0, leading to a finite scattering width

in the GO limit [27]. One may therefore state that, although

eikonal cloaks are much worse than perfect cloaks (the latter

have bm = 0 for any λ and m), their SCS is anomalously small

in comparison with a regular scatterer of the same size.

So far we have studied cloaks with an insulation condition,

either a soft (Neumann) or hard (Dirichlet), at the interior

boundary. For some applications it may be desirable to allow

fields to leak into the cloak interior. This is, in fact, the

case assumed in [26]. Mathematical analysis of the exact

Helmholtz equation for an eikonal cloak from case A has

been performed therein. It was shown that the monopolar

(m = 0) Bessel harmonic leaks into the cloaked region of

an eikonal cloak, whereas any harmonics with m > 0 do not

penetrate at all. This is clearly illustrated by figure 6(a), which

shows azimuthally symmetric fields inside the cloak. The

SCS calculation (figure 6(b), solid curve) confirms the finding

of [26] that m = 0 harmonics contribute to the SCS, causing

the oscillations of σsc as a function of λ/b. Nevertheless,

even the air-filled, non-insulated eikonal cloak still shows

convergence of SCS to zero. The convergence is, however, not

uniform in λ/b, contrary to the case of an eikonal cloak with

soft insulating boundary (figure 6(b), dashed curve).

Finally, following [19], we note that surface impedance

matching of an eikonal cloak—a prerequisite for its

invisibility—can be achieved without controlling ǫz or µz . For

visible wavelengths, making magnetic materials with µz �= 1

and a low loss tangent is difficult. To avoid this challenge,

one may choose a more appropriate transformation function

r ′ = q(r). According to equation (12), the wave impedance

for transverse waves incident on the eikonal cloak with µz = 1

and ǫθ = (q ′)2/µz = (q ′)2 reduces to Zθ = 1/q ′. Thus,

any transformation with q ′(b) = 1 accomplishes surface

impedance matching in eikonal cloaks.

7
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(a) (b)

Figure 6. The same eikonal cloak for TM polarization as in figure 5, but without an insulating interior boundary. The interior of the cloak is
free space (ǫ = µ = 1) and the interior boundary at r = a is an electromagnetic continuity condition. The wave impedance at r = b is
matched to free space by choosing µz = b/(b − a) in the annulus a < r < b. Plots show (a) field profile and streamlines of electromagnetic
flux at the wavelength λ = 0.05 and (b) the SCS as a function of the wavelength. The field plot indicates that the m = 0 angular harmonics
penetrate into the core of the cloak, while harmonics with m > 0 do not [26]. Due to transmission of m = 0 harmonic, the SCS of this
structure (solid blue curve) shows oscillatory behavior in the regime λ < a, in stark contrast with the linear decrease of σ ∝ λ for a cloak with
a soft insulating boundary at r = a (dashed green curve). The absolute values of scattering efficiency in the regime λ ≪ a are comparable for
both cloaks.

Figure 7. A TM-wave eikonal cloak that uses a quadratic transformation of radius (5) with p = popt ≡ −a/(b − a) = −1. All other
parameters are the same as in figure 5; out-of-plane permeability µz = 1. Plots show (a) field profile and streamlines of electromagnetic flux
at the wavelength λ = 0.05 and (b) the total SCS as a function of the wavelength. The total SCS of an un-optimized eikonal cloak (with
p = 0) (same as in figure 5) is also shown for comparison. The SCS of an ideal cloak (not shown) is less than 10−3 in this entire band,
regardless of the value of p.

One family of cloaking transformations that can be

optimized to get Zθ (b) = 1 is the quadratic polynomial (5).

For p = 0, it reduces to the linear transformation (3). The

requirement Zθ (b) = 1 is fulfilled at p = −a/(b − a). A

finite-element simulation (figure 7) confirms that the SCS of

an eikonal cloak with µz = 1 is strongly reduced at this value

of p, versus its value at p = 0. We also note that σsc decreases

approximately linearly with λ in the range 0.05 � λ � 0.4.

This behavior is similar to what is observed in figure 5(b) for

a cloak whose impedance was matched by adjusting µz . The

two examples in figures 5(b), 7(a) and (b) clearly show that

eliminating impedance mismatch at the exterior boundary of

an eikonal cloak is a necessary condition for its low visibility.

3. Optical conformal mapping approach

Optical conformal mapping (CM) is closely related to the

TO approach in that they both utilize geometry for the

purposes of electromagnetic design [16, 31]. CM techniques

are based on the premise that, under conformal coordinate

transformations, the two-dimensional Helmholtz equation

is form-invariant, just as Maxwell’s equations are form-

8
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Figure 8. The (a) coordinate transform and (b) index profile are shown for the cloak resulting from an optical conformal map.

invariant under arbitrary transformations. Analogous to TO,

where the coordinate transformation is used to modify the

permittivity and permeability tensor distributions, in CM the

coordinate transformation is used to redefine the refractive

index distribution. Unlike the most general TO media, CM

media can be dielectric only and isotropic, and thus have the

potential to scale more easily towards visible wavelengths.

The simplicity of material properties in CM, however, is

accompanied by significantly reduced performance, as might

be expected from the restricted material parameter set.

In the context of optical conformal mapping, the

Helmholtz equation was originally utilized for managing rays

in the GO (eikonal) limit [16, 31]. For any wave propagating

in a two-dimensional plane, the polarization is maintained

as TE (TM), if both ǫ and µ tensors are diagonal. If one

further assumes that µ = 1 (respectively, ǫ = 1), only

the non-trivial out-of-plane permittivity ǫzz (or permeability

µzz) remains. Maxwell’s equations then reduce to a scalar

Helmholtz equation ∇2
 + (ω/c)2n2
 = 0, where 
 =
Ez(Hz). This equation is invariant under any conformal

transformation. Thus, for a single polarization case, the CM

approach is exact from the full-wave perspective, and not just

in the eikonal approximation.

The main advantage of the CM technique is that, in

order to control the in-plane propagation of TE (TM) waves,

it is sufficient to provide only the isotropic permittivity

(permeability) distribution. In two dimensions, the theory

of functions of complex variables suggests a rich class of

conformal transformations. The in-plane axes in the original

and transformed spaces can be treated as the real and imaginary

parts of complex-valued coordinates, z and z ′, respectively;

then, any holomorphic complex function z ′ = f (z) generates

a conformal map.

Unfortunately, finding a conformal transformation that

establishes a mapping between two given finite-area domains

is often impossible [32]. One reason for this is that conformal

maps preserve the so-called conformal modulus of the domain,

which is a dimensionless characteristic of its shape; therefore,

any two areas of unequal conformal modulus cannot be

mapped conformally [33]. A variety of numerical techniques

have emerged for obtaining approximately conformal solu-

tions, called quasi-conformal [32, 34], which minimize the

amount of anisotropy in the constitutive parameters subject

to the particular boundary conditions. On the other hand,

mapping conformally the exterior of a circle onto the exterior

of another circle with a different radius is not prohibited, since

both domains involved have an infinite conformal modulus.

The distribution of refractive index that implements such a

mapping precisely would be, of course, infinite in extent.

The optical CM technique was originally introduced

with the goal of constructing a medium via a conformal

transformation for which rays would be guided around

an internal cylindrical object [16]. With conformal

transformations, it is not possible to find an azimuthally

symmetric solution to this problem, nor is it possible to

achieve any configuration of isotropic media that would scatter

precisely as a volume of free space [16–18]. For rays incident

from a particular direction, however, a conformal map can be

found that suggests, in the geometrical optics limit, a very

similar ray behavior as was observed for the TO cloaks. One

such conformal transformation is given by [16]

w = z + a2/z, (14)

where a is the radius of the inner cylinder, and w = x + iy

and z = x ′ + iy ′ are the complex coordinates in the two

frames. Note that, since w(z) is a holomorphic function (i.e.

∂w/∂z∗ = 0), the transformation is conformal. The map

specified by equation (14) is illustrated in figure 8(a), where

lines of constant x and constant y are plotted in the (x ′, y ′)

space. The plot shows that rays traveling in a straight line in the

(x, y) space follow curvilinear trajectories in the (x ′, y ′) space,

either detouring around the central cylinder if incident along

the horizontal axis, or terminating on the cylinder if incident

along the vertical axis. The effective index distribution that

implements the mapping for the Helmholtz equation can be

9
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Figure 9. Full-wave simulations of the conformal cloak with various sizes. (a) The SCS (in arbitrary units) as a function of the cloak outer
radius b for two wavelengths, λ = 1 and 0.5, assuming a = 1. (b) The index profile for a cloak with the shape aspect ratio b/a = 6. The
refractive index mismatch at the boundary r = b is less than 10%, yet it affects the cross section. (c) Full-wave simulation for the same cloak
with b/a = 6. Refraction at the outer boundary and shadowing around the core cylinder are evident; these effects contribute to the SCS.

directly calculated using n = |dw/dz|:

n(x, y) =
∣

∣

∣

∣

1 −
a2

z2

∣

∣

∣

∣

. (15)

This transformation can be equivalently written as

x ′(x, y) = x ±
1

√
2

(

√

(x2 − y2 − 4a2)2 + 4x2y2

+ (x2 − y2 − 4a2)
)1/2

,

y ′(x, y) = y ±
1

√
2

(

√

(x2 − y2 − 4a2)2 + 4x2y2

− (x2 − y2 − 4a2)
)1/2

.

(16)

The index distribution corresponding to equation (16),

shown graphically in figure 8(b), successfully guides rays

which are initially parallel to the x axis around the inner

cylinder. Both the transformation and the prescribed index

distribution for the CM cloak, however, are infinite in spatial

extent. The only free parameter in this transformation is

the radius of the inner cylinder. In order to characterize the

efficacy of such a cloak, even in simulation, the transformation

must be approximated by applying a cutoff at some

radius. Unfortunately, the cutoff radius introduces significant

deleterious scattering, leading to a larger overall SCS. Full-

wave simulations, performed in COMSOL, characterize the

effects of approximating the infinite conformal cloak by a

finite-sized version in which the index profile is terminated at a

finite radius. The SCS is shown as a function of the terminated

cloak size in figure 9 for two different wavelengths. These

simulations do not demonstrate a reduction in SCS for a cloak

of any size within our computational capabilities. Scattering

is introduced at the boundary of the cloak, which produces a

shadow, as demonstrated in figure 9. For this case the cloak

increases the SCS of the inner cylinder by nearly a factor of

ten despite less than 10% error in the refractive index at the

boundary.

It should be expected that optical cloaks with larger outer

radius exhibit better cloaking performance; for a very large

radius, it is reasonable to employ Hamiltonian ray-tracing

10
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Figure 10. Ray-tracing simulation of an optically large conformal cloak. The SCS is calculated using the procedure described in the text.
(a) The SCS as a function of outer radius b for several wavelengths; the latter determine the cutoff scattering angle. Note that the SCS actually
diverges in the limit λ/b → 0. (b) and (c) Ray trajectories for an outer radius b = 6. Rays near the origin are guided around the inner
cylinder (c): however, there is noticeable refraction at the boundary of the cloak (b).

techniques [30]. The SCS in the GO limit may be defined

as the total number of rays that are scattered from an object,

divided by the density of rays. In our ray-tracing simulations,

the density of incident rays is uniform. To distinguish between

scattered and non-scattered rays, a minimum scattering angle,

θmin, must be introduced; without the angle cutoff, the integral

(all-angle) SCS diverges for any potential that remains finite

at all distances [35]. Rays deflected by an angle larger than

this minimum are considered to be scattered rays and included

in the total SCS calculation. Similarly, rays deflected by an

angle less than θmin are considered remaining in the incident

beam. A natural choice for the minimum scattering angle

is the minimum resolvable half-angle, θmin = 1
2

λ
d

, from an

aperture of diameter d . This choice explicitly relates the

wavelength to the total SCS even when characterized in the

GO approximation. For our calculation, we assume that the

aperture size d equals the diameter of the outer boundary of

the cloak, d = 2b.

The SCS results from our ray-tracing analysis are shown in

figure 10. The behavior of the SCS is in qualitative agreement

with the full-wave simulations. Although rays close to the

inner cylinder are appropriately guided around it, there is clear

refraction on the outer boundary of the cloak. The SCS reaches

a peak value and then begins to drop slowly as the size b of the

cloak is increased: however, no reduction in the SCS is found

with any choice of wavelength. The conformal cloak with the

finite ratio of outer to inner radius b/a is therefore inherently

visible at any wavelength.

We have confirmed via ray-tracing and full-wave

simulations that this conclusion also applies to the device in

which the transition from the conformal transformation region

(the region filled with isotropic refractive index) to free space

is graded continuously over a finite distance. The scattering off

the truncation region of the cloak is therefore not removable

by a simple graded-index approach that involves only isotropic

dielectrics.
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4. Conclusions

TO and CM have ushered in a wave of creativity in

electromagnetic design that has seen proposals for a host of

novel devices. The ‘invisibility cloak’ has become the most

widely recognized example for both techniques, and lends

itself particularly well to quantitative analysis. Utilizing the

total scattering cross section (SCS) as the measure of cloaking

performance, we are able to evaluate and compare numerous

TO and CM cloaking concepts. Using full-wave finite-element

simulations, we have demonstrated that the so-called eikonal

approximation cloaks feature anomalously small SCS. The

SCS of eikonal cloaks is shown to vanish precisely in the GO

limit if and only if the wave impedance is continuous at the

exterior boundary. The role of the interior boundary is also

clarified for two- and three-dimensional cloaks. It is explained

why the hard insulation (Dirichlet) boundary condition leads

to strong deviations from perfect cloaking in two dimensions.

We have visualized penetration of the zeroth-order Bessel

harmonic through an uninsulated interior boundary and shown

the effect of transmission through the cloaked cavity. The

convergence of TO cloaks with metamaterial granularity to

perfect cloaks in the continuous material parameter limit is

demonstrated. Several interesting choices of transformations

leading to perfect and eikonal cloaks with one or more constant

material properties are pointed out.

Using the total SCS as the figure-of-merit, we have also

evaluated the performance of a non-rotationally invariant,

isotropic-index cloak based on the optical conformal mapping

method. It is shown using both full-wave simulations and

Hamiltonian ray tracing that the choice of a cutoff radius

strongly affects the SCS of conformal transformation cloaks,

which remains finite for any size of cloak and any wavelength.
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